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Abstract. Using immunodepletion of cyclin E and the 
inhibitor protein p21 wAF/cIP1, we demonstrate that the 
cyclin E protein, in association with Cdk2, is required 
for chromosomal replication in Xenopus extracts. The 
requirement for cyclin E occurs early in the replication 
process and cyclin E/Cdk2 is not required for the elon- 
gation phase of replication on single-stranded sub- 
strates. Although cyclin E/Cdk2 is likely to be the ma- 
jor target by which p21 inhibits the initiation of sperm 
DNA replication, p21 can inhibit single-stranded repli- 

cation through a mechanism dependent on PCNA. 
While the cyclin E/Cdk2 complex appears to have a 
role in the initiation of DNA replication, another Cdk 
kinase, possibly cyclin A/Cdk, may be involved in a 
later step controlling the switch from initiation to elon- 
gation. The provision of a large maternal pool of cyclin 
E protein shows that regulators of replication are con- 
stitutively present, which explains the lack of a protein 
synthesis requirement for replication in the early em- 
bryonic cell cycle. 

T 
HE cell cycle is now known to be driven by com- 
plexes of stable kinases of the Cdc2 class and unsta- 
ble regulatory subunits, called cyclins. In the best 

studied example, cyclin B and Cdc2 initiate mitosis. It is 
thought that cyclin B either phosphorylates specific sub- 
strates or that it activates other kinases that promote mito- 
sis (for a recent review see King et al., 1994). The discov- 
ery of a set of cyclins and kinases expressed in G1 in 
eukaryotic cells has suggested that the G1-S transition also 
depends on similar reactions. Among the cyclins expressed 
at G1 and S, cyclins A, D, and E, and the Cdk2 kinase 
have been shown to be required for some aspect of G1 
progression or the G1/S transition (for recent reviews see 
Draetta, 1994; Heichman and Roberts, 1994; Hunter and 
Pines, 1994). While these cyclins may have a role in pro- 
gression through G1, cyclins A and E can associate with 
the Cdk2 kinase and have been suggested to control initia- 
tion or continuation of DNA replication itself (see Heich- 
man and Roberts, 1994). 

Cyclin E associated kinase activity peaks late in G1, 
when the retinoblastoma gene product, p105 Rb, becomes 
phosphorylated (Dulic et al., 1992; Koff et al., 1992; Lew et 
al., 1991). The Rb related protein p107 may be a direct tar- 
get of cyclin E/Cdk2 because complexes containing these 
proteins together with the transcription factor E2F, which 
is thought to regulate S phase-specific gene expression, 
have been seen (Lees et al., 1992). Overexpression of cy- 
clin E in an osteosarcoma cell line induces p105 Rb hyper- 
phosphorylation and inhibits its growth-suppressive func- 
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tion, while overexpression in human fibroblasts leads to a 
shortened G1 phase (Hinds et al., 1992; Ohtsubo and Rob- 
erts, 1993; Resnitzky et al., 1994). Treatment of mink lung 
cells with growth inhibitory factor TGF-13 prevents the ac- 
tivation of cyclin E-Cdk2 and Rb hyperphosphorylation 
and inhibits cell cycle progression before the G1-S transi- 
tion (Koff et al., 1993). These results suggest that cyclin E 
may play a role upstream of a transcriptional cascade, con- 
trolling the synthesis of components for S phase. Other 
perturbations of cyclin E or Cdk2 function, such as micro- 
injection of antibodies against Cdk2 or cyclin E, or trans- 
fection of a dominant-negative cdk2 gene, give further 
support for some role of these proteins in G1-S progres- 
sion (Pagano et al., 1993; van den Heuvel and Harlow, 
1993; Ohtsubo et al., 1995). A more direct assay of a role 
for cyclin E in S phase progression was the effect of ec- 
topic expression in Drosophila, which induced S phase in 
cells that had exited the cell cycle; mutants lacking cyclin E 
were blocked at the G1-S boundary (Knoblich et al., 
1994). 

Perhaps the most puzzling cyclin requirement for S 
phase function is that for human cyclin A (Pines and 
Hunter, 1989). While this cyclin has hallmarks of a mitotic 
cyclin including a destruction box, its levels and associated 
kinase activity apparently peak in S phase, and microinjec- 
tion studies support that it is required in S phase (Girard 
et al., 1991; Pagano et al., 1992). Its association with 
p105 Rb, Cdk2, and E2F transcription factors suggest a role 
in S phase-specific transcription (Lees et al., 1992). 

Xenopus egg extracts are useful for studying the direct 
effects of cell cycle regulators on biochemical targets in 
the absence of transcriptional control circuits. These ex- 
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tracts recapitulate major events of the cell cycle (Blow and 
Laskey, 1986; Lohka and Masui, 1984; Lohka and Mailer, 
1985; Murray and Kirschner, 1989). Replication of perme- 
abilized sperm nuclei in interphase extracts from Xenopus 
eggs faithfully reproduces several important aspects of cell 
cycle control seen in vivo: the initiation and completion of 
semi-conservative chromosomal DNA replication (Blow 
and Nurse, 1990; Blow and Laskey, 1986); subsequent 
rounds of replication and a requirement that the nucleus 
must pass through mitosis in order to be relicensed for 
replication (Blow and Watson, 1987; Blow and Laskey, 
1988; Hutchison et al., 1987); and a dependence of replica- 
tion on the reformation of the interphase nucleus, on nu- 
clear transport, and on the formation of replication foci 
(Cox, 1992; Leno et al., 1992; Mills et al., 1989; Newport 
and Spann, 1987; Newport and Kirschner, 1984; Sheehan 
et al., 1988). In addition, replication proteins RP-A, 
PCNA, DNA polymerase c~, and RF-C have been demon- 
strated to be present and in some cases required in this in 
vitro system (Adachi and Laemmli, 1992, 1994; Fang and 
Newport, 1991; Hutchison et al., 1989; Zuber et al., 1989; 
Jackson, unpublished data). 

We have begun to examine the linkage between control 
of the cell cycle and control of DNA replication by asking 
whether cyclin E is required for DNA replication in vitro 
and by determining its immediate targets. Previous work 
by Fang and Newport (1991, 1993) had identified a role for 
Cdk2 in DNA replication and demonstrated the associa- 
tion of forms of a 54-kD Cdk2-associated protein, poten- 
tially a cyclin. We demonstrate that cyclin E is the major 
partner of Cdk2 in Xenopus extract and is likely the Cdk2- 
associated protein. Using immunodepletion and the p21 
protein, an inhibitor of cyclin-dependent kinases, we show 
that cyclin E is required for a step preceding the initiation 
of DNA replication and the formation of replication foci. 
We identify that a later transition from initiation to elon- 
gation is controlled by a cyclin/Cdk kinase. Cyclin E or 
Cdk2 do not seem to be required for subsequent elonga- 
tion. Thus, cyclin E is essential for and participates in the 
earliest steps of chromosomal initiation, perhaps by either 
promoting the recruitment of replication proteins to ori- 
gins or by controlling the step that unwinds the DNA. 

Materials and Methods 

Preparation of Extracts 
Xenopus laevis egg extracts were prepared from laid eggs as described 
(Murray and Kirschner, 1989), except that dejellied eggs were activated in 
1x MMR with calcium ionophore A23187 (Calbiochem-Novabiochem, 
La Jolla, CA) at 1 ~,g/ml until cortical contraction was observed, typically 
<4 rain. Interphase extracts were made by addition of cycloheximide to 
100 ~g/ml to prevent synthesis of mitotic cyclins. Typically, experiments 
were performed with multiple fresh extracts, but for some analyses ex- 
tracts were supplemented to 200 mM sucrose, flash frozen, and stored at 
-80°C. In some experiments, dejellied eggs were presoaked in 200 ~g/ml 
cycloheximide for 15-30 rain before activation with A23187. This treat- 
ment resulted in an inhibition of measurable cyclin A associated H1 ki- 
nase activity in interphase egg extracts, but had little effect on the cyclin 
E-associated HI kinase activity. 

Preparation of Demembranated Sperm Nuclei 
Sperm nuclei were isolated from X. laevis testes as described (Sawin and 
Mitchison, 1991), except that the testes were macerated between two sin- 

tered glass microscope slides. The sperm was stored in 250 mM sucrose, 15 
mM Hepes (pH 7.4), 1 mM EDTA, 0.5 mM spermidine, 0.2 mM spermine, 
0.1% 13-mercaptoethanol, 10 p~g/ml each of leupeptin, chymostatin, and 
pepstatin with 0.3% BSA and 30% glycerol at -80°C. Sperm stocks were 
105 sperm/ixl or ~300 ng DNAJ/~I. 

Replication Assays 
Reactions were typically carried out by mixing 10 p,l of cycloheximide-sta- 
bilized interphase extract with 25 or 50 ng sperm DNA equivalents 
(~8,000 sperm) or 25 or 50 ng single-stranded M13 DNA (Pharmacia Fine 
Chemicals, Piscataway, NJ). Reactions were incubated at 23°C for the in- 
dicated times. For end-point assays of replication, incubation was typically 
for 180 min. For efficient extracts (30-100% of input DNA replicated), ki- 
netic studies revealed that little additional incorporation into sperm DNA 
was seen after this time. M13 replication typically ran to completion 
within 60-90 min. Reactions were quenched by addition of 100 ~l of SDS- 
proteinase K stop buffer (0.5% SDS), 20 mM EDTA, 20 mM Tris-HCl, 
pH 8.0, I mg/ml proteinase K (Boehringer-Mannheim Biochemicals, Indi- 
anapolis, IN) and incubated at 37°C for 30 min. Digested samples were ex- 
tracted with phenol-chloroform and aliquots were spotted onto GF-C 
glass fiber filters (Whatman Paper, Clifton, NJ), precipitated in ice-cold 
10% TCA/5% sodium pyrophosphate for 30 min, washed three times in 
ice-cold 1 M HCI, 2 times in 95% ethanol, and dried filters were counted 
by liquid scintillation and normalized to equivalent samples that were not 
TCA precipitated. 

The efficiency of replication was measured by two methods. In the first, 
the number of sperm added was set such at ~25 or 50% of the maximum 
capacity of extract to replicate sperm DNA (~10 ng/~l or 3,200 sperm/p J). 
The specific activity of dATP in extract was based on the published con- 
centration of (50 txM) dATP in extract (Blow and Laskey, 1986). The 
amount of DNA replicated was then calculated from the ratio of TCA 
precipitable counts to the counts added and the efficiency of replication 
from the ratio of DNA replicated to DNA input. In the second method, 
the percentage of sperm nuclei brightly stained by rhodamine dUTP after 
replication was compared with the percentage of nuclei stained with Hoechst 
33258. 

HI Kinase Assays, Western Blotting 
Typically, 5-10 p.1 of extract was diluted 1:10 in immunoprecipitation 
buffer (IPB" 100 rnM NaCI, 50 mM J3-glycerophosphate, 5 mM EDTA 
0.1% Triton X-100, 1 mM DTT + protease inhibitors) to which was added 
a fixed amount of antisera specific to Xenopus Cdc2, Cdk2, or cyclins A1, 
B1, B2, or E. Typically, 1-2 }xl crude antisera was demonstrated to be in 
antibody excess for 10 }xl interphase extract. After 1-2 h incubation on ice, 
~15 }xl of protein A-Sepharose CI4B was added and tumbled for ~30 
min. Immunoprecipitates were washed four times in IPB, three times in 
kinase buffer (KB: 50 mM NaC1, 20 mM Hepes, pH 7.2,10 mM MgC12, 2 mM 
EDTA, 0.02% Triton X-100), aspirated, mixed with 30 ~l kinase cocktail 
(1× KB, 250 p.g/ml histone H1, 0.4 mM NaATP, 0.25 ~Ci/I.L1 [32p]-g-ATP), 
incubated at 25°C for 15 min, quenched in sample buffer, resolved by SDS- 
PAGE, dried onto paper, and the assay quantitated on a Molecular Dy- 
namics PhosphorImager (Eugene, OR). 

Western blotting was performed by blotting SDS-polyacrylamide gels 
onto nitrocellulose, blocked in Tris-buffered saline with 0.5% Tween 20 
and 5% Carnation non-fat dry milk. Affinity purified antibodies were 
used at 0.5-1 p~g/ml; crude sera were used as indicated: PCNA COOH-ter- 
minal sera (1:300), RP-A COOH-terminal sera (1:500). Blocking experi- 
ments were performed by preincubating antibodies with a 10-fold molar 
excess of antigen or peptide. Secondary reagents were horseradish peroxi- 
dase-conjugated donkey anti-rabbit antibody (Jackson Immunoresearch, 
Inc.) with detection by chemiluminescence (Renaissance, New England 
Nuclear, Boston, MA). 

Production of Bacterially Expressed GST-Cyclins, 
GST-p21, GST-Cdk2 
Various GST-cyclin or MalE cyclin fusion proteins were prepared. Due to 
the insolubility of many cyclins, batch binding of GST-cyclins to beads 
proved inefficient. The following protocol evolved. Cyclin fusion proteins 
were expressed in BL21 pLys or NB42. Overnight cultures were inocu- 
lated into 1 liter pre-warmed LB and grown to OD6~ N0.5 in 2.8 liters 
Fernbach flasks. Flasks were plunged into ice-water and chilled to 18°C. 
IPTG was added to 100 p,M and flasks were shaken at room temperature 
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for 2 h. Bacteria were pelleted, washed l ×  in NTE (100 mM NaCL, 10 
mM Tris, pH 8.0, 1 mM EDTA) + 1 mM PMSF/10 t~g/ml each of leupep- 
tin, pepstatin, and chymostatin (lpc 1 inhibitors), and frozen in liquid nitro- 
gen. Extracts were suspended in PBS with PMSF and lpc inhibitors, soni- 
cated, supplemented to 250 mM KCL/15 mM DTP, and centrifuged at 
18,000 rpm in an SS34 rotor. From 6 liters of bacteria, approximately 100 
mls of supernatant were produced and passed at 0.5 ml/min over a 5-15 ml 
GSH-agarose column ((34510; Sigma Chem. Co., St. Louis, MO) fitted 
with a flow adapter. The column was washed (~20 column volumes) with 
0.1% Tween 20/PBS/1 mM DTT and then with 20 column volumes of 
PBS/1 mM DTI'. The column was eluted in 1 ml bumps with glutathione 
buffer (5 mM glutathione/50 mM Tris, pH 7.7, 250 mM KCI, 2 mM DqT), 
and peak fractions pooled. The protein was dialyzed against XB-  (100 
mM KCL/50 mM Hepes, pH 7.7), concentrated using an Amicon 10 con- 
centrator, made 40% in glycerol, and stored at ~10-20 mg/ml total protein 
at -80°C. For the less soluble cyclins like cyclin A1, preparations were 
sometimes contaminated with bacterial heat shock proteins and the actual 
concentration of cyclin was estimated from Coomassie-stained gels. 

Antibody Production, Purification, and Production of 
Antibody Beads 
GST-Xenopus cyclin A1 and GST-Xenopus cyclin B1 constructs were 
kindly provided by Doug Kellogg and Andrew Murray (Univ. of Califor- 
nia, San Francisco, CA). Inclusion body preparation of these GST-cyclins 
fusion proteins were gel purified, electroeluted, and used to raise antisera 
in rabbits (Babco Inc., Emeryville, CA). Xenopus cyclin E (Chevalier, S., 
and M. Philippe, unpublished results) was cloned in pGEX2 and a GST- 
cyclin E fusion protein produced. This protein was considerably more sol- 
uble than GST-cyclin A or B. Affinity purification employed the use of a 
MalE-cyclin E fusion generated by cloning cyclin E into the pMALc vec- 
tor (New England Biolabs, Beverly, MA). This soluble protein was puff- 
fled on an amylose resin column (NEB), following the manufacturer 's 
protocol. The protein was dialyzed against 100 mM NaHCO3 pH 8.5 and 
coupled to Affigel 10 (Biorad) following the manufacturer 's specifica- 
tions. These MaiE-cyclin E beads were used for affinity purification of 
anti-cyclin E serum essentially as described (Harlow and Lane, 1988). The 
majority of the cyclin E reactivity was present in the base eluate. Pooled 
antibody fractions were dialyzed against XB-  (100 mM KC1/50 mM 
Hepes, pH 7.7/1 mM DTI?) and concentration on a pre-washed Cen- 
triprep 30 concentrator. These antibodies were used for antibody blocking 
experiments. Anti-cyclin A2 antibodies were generously provided by 
Mike Howell and Tim Hunt (ICRF Clare Hall Labs). Anti-Cde2 antibod- 
ies were raised against a COOH-terminal peptide as described (Solomon 
et al., 1990). Anti-Cdk2 antibodies were raised against a COOH-terminal 
peptide (sequence n-CPFFRDVSRPTPHLI) coupled to keyhole limpet 
hemocyanin (KLH) and affinity purified on a column of peptide coupled 
to Sulfolink beads (Pierce, Rockford, IL) following the manufacturer 's in- 
structions. Additional affinity-purified anti-Cdk2 antibodies were gener- 
ously provided by John Newport (Univ. of California, San Diego, CA). 
Anti -RPA sera were raised against COOH-terminal peptides (n-CNIRK- 
MATQGV) and used crude or affinity-purified on a peptide-Sulfolink 
bead column. Additional anti-Xenopus cyclin E sera were raised against 
NHI- and COOH-terminal peptides (n-CPVIRNPAAEK and n-CD- 
KKQKSDPAD). Anti-PCNA sera were raised against a COOH-terminal 
peptide of Xenopus PCNA (n-CMEHVKYYLAPKIEDEEAS-c).  

Immunofluorescence, Nuclear Assembly, and Nuclear 
Transport Assays 
Interphase extracts were mixed with sperm nuclei and either digoxygenin- 
11-dUTP (Boehringer Mannheim Biochemicals), biotin-21-dUTP (Clon- 
tech, Palo Alto, CA), fluoroscein-11-dUTP, or rhodamine-11-dUTP (Am- 
ersham Corp., Arlington Heights, IL) at 40 p~M. Reactions were incubated 
at 23°C for indicated times, diluted 1:10 in XB/0.05% Triton X-100, over- 
laid on a sucrose cushion (XB/30% sucrose/0.05% Triton X-100) and spun 
for 5 min at 1,300 g onto polylysine-coated coverslips. Coverslips were 
fixed in methanol at -20°C for 5 min, briefly dried, rehydrated in PBS/3% 
BSA/0.1% Triton X-100. Some experiments were performed with EGS 

I. Abbreviations used in this paper: GST, glutathione S-transferase; IV'r, 
in vitro translation; KLH, keyhole limpet hemocyanin; lpc, leupeptin, pep- 
statin, and chymostatin; MBP, maltose-binding protein. 

fixation as described (Mills et al., 1989) and similar results obtained. Anti- 
RP-A staining was performed with crude anti-RP-A (p70) COOH-termi- 
hal peptide sera at 1:1,000 or with affinity-purified antibody with blocking 
by the original peptide. Anti-cyclin E staining was performed with affin- 
ity-purified antibodies at 0.5 ~g/ml. Secondary reagents were either 
rhodamine-conjugated anti-digoxygenin Fab fragments (Boehringer- 
Mannheim Biochemicals), FITC-streptavidin, TRITC-streptavidin, or 
Texas red-  or TRITC-conjugated donkey anti-rabbit antibody (Jackson 
ImmunoResearch Labs, Inc., West Grove, PA). DNA was stained with 
Hoechst 33258 at 0.5 Ixg/ml for 5 min. Coverslips were mounted in Fluoro- 
mount G (Fisher Scientific, Pittsburgh, PA) with 1 mg/ml phenylene di- 
amine as an anti-quenching agent, visualized on a 63×/1.4 NA oil-immer- 
sion lens on a Zeiss Axiophot, and photographed with Kodak TMAX 400 
film. Nuclear transport was assayed with rhodamine-histone (Minden et 
al., 1989) or a synthetic peptide nuclear transport substrate coupled to flu- 
orescent BSA (Newmeyer and Forbes, 1990). 

For the quantitation experiment in Fig. 8 C, standard replication reac- 
tions were incubated with biotin- or digoxygenin-dUTP for i or 3 h and with 
dATP for 3 h. Quantitation of the fluorescent dUTP staining was accom- 
plished using a Photometrics CH250 digital camera with a TK1024AB 
cooled CCD and the Universal Imaging Corporation Metamorph imaging 
system. 

For the time course experiments in Fig. 9, parallel samples were incu- 
bated and removed at various times, diluted in XB-/0.05% Triton X-100 
with or without denatured salmon sperm DNA (50 ~g/ml) and kept on ice 
for 30 rain before pelleting onto coverslips. Cross-over from the fluores- 
cein and Texas red channels was minimal as shown by comparing samples 
stained with either secondary to those stained with both. 

suc l-Bead Production and Depletion Protocol 
Sue1 protein was expressed in the T7 expression system as described (Bri- 
zuela et al., 1987) with the following modifications. After expression of 
sucl protein in bacterial strain BL21 pLysS and a cycle of freeze-thaw, ly- 
sates were prepared in 50 mM Hepes, pH 8.0, 5 mM EDTA with protease 
inhibitors, sonicated, and centrifuged at 100,000 g for 30 min. A 30-50% 
ammonium sulfate salt cut was taken, heat treated at 60°C for 3 rain, and 
recentrifuged. This supernatant was run on a 120 ml Superdex 75 column 
and peak fractions pooled. Protein was dialyzed against 100 mM 
NaHCO3/0.5 M NaC1 and coupled to CNBr-Sepharose (Pharmacia Fine 
Chemical Co.) at 30 mg/ml following the manufacturer's instructions. The 
high density of coupling of Suel protein was important for efficient deple- 
tion with small amounts of beads. Control beads were either coupled with- 
out protein or with ~20 mg/ml BSA. Two important effects of using 
smaller amounts of beads may be reducing the dilution of extracts and re- 
ducing non-specific adsorption of activities to the beads themselves. Using 
less than 0.25 vol beads per volume of extract reduced non-specific inhibi- 
tion by control beads. 

Immunodepletion 
lmmunodepletions with crude sera were performed by binding of clari- 
fied, crude rabbit sera to protein A-Sepharose C14B beads in XB-  for 45 
rain, washing beads four times in XB , resuspending the final wash as a 
50% slurry. Typically, 40 Ixl of this slurry was added to a 0.5 ml Eppendorf 
tube for each immunodepletion, spun down in a Eppendorf microfuge for 
30 seconds, and aspirated nearly dry with a 25 gauge needle. 100 ixl of in- 
terphase extract was added, the tube tapped gently to mix, and the bead- 
extract mix rocked very slowly on ice for 60 min. Beads were spun out in 
an Eppendorf microfuge (Brinkman Instruments, Westbury, NY) for 10 
rain at 13,000 rpm at 4°C. Control depletions used preimmune serum from 
the same rabbit. At an intermediate concentration of sera that substan- 
tially inhibited replication (30 }xl sera versus ~20 pA beads), we would ex- 
pect the maximum binding capacity of the beads used to be ~50 I~g and 
the amount of IgG to be maximally ~300 Ixg (sixfold excess). The purified 
cyclin E antibodies described above were bound and coupled to protein 
A-Sepharose CI4B beads using dimethyl pimilimidate as described (Sima- 
nis and Lane, 1985). These were washed in XB, and varying volumes of 
beads mixed with interphase extracts before assay for replication or HI  ki- 
nase activity. Minimal leaching of antibody was demonstrated by Western 
blotting of the depleted extracts for Ig heavy chain. Measurements of cy- 
din  or Cdk H1 kinase activity after immunodepletion were performed by 
diluting extract 1:10 in IP buffer and clearing these diluted extracts with 
protein A-Sepharose CI4B to remove any residual antibody that might in- 
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Figure 1. Cyclin E associates with Cdk2 to generate H1 kinase 
activity in interphase extract. (A) Anti-Xenopus cyclin E sera. 
Antisera generated against a GST-Xenopus cyclin E fusion pro- 
tein (lane 3) or pre-immune sera (lane 2) were incubated with 
[35S]-labeled in vitro translated Xenopus cyclin E (unprecipitated 
input, lane 1), precipitated with protein A-Sepharose beads, re- 
solved by SDS-PAGE, and visualized by autoradiography. (B) 
Cyclin E-dependent  kinase activity is present in interphase ex- 
tracts from Xenopus eggs. Antisera against cyclin E (lane 2) or 
preimmune sera (lane 1) were added to interphase extracts of 
Xenopus eggs and precipitated on protein A-Sepharose beads. 
Precipitates were washed and assayed in an immune complex ki- 
nase assay with histone H1 as a substrate. (C) Cyclin E protein 
has multiple 50-54-kD species. Interphase extracts were resolved 
on 11% SDS-polyacrylamide gels, blotted to nitrocellulose fil- 
ters, and analyzed by immunoblotting with affinity purified anti- 
cyclin E antibodies (0.5 ixg/ml) with (lane 2) or without (lane 1) 
competition by a MalE-cyclin E fusion protein. Secondary anti- 
body was a HRP-conjugated donkey anti-rabbit and visualization 
was by enhanced chemiluminescence. Molecular mass markers 
are 49 and 70 kD. (D) A GST-Cdk2 protein precipitates the Cy- 
clin E protein.A GST-human CDK2 protein or GST protein (~1 
jxg) was incubated with 10 Ixl of interphase extract, bound to glu- 
tathione agarose, washed, ffactionated by SDS-PAGE, and blot- 
ted to nitrocellulose. Blots were incubated with affinity-purified 
anti-cyclin E antibodies as above. Lanes: 1, GST protein; 2, ex- 
tract; 3, GST-Cdk2. The GST-Cdk2 protein can be visualized be- 
cause of its abundance and a small amount of anti-GST activity in 
the antibody preparation. Reblotting this filter with antibodies 
against GST or a C-terminal peptide from Cdk2 establish the in- 
dicated band as the unique GST-Cdk2 species. Molecular mass 
markers are 49 and 70 kD. (E) Anti-cyclin E antibodies coprecip- 
itate the Cdk2 protein. Interphase extract was incubated with 
anti-GST-Xenopus cyclin E polyclonal antisera coupled to pro- 
tein A-Sepharose or control rabbit IgG beads, washed, resolved 
by SDS-PAGE, and prepared for immunoblots with antisera 
raised against a Cdk2 C-terminal peptide. Lanes: 1, Interphase 
extract; 2, control beads; 3, Anti-cyclin E beads. (F) A GST-cyclin 
E protein precipitates Cdk2, but not Cdc2. Human or Xenopus 
GST-cyclin E fusions (lanes 1 and 2) were incubated with inter- 
phase extract, bound to glutathione agarose, washed, fraction- 
ated by SDS-PAGE, and blotted to nitrocellulose. Blots were in- 
cubated with either anti-Cdk2 sera (upper panel) or anti-Cdc2 
(lower panel). For comparison, control (lane 3) or sucl beads 

terfere with the assay. Immunoprecipitations and H1 kinase assays were 
then performed as described above. 

Inhibition with Purified Cyclin E Antibodies 
Antibody preparations were polyclonal rabbit antisera raised against a 
GST-Xenopus cyclin E fusion protein and were affinity purified on a col- 
umn with an immobilized Mal E-Xenopus cyclin E fusion. Antibodies 
were concentrated and dialyzed against 100 mM KCI, 20 mM Hepes, pH 
7.4. Control antibodies were purified rabbit IgG. 

p21 Inhibition of Replication 
GST-p21 was prepared as above and stored at 10-20 mg/ml in XB-. Vari- 
ous dilutions of GST-p21 were prepared in XB- + 1 mg/ml acetylated 
BSA as carrier. Typically, 1 ixl of this dilution was added to a 10 jzl replica- 
tion reaction and the reaction run for 180 min. In the kinetic experiments, 
multiple aliquots of the replication reaction were set up and at the indi- 
cated times, 1 ixl of XB containing 300 ng of p21 inhibitor was added, 
mixed gently with a pipet, and their incubation continued. At the end of 
the time course, all reactions were quenched and analyzed as above. 

PCNA Binding 
Approximately 2 ~g of various GST fusions were added to 20 j~l of inter- 
phase extract, incubated at room temperatures for 45 min, diluted in IPB, 
washed four times, and analyzed for PCNA binding by SDS-PAGE and 
Western blotting. 

Gel Filtration Analysis 
Gel filtration to size the cyclin E complex was performed using high-speed 
supernatants (HSS) from interphase egg extract. HSS was prepared by di- 
luting LSS 1:4 in XB- and centrifuging in a TLS-55 for 1 h at 4°C. HSS was 
filtered through a 0.45 ~ filter and 200 ixl chromatographed on either a Su- 
perose 6 (24 ml) or a Superdex 200 column (120 ml) on a Pharmacia 
FPLC. A 10 ml TSK3000 column run on a Hewlett-Packard 1040 HPLC 
was also employed. For the Superdex 200 column, 4 ml fractions were col- 
lected, each containing substantially different proteins, and marker reso- 
lution was superb. 

Results 

Generation of Cyclin E Antisera and Characterization 
of the Cyclin E-Cdk2 Kinase Complex 

In  o r d e r  to s tudy the  act ivi t ies of  cyclin E ,  we ra ised a 
po lyc lona l  rabbi t  an t i se rum against  a bac ter ia l ly  expressed  
g lu ta th ione  S- t ransferase  ( G S T ) - X e n o p u s  cyclin E fusion 
pro te in .  This  s e rum specif ical ly i m m u n o p r e c i p i t a t e d  the  
single r ad io l abe l ed  50-kD cyclin E p ro te in  species  gener -  
a ted  by in v i t ro  t rans la t ion  ( IVT)  in rabbi t  r e t i cu locy te  ly- 
sates (Fig. 1 A) .  T h e  s e r u m  also specif ical ly i m m u n o p r e -  
c ip i ta ted  cyclin E-assoc ia t ed  h i s tone  H1 k inase  act ivi ty  
f r o m  in te rphase  extracts  of  X e n o p u s  eggs (Fig. 1 B).  

T h e  an t i s e rum was aff ini ty pur i f ied  on  beads  coup led  to 
a Mal  E - X e n o p u s  cyclin E fusion pro te in .  T h e s e  aff ini ty 
pur i f ied  an t ibod ies  also p rec ip i t a t ed  the  I V T  cyclin E pro-  
te in  and h i s tone  H1 k inase  act ivi ty  as above  (not  shown).  
I m m u n o b l o t s  wi th  these  an t ibod ies  specif ical ly r ecogn ized  
an appa ren t  t r iplet  of  cyclin E species  b e t w e e n  50 and 54 
k D  in in t e rphase  extracts ,  a l though  a lower  mobi l i ty  spe-  
cies ( ~ 5 7  k D )  is typical ly o b s e r v e d  (Fig. 1 C). W h e n  the  
50-kD species of  in v i t ro  t rans la ted  cyclin E was added  to 

(lane 4) were incubated with interphase extracts and analyzed 
similarly. 
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interphase extract, it generated multiple forms similar to 
those seen for endogenous cyclin E (not shown). 

The specificity of the cyclin E antiserum was demon- 
strated by three criteria. First, this serum recognizes in 
vitro translated Xenopus cyclin E protein, but not Xeno- 
pus cyclins A1, A2, B1, or B2. Second, the recognition of 
endogenous cyclin E by this serum is blocked by a Mal 
E-cyclin E fusion protein (Fig. 1 C) and not by bacterially 
expressed GST-fusions of cyclins A1, A2, or B1 (not 
shown). Finally, the Mal E-cyclin E fusion protein blocks 
immunoprecipitation of H1 kinase activity by the cyclin E 
antiserum. 

It is likely that the multiple cyclin E species are similar 
to the previously reported 54-kD "doublet" species that 
coprecipitated with Cdk2 (Fang and Newport, 1991). In 
support of this idea, a GST-Cdk2 protein precipitated sev- 
eral species of cyclin E protein (Fig. 1 D). Apparently, the 
lower mobility forms, which are more highly phosphory- 
lated (not shown), preferentially associate with Cdk2. 

Immunoprecipitation with anti-cyclin E antibodies effi- 
ciently coprecipitated Cdk2, while control antibodies did 
not (Fig. 1 E), consistent with studies in mammalian cells 
(Dulic et al., 1992; Koff et al., 1991, 1992). Human or Xe- 
nopus GST-cyclin E protein bound specifically to Cdk2 
and not Cdc2 when incubated with interphase extracts 
(Fig. 1 F), indicating that the cyclin E-associated kinase ac- 
tivity was Cdk2, not Cdc2 dependent. Further, addition of 
the GST-cyclin E protein generated an active kinase com- 
plex as assayed by precipitation with anti-GST antibodies 
or with glutathione-agarose (not shown). This ability of 
added GST-cyclin E protein to generate an active kinase 
complex with Cdk2 was important for the rescue experi- 
ments that follow. 

Analysis of extracts fractionated by high speed centrifu- 
gation revealed that Cdk2 or cyclin E proteins are largely 
soluble. Fractionation of this high speed supernatant by 
gel filtration and analysis of these fractions by immuno- 
precipitation and H1 kinase assay showed that >75% of 
both cyclin E -  and Cdk2-associated H1 kinase activities 
are present in an apparent complex of approximately 440 
kD. Immunoblotting showed that the majority of the cy- 
clin E protein appeared in this complex and that Cdk2 co- 
precipitated with cyclin E in those fractions containing this 
apparent complex. Thus, cyclin E and Cdk2 each appear 
to be a major partner of the other in interphase extract. 

A Requirement for  Cyclin E in D N A  Replication 

Cdk2 was previously shown to be required for DNA repli- 
cation in interphase extracts (Fang and Newport, 1991). 
Because cyclin E is a major partner of Cdk2, we expected 
that cyclin E would also be required for replication in 
these extracts. To test this idea, we used the anti-cyclin E 
sera to show that either immunodepletion of cyclin E or 
addition of concentrated, affinity-purified anti-cyclin E an- 
tibodies inhibited replication and that this inhibition was 
overcome by addition of cyclin E protein. 

Anti-GST-Xenopus cyclin E antisera bound to protein 
A-Sepharose beads depleted replication activity from in- 
terphase extracts by as much as 75 % (Fig. 2 A). Replication 
activity could be restored by the addition of GST-Xenopus 
cyclin E protein (Fig. 2 B), whereas the GST moiety alone 

Figure 2. Immunodepletion of replication activity from inter- 
phase extract with anti-cyclin E antibodies and rescue by cyclin E 
protein. (A) Immunodepletion of replication activity by anti-cyclin 
E sera is specific and dose dependent. Increasing amounts of ei- 
ther preimmune or immune rabbit sera generated against Xeno- 
pus cyclin E were prebound to protein A-Sepharose beads, 
washed in XB, and rocked gently with interphase extract (0.2 vol- 
umes beads/volume extract) for 45 rain. Beads were spun out at 
13,000 rpm for 5 min and supernatants assayed for sperm replica- 
tion activity (described in Materials and Methods). Briefly, per- 
meabilized sperm were mixed with depleted or control extract (5 
ng sperm DNA/~I extract) containing an energy-regenerating sys- 
tem, and [32p]-dATP, and incubated at 23°C for 180 min. Reac- 
tions were quenched and quantitatively assayed for acid-insoluble 
counts (described in Materials and Methods). (B) Immunodeple- 
tion is rescued by bacterially expressed cyclin E. Immunodeple- 
tions were performed as in A. Sperm replication reactions were 
performed as above except that reactions were supplemented 
with GST-cyclin E (~50 ng/Ixl). (C) Immunodepletion with anti- 
cyclin E antibody beads. Affinity purified cyclin E antibodies were 
coupled to protein A-Sepharose beads and used to immunode- 
plete extracts of cyclin E. Addition of cyclin E protein (~0.5 I~M) 
was used for rescue. (D) Measurement of residual cyclin E- or 
Cdk2-dependent H1 kinase activity after immunodepletion with 
cyclin E antibody beads. After immunodepletion with anti-cyclin 
E antibody beads (~90% inhibition of sperm replication), ex- 
tracts were subsequently immunoprecipitated with anti-Xenopus 
cyclin E polyclonal rabbit antiserum or anti-Cdk2 COOH-termi- 
nal peptide antiserum and H1 kinase activity measured. Dupli- 
cate assays were performed and average results and representa- 
tive standard deviations shown. 
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had no effect (not shown). Further, addition of a GST- 
Xenopus cyclin B1 did not rescue replication suggesting a 
specific role for cyclin E. However, addition for GST- 
Xenopus cyclin A2 did stimulate DNA replication. Thus, 
although the endogenous cyclin E is supporting DNA rep- 
lication in egg extracts, cyclin A, but not cyclin B, can sub- 
stitute for this requirement. 

Cyclin E depletion of extracts actually caused slight stim- 
ulation of replication of single-stranded DNA (not 
shown). This is consistent with what we have observed 
with depletions of Cdk2 kinase with anti-Cdk2 antibodies 
or sucl beads. Thus, cyclin E depletion appears to inhibit 
double stranded, but not single stranded replication, con- 
sistent with a role for cyclin E in initiation of replication. 

To improve our efficiency of depletion, we covalently 
coupled affinity-purified anti-cyclin E antibodies directly 
to beads. Immunodepletion with these beads gave a dose- 
dependent reduction in replication activity (up to >90% 
inhibition) that could be substantially restored by addition 
of GST-Xenopus cyclin E protein (Fig. 2 C). After deple- 
tion with 0.2 vol of these beads, approximately 11% of cyclin 
E-associated H1 kinase activity and 24% of Cdk2-associ- 
ated H1 kinase activity remained (Fig. 2 D); immunoblots 
showed similar percentages of cyclin E (,~10%) or Cdk2 
protein (~30%) remained (not shown). Thus, most of the 
Cdk2-associated kinase activity is depletable by cyclin E 
antibodies, consistent with cyclin E being the major cyclin 
associated with Cdk2. 

Addition of a baculovirus-expressed human Cdk2 pro- 
tein or a GST-Cdk2 fusion protein alone did not stimulate 
replication. These Cdk2 proteins were functional and ca- 
pable of being activated in extracts as assayed by their 
associated H1 kinase activity upon reprecipitation from in- 
terphase extract. In contrast, addition of anti-Cdk2 immuno- 
precipitates to cyclin E-depleted extracts stimulated repli- 
cation very strongly, suggesting that the activated Cdk2 
kinase, presumably in complex with cyclin E and any asso- 
ciated proteins, was effective in promoting replication. 
The inability of Cdk2 alone to rescue replication suggests 
that cyclin E depletion blocks replication because cyclin E 
is required rather than because Cdk2 is depleted during 
cyclin E depletion. 

The Cyclin E-Cdk2 Kinase Does Not Fully 
Complement Suc l-Depletion 

Previous studies had suggested that depletion of inter- 
phase extracts with beads coupled to the cyclin-Cdk asso- 
ciated protein, Sucl, was capable of completely depleting 
activities required for DNA replication (Blow and Nurse, 
1990). Since Cdk2 is required for DNA replication (Fang 
and Newport, 1991), and Sucl beads can precipitate the 
cyclin complexes including cyclin E-Cdk2, we expected 
that Sucl depletion would deplete the cycljn E-Cdk2 com- 
plex. Sucl depletion removed >70% of Cdk2 protein and 
>90% of the cyclin E protein (Fig. 3 A) and >70% of 
Cdk2- and >85% of cyclin E associated HI  kinase activity. 
This depletion resulted in a loss of >95% of the ability of 
these extracts to replicate sperm DNA. Addition of a 
cocktail of cyclin E and Cdk2, but not Cdk2 protein alone, 
was able to partially rescue these Sucl-depleted extracts 
(Fig. 3 B). Screening a panel of bacterially expressed cy- 

Figure 3. Depletion of replication activity by Sucl-affinity re- 
moves Cyclin E, but probably other factors important for replica- 
tion. (A) Sucl beads deplete cyclin E and Cdk2 protein. Western 
blot analysis of residual Cdk2 (lanes I and 2) and cyclin E protein 
(lanes 3 and 4) after depletion with control (lanes 1 and 3) or 
Sucl beads (lanes 2 and 4). (B) Cyelin E partially rescues replica- 
tion in Sucl-depleted extract. Extracts depleted with Sucl or con- 
trol beads were assayed for their ability to replicate sperm DNA 
as described above. Reactions were supplemented with Cdk2 
alone or with cyclin E plus Cdk2 (each at 100 ng/~l). 

clins for their ability to rescue replication in Sucl-depleted 
extracts, we have found that most cyclins did not rescue 
replication including Xenopus cyclins B1, B2, mouse cy- 
clin D1, and yeast CLN2 and CLB2 (not shown). How- 
ever, Xenopus cyclins A1, A2, or human cyclin A strongly 
stimulated replication in these extracts. Thus, while the cy- 
clin E/Cdk2 complex is an important Sucl-depletable fac- 
tor, other factors depleted by Sucl beads, including other 
cyclins, may be important for replication (see Discussion). 
When we adjusted the amount of GST-cyclin A2, -cyclin 
B1, or -cyclin E to normalize the amount of histone H1 ki- 
nase activity generated after reprecipitation of the GST 
cyclins with anti-GST antibodies, we found that only cyclin 
A2 or E, but not cyclin B1, would stimulate DNA replica- 
tion in extracts depleted with Sucl beads. 

Cyclin E Is Required for an Early Step in 
DNA Replication 

In order to understand which steps in DNA replication re- 
quire cyclin E, we used affinity-purified antibodies against 
cyclin E to block replication. Direct addition of these anti- 
bodies efficiently inhibited sperm replication; this inhibi- 
tion could be blocked by a maltose-binding protein 
(MBP)-Xenopus cyclin E fusion protein (Fig. 4 A), but not 
by GST-cyclin B1 (not shown). 

Proper nuclear assembly and nuclear envelope forma- 
tion are essential for chromosomal replication and ap- 
peared to be unaffected by addition of anti-cyclin E anti- 
bodies (Fig. 4 B). Nuclear transport is also essential for 
replication (Cox, 1992) and was unaffected in extracts 
blocked with added cyclin E antibody as judged by the nu- 
clear transport of a fluorescently labeled carrier protein 
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Figure 4. Anti-cyclin E antibodies block at an early step in DNA 
replication. (A) Antibody inhibition of replication in interphase 
extracts. Interphase extracts were mixed with sperm DNA and 
varying amounts of affinity purified anti-Xenopus cyclin E anti- 
sera and assayed for sperm DNA replication (see Materials and 
Methods). The approximate level of cyclin E in Xenopus inter- 
phase extract is ~0.1 ~M, so addition of anti-cyclin E antibodies 
to an apparent 5-10-fold molar excess was sufficient to block 
>90% of replication. (B) Addition of cyclin E antibodies blocks 
formation of replication foci. Anti-cyclin E antibodies (1 ~M) or 
control rabbit IgG was added to interphase extract containing 
rhodamine-dUTP (40 ~M) and sperm templates. Replication re- 
actions were run for 60 min, assembled nuclei spun onto cover- 
slips, fixed, and counterstained with Hoechst 33258. (C) Cyclin E 
antibodies block replication before replication focus formation. 
Replication reactions were set up with anti-cyclin E or control an- 
tibodies as in Fig. 3 A with rhodamine-dUTP included to visual- 
ize replication loci. At the indicated times, aliquots were diluted 

coupled to a nuclear localization signal (see Materials and 
Methods). At the highest doses, addition of anti-cyclin E 
antibodies had a subtle effect on nuclear morphology, with 
the highest doses causing some condensation of the DNA. 
It is unclear whether the block to DNA replication induces 
the apparent condensation or whether cyclin E has some 
role in controlling chromosome condensation or dynamics. 
Given the abundance of cyclin E (~100 nM), a role in 
chromosome scaffolding seems less likely. 

To test whether cyclin E was required at an early step in 
replication, we examined the effect of anti-cyclin E anti- 
body addition on the formation of replication foci. These 
foci of replication, which can be visualized by incubation 
with fluorescently labeled dUTP, have been shown to co- 
incide with replication proteins associated with the initia- 
tion complex such as PCNA, RP-A, and DNA poly- 
merase-a (Adachi and Laemmli, 1992; Nakayusa and 
Berezney, 1989; Raska et al., 1989). Addition of anti-cyclin 
E antibodies caused a profound decrease and a delay in 
the appearance of replication foci, suggesting that replica- 
tion was blocked at an early step (Fig. 4 B). A time course 
of replication showed that the anti-cyclin E antibodies 
blocked the formation of replication foci and of later 
forming fully replicated nuclei (Fig. 4 C). We achieved a 
similar block by depletion with Sucl-beads or anti-cyclin E 
antibody beads. Thus, cyclin E appears to be required for 
an early event in sperm replication. 

p21 cwmAF Inhibits Cyclin EICdk2 Kinase and 
Replication of  Sperm DNA 

Recent studies have shown that p21CIP1/wAF1 is a specific 
inhibitor of cyclin-dependent kinases (Dulic et al., 1992; 
EI-Deiry et al., 1993; Gu et al., 1993; Harper  et al., 1993; 
Xiong et al., 1993). We found that a bacterially expressed 
GST-human p21 fusion protein potently inhibited double- 
stranded sperm DNA replication at lower concentration 
(,--q00-200 nM), but required higher levels to block single- 
stranded replication (N10 IxM; Fig. 5 A). We have found 
that another inhibitor of cyclin E/Cdk2, called p27 KIP1 
(Polyak et al., 1994a,b; Toyoshima and Hunter, 1994) also 
blocked replication of sperm D N A  (not shown). Recent 
studies have also seen that p21 can block sperm replication 
(Strausfeld et al., 1994; Adachi and Laemmli, 1994; Yan 
and Newport, 1995) and that this inhibition is mediated by 
the NH2-terminal cyclin/Cdk2 binding domain of p21, 
which binds to cyclin/Cdk2 (Chen et al., 1995). The ability 
of p21 to block single-stranded DNA replication in inter- 
phase extracts was also shown to function through the 
COOH-terminal domain of p21, which binds the replica- 
tion protein PCNA (Chen et al., 1995). 

As shown in Fig. 5 B, p21 inhibited the endogenous 
Cdk2-, cyclin E-, and cyclin Al-dependent  kinases when 
added to interphase extract, but was less effective in inhib- 
iting Cdc2 or cyclin Bl-dependent  kinases. The increased 

and fixed, spun onto coverslips, counterstained with Hoechst 
33258 for DNA, and visualized by indirect immunofluorescence 
and phase contrast microscopy. Quantitation is described in Ma- 
terials and Methods (n = 100). Replication foci were structures 
similar to those in B and "fully bright" refers to fully replicated 
nuclei with intense overall rhodamine-dUTP staining. 
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Figure 5. p21 coordinately inhibits replication and cyclin-E/ 
Cdk2-dependent kinase activity. (A) p21 inhibits sperm replica- 
tion at a much lower dose than single stranded DNA replication 
in interphase extracts. 10 txl of a cycloheximide-stabilized inter- 
phase extract was mixed with either permeabilized Xenopus 
sperm or purified single-stranded (Mr3) DNA (5 ng/ixl) and 
varying amounts of GST-p21 protein. DNA replication was as- 
sayed as described. (B) p21 strongly inhibits cyclin E/Cdk2 com- 
plexes, but not cyclin B/Cdc2 complexes. 10 ixl of interphase ex- 
tract were mixed with various combinations of p21 (300 ng/l~l) 
and GST cyclins (300 ng/~l). Extracts were incubated at 23°C for 
45 rain, diluted in 400 ~1 immunoprecipitation buffer, and immu- 
noprecipitated with antisera specific for Xenopus cyclin A1, B1, 
E, Cdc2, or Cdk2. Immune complex kinase assays for H1 kinase 
activity were performed, visualized on SDS-polyacrylamide gels, 
and quantitated (described in Materials and Methods). (C) Dose 
response of p21 inhibition of DNA replication and cyclin E- or 
Cdk2-dependent kinase activity. Interphase extracts were pre- 
pared for parallel replication and immune complex kinase reac- 
tions. Varying amounts of GST-p21 protein were added at the be- 
ginning of replication reaction (180 rain at 23°C). For analysis of 
cyclin-dependent kinase activity, GST-p21 was added to extracts 
and these were incubated for 45 rain at 23°C. Extracts were then 
diluted into immunoprecipitation buffer and antisera specific for 
Xenopus cyclin E or Cdk2 was added in excess (see Materials and 
Methods). Average values are presented (n = 3), standard devia- 
tions were <10%. The approximate level of cyclin E protein in 
interphase extract is 5 ng/~l or 0.1 IxM. 

H1 kinase activity on addition of GST-cyclin A1 or E 
showed that the extracts have an excess capacity to acti- 
vate these kinases, and that this activity is inhibitable by 
GST-p21 (Fig. 4 B). 

The dose responses of p21 for inhibiting replication, cy- 
clin E-, and Cdk2-dependent H1 kinase activity were fairly 
similar (Fig. 5 C). The amount of p21 required to half-maxi- 
mally inhibit replication (~100 nM) and cyclin E-depen- 
dent kinase was roughly equivalent to the in vivo levels of 
cyclin E (100 nM) or Cdk2 (60 nM) proteins (Kobayashi et 

al., 1991a,b; Chevalier, S., and M. Philippe, unpublished 
data), and was consistent with the idea that p21 would sto- 
ichiometrically inhibit the cyclin E-Cdk2 complex. How- 
ever, the inhibition of replication more closely paralleled 
the inhibition of cyclin E-dependent kinase activity than 
the Cdk2-dependent kinase activity. Thus, there may be 
additional Cdk2-dependent kinase complexes that do not 
contain cyclin E, as also suggested by our gel filtration 
analysis of Cdk2-dependent kinase activity (not shown). 
Direct addition of p21 to the kinase reaction after immu- 
noprecipitation inhibited Cdk2- or cyclin E-dependent  H1 
kinase activity with a similar dose dependence (data not 
shown). 

Addition of MBP-cyclin E protein rescued the p21 inhi- 
bition of sperm replication (Fig. 6 A). Thus, p21 and cyclin 
E appear to have antagonistic functions on a similar path- 
way leading to DNA replication. 

p21 Inhibits Single-stranded DNA Replication via a 
PCNA-Dependent Mechanism 

Recently, it has been demonstrated that p21 inhibits SV-40 
replication via its interaction with PCNA (Waga et al., 
1994b; Flores-Rozas et al., 1994). If this were the mode of 
inhibiting chromosomal replication, we would predict that 
added PCNA should suppress the inhibitory effects of p21. 
We did not observe any rescue of p21 inhibition of sperm 
replication when bacterially expressed human PCNA was 
added to egg extracts (Fig. 6 A). The bacterially expressed 
PCNA was functional for in vitro replication in the SV-40 
system and associated directly with human p21 (Waga et 
al., 1994b). PCNA also did not block the inhibition of 
the cyclin E-associated H1 kinase by GST-p21 (data not 
shown). This is consistent with published work showing 
that PCNA does not affect p21 inhibition of the H1 kinase 
activity of cyclin/Cdk2 complexes, nor association of p21 
with cyclin/Cdk complexes (Zhang et al., 1994). Further, it 
is consistent with cyclin/Cdk and PCNA binding to inde- 
pendent sites on p21 and the cyclin/Cdk2 binding domain 
blocking double-stranded DNA replication (Chen et al., 
1995). 

Inhibition of single-stranded DNA replication at higher 
concentrations of p21 was rescued by PCNA, but not the 
cyclin E protein (Fig. 6 B). Thus, apparently p21 can an- 
tagonize single-stranded replication by a PCNA-depen- 
dent mechanism in Xenopus extract, but it requires con- 
centrations of p21 roughly stoichiometric with those of 
PCNA in extract (~8 IxM). Presumably we cannot observe 
this mode of inhibiting chromosomal replication in the 
presence of a cyclin E/Cdk2-dependent step that is inhib- 
ited at N100-fold lower concentration. We have previously 
shown that the COOH-terminal PCNA binding domain of 
p21 will inhibit single-stranded DNA replication in Xeno- 
pus extract (Chen et al., 1995). 

Since we were using mammalian p21 and complexes of 
cyclin-Cdk2-PCNA and p21 have not been demonstrated 
in Xenopus, we asked whether any of these associations 
could be detected in Xenopus extract. Endogenous Xeno- 
pus PCNA from interphase extract associated strongly 
with GST-p21 (Fig. 6 C). In the extract, endogenous 
PCNA bound at low levels to GST fusions of Xenopus cy- 
clins E, A2, and B, and at higher levels with GST-human 
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tion, begins about 30 min after sperm addition; by 90 min 
>80% of the D N A  is replicated (hI2 ~ 60 rain). Added 
single-stranded D N A  has a much shorter lag to replication 
(<10 rain; tl/2 ~ 30 rain). Addit ion of p21 (~200 nM) early 
in the sperm replication reaction completely inhibited sub- 
sequent replication (Fig. 7 B). However,  after 30 rain there 
was little effect of added p21, despite the fact that less than 
5% of the sperm D N A  had been replicated. This suggests 
that the effect of  p21 is confined to an early step in replica- 
tion. In contrast, addition of  the polymerase inhibitor 
aphidicolin blocked replication well after the p21 sensitive 
period is completed (tl/2 ~-~ 60 min). The difference in ki- 
netics was not affected by increasing the concentration of 
inhibitors. 

Indicated on the axis of the same plot (Fig. 7 A) are the 
approximate times of  nuclear formation and rhodamine- 
dUTP replication loci. Although the period of p21 sensi- 
tivity begins before the completion of nuclear formation, 
nuclear formation was not affected by p21 (see below; Fig. 
8 B). Thus, a step in D N A  replication after nuclear forma- 
tion and before the appearance of dUTP foci is blocked by 
the addition of p21. 

Figure 6. p21 inhibits sperm DNA and single-stranded DNA rep- 
lication through cyclin E- and PCNA-dependent mechanisms, re- 
spectively. (A) Cyclin E, but not PCNA, rescues p21 inhibition of 
sperm replication. A sperm DNA replication assay was set up as 
described with [32p]-dATP and 2.5 ng/~l of sperm DNA and com- 
binations of various bacterially expressed proteins: GST-21 (7 ng/ 
pA), GST-Xenopus cyclin E (30 ng/p.1), or human PCNA (100 ng/ 
ILl). Quantitation was based on two independent assays from one 
extract, but results were consistent in independent extracts. (B) 
PCNA, but not cyclin E, rescues p21 inhibition of single-stranded 
DNA replication. Similar extracts with single stranded DNA sub- 
strate (M13) were performed. Additions of p21 with or without a 
two to three-fold molar excess of cyclin E or PCNA were added 
as indicated. (C) Association of PCNA with cyclins, Cdk2, and 
p21. The following fusions were added to interphase egg extracts: 
GST (lane 2), GST-Xenopus cyclin E (lane 3), GST-Xenopus cy- 
clin A2 (lane 4), GST-Xenopus cyclin B1 (lane 5), GST-human 
Cdk2 (lane 6), Or GST-human p21 (lane 7). Extracts were incu- 
bated, washed, resolved by SDS-PAGE, blotted, and stained with 
antiserum raised against the COOH-terminal peptide from Xe- 
nopus PCNA. 

Cdk2 (Fig. 6 C); in addition, P C N A  co-immunoprecipi- 
tates with cyclin E (not shown). These associations suggest 
an endogenous p21-1ike protein to couple P C N A  to Cdk2. 
Thus, endogenous Xenopus P C N A  is competent  to associ- 
ate with complexes of  these proteins. 

1)21 Inhibits prior to the Aphidicolin-sensitive Step in 
DNA Replication 

To ascertain whether cyclin E is required only for an early 
step in replication or whether it acts throughout  replica- 
tion, we assayed kinetically the exact time at which p21 in- 
hibits replication. As shown in Fig. 7 A, sperm replication, 
as measured by a bulk assay of [32P-e~]-dATP incorpora- 
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Figure 7. p21 inhibits sperm replication only before initiation. 
(A) A time course of sperm DNA replication. An interphase rep- 
lication assay was set up as described with [32p]-dATP and 2.5 ng/ 
t~1 of sperm DNA. At the indicated times, aliquots were removed 
and assayed for cumulative DNA replication. In a parallel set of 
reactions, aliquots were removed at various times and assayed 
microscopically for nuclear assembly by Hoechst staining or 
dUTP focus formation. Approximate times for nuclear assembly 
(5-20 min) and the formation of rhodamine-dUTP replication 
loci (25-35 min) are indicated. (B) A window of sensitivity for 
p21 inhibition. In a parallel time course to part A, individual 10 
p.1 aliquots were incubated for 180 rain. At various times indi- 
cated, either GST-p21 (350 rig: @), GST (350 ng: ©), or aphidi- 
colin (20 ixg/ml: []) was added to aliquots and gently mixed. Av- 
erages (n = 2) of normalized data are shown. Standard deviations 
were approximately ±5% for all points. The dotted line approxi- 
mates the end of nuclear assembly. 
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p21 Blocks the Appearance of Replication Foci 

Because the period of sensitivity to p21 occurs before the 
appearance of replication foci, we wished to know if p21 
blocked their formation. A dose response for p21 inhibi- 
tion of replication foci (Fig. 8 A) showed that the sensitiv: 
ity of these structures to p21 is intermediate (N1-3 }xM) 
between the sensitivity of sperm and single-stranded DNA 
replication (N100-300 nM and ~10 }xM, respectively). Us- 
ing the visual assay, p21 blocked the appearance of repli- 
cation foci at ~1 ~M, while 100-300 nM p21 did not in- 
hibit replication foci (Fig. 8 B). The p21 block of replication 
foci at 1 ~M was fully rescued by cyclin E protein, but not 
by PCNA. Further, the p21 NH2-terminal cyclin/Cdk2 
binding domain (Chen et al., 1995) was able to block the 
appearance of replication foci at similar doses to the full 
length p21 (not shown). This suggested that the appear- 
ance of these foci is dependent on the Cdk2 kinase. The 
COOH-terminal PCNA binding domain blocked the ap- 
pearance of replication foci at approximately 10 ~M (not 
shown). This is consistent with a role for PCNA for the vi- 
sualization of these replication structures. Thus, p21 has 
three modes of inhibition. First, the 100-200 nM block to 
the bulk of dATP incorporation, which we interpret as in- 
hibiting the ability of cyclin/Cdk2 to promote switching to 
the elongation phase. Second, the 1-2 ~M block to forma- 
tion of replication foci, which apparently targets the ability 
of cyclin/Cdk2 to promote the initiation of DNA replica- 

tion. Third, the 10 IxM block to single-stranded DNA rep- 
lication, with PCNA as its target, which in the context of 
chromosomal replication, may be important for the visual- 
ization of replication foci. 

To show that the inhibition of replication was not simply 
due to different thresholds for detection by different as- 
says, we measured the ability of the polymerase inhibitor 
aphidicolin to block dATP incorporation (measuring acid- 
insoluble counts) and the formation of replication foci (by 
quantitative fluorescence microscopy). We found that in- 
hibition of replication by aphidicolin gives similar de- 
creases in signal in the two assays (Fig. 8 C). Thus, the dif- 
ferent doses of p21 required to block in the two assays 
suggests distinct mechanisms rather than different thresh- 
olds for detection. This also suggests that the residual 
<5% of replication seen with 0.3-1 txM p21 represents the 
nucleotide incorporated into replication foci. This result is 
consistent with a recent study demonstrating that the 
amount of nucleotide incorporation into replication foci is 
a small percentage of overall replication (Yan and New- 
port, 1995). 

p21 Blocks the Formation of Initiation Complexes 
from Pre-replication Foci 

While the function of replication foci as assayed by biotin- 
dUTP incorporation can be blocked by p21, we were inter- 
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Figure 8. p21 inhibits replication by two cyclin Cdk dependent 
mechanisms and a PCNA-dependent mechanism. (A) dATP in- 
corporation and the appearance of replication loci are inhibited 
by different doses of p21, but both rescuable by cyclin E/Cdk2. 

concentration [~tM] Interphase extracts were used to assay incorporation of acid in- 
soluble counts into sperm DNA or single-stranded (M13) sub- 
strates or for the appearance of replication loci by incorporation 
of digoxygenin-dUTP (see Materials and Methods). Reactions in- 
cluded varying amounts of GST-p21 protein alone or preincu- 
bated with a three to five-fold molar excess of PCNA or a mix- 
ture of GST-cyclin E and GST-Cdk2 protein. Sperm replication 
and single-stranded replication were expressed as a fraction of 
counts incorporated and replication foci were expressed as the 
fraction of nuclei in the reaction with apparent replication loci. 
(B) Visual assay of the effect of p21, cyclin E, and PCNA on rep- 
lication loci. Interphase extracts were used to assemble sperm nu- 
clei and assay the appearance of replication foci by incorporation 
of digoxygenin-dUTP. Reactions included either aphidicolin (20 
tzg/ml), or GST-p21 at the indicated concentrations. In the indi- 
cated reactions, GST-p21 was preincubated with PCNA (5 txM) 

or a cocktail of GST-cyclin E/GST-Cdk2 (each 5 p~M). (C) A comparison of the effect of aphidicolin on the visual and dATP incorpora- 
tion assays. Varying amounts of aphidicolin were used to block DNA replication in Xenopus interphase extracts. The amount of replica- 
tion by measuring acid insoluble counts was compared with the amount of fluorescence measured by quantitative digital microscopy 
(see Materials and Methods). Similar results were obtained using biotin- or digoxygenin-dUTP incorporation. Mean values for the acid 
insoluble counts (n = 2) and mean and representative standard deviations for arbitrary fluorescence intensity (n = 10) are shown as a 
fraction of replication in untreated extracts. 
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Figure 9. p21 blocks the formation of initiation complexes from 
pre-replication loci. (A) Appearance of RP-A and biotin dUTP 
staining in nuclei assembled in Xenopus interphase extract. Inter- 
phase extracts were used to synchronously assemble sperm nu- 
clei, which were either extracted with single-stranded salmon 
sperm DNA or not, and spun onto coverslips and fixed in metha- 
nol at various times (see Materials and Methods). Replication 
was assayed by including biotin-dUTP in the reaction and coun- 
terstaining with FITC-streptavidin. RP-A staining was performed 
by using a rabbit anti-RP-A (p70) COOH-terminal peptide anti- 

ested in the effect of  p21 on the formation of the replication 
initiation complexes themselves. These initiation complexes 
contain replication proteins including the single-stranded 
D N A  binding protein RP-A.  As seen by indirect immuno- 
fluorescence, RP-A appears as a set of  punctate spots soon 
after sperm decondensation and at least 15 rain before the 
appearance of  dUTP replication foci (Fig. 9 A). Recently, 
Adachi  and Laemmli (1994) have shown that the appear- 
ance of these RP-A "pre-replication loci" appear as orga- 
nized domains on chromatin even without the presence of 
the nuclear membrane  or when initiation is blocked by the 
addition of  p21. However,  these RP-A foci were only 
loosely associated with chromatin since they could be ex- 
tracted with single-stranded D N A  (Fig. 9 A). Yan and 
Newport  (1995) further show that even after depletion of 
Cdk2, pre-replication foci appear. The ability of  p21 addi- 
tion or Cdk2 depletion to block the initiation step was in- 
ferred by Adachi  and Laemmli (1994) by RP-A becoming 
resistant to single-stranded D N A  extraction, coincident 
with RP-A becoming bound to unwound D N A ,  and by 
Yan and Newport  (1995) on the basis of  a quantitative in- 
crease in RP-A associated fluorescence and an eventual 
shift of  R P - A  staining from focal to diffuse. 

We have made use of  highly efficient interphase extracts 
to examine the timing of replication events. In these ex- 
tracts, the appearance of  RP-A loci occurs by 10-15 min 
and becomes diffuse by 60 min (Fig. 9 A and see time 
course in B). The appearance of replication foci visualized 
by the incorporation of biotin d U T P  becomes apparent  at 
~30  min (Fig. 9 A and see time course in D). At  later 
times, the pattern of dUTP incorporation becomes more 
complicated. Thus, there is a brief window of overlap 
around 30 rain during which RP-A and nucleotide incor- 
poration are both focal and some nuclei show colocaliza- 
tion by double immunofluorescence (Yan and Newport,  
1995; Jackson, unpublished data). We examined a similar 
time course of  RP-A staining where we incubated the nu- 
clei for various times and then extracted the nuclei with 
single-stranded D N A  to distinguish RP-A bound to un- 
wound DNA.  In this time course, the percentage of re- 
maining RP-A foci is reduced to less than 30% and peaks 
slightly later than the unextracted loci (,'-~30 rain), at a time 
where replication loci as seen by biotin-dUTP incorpora- 
tion is beginning. This would be consistent with a transi- 

serum with Texas red donkey anti-rabbit secondary antibody. 
The appearance of representative RP-A staining (left hand col- 
umn), RP-A staining after single-stranded DNA extraction (cen- 
tral column), or biotin-dUTP replication loci (right hand column) 
at the indicated times is shown. The RP-A foci resistant to single- 
stranded DNA extraction are thought to be associated with un- 
wound DNA. (B) A time course of the appearance of RP-A 
staining. In the synchronous replication reaction described above, 
the appearance of RP-A staining was assayed at various times. 
Parallel time courses in the presence of GST-p21 (3 IxM), aphidi- 
colin (50 ixg/ml), or without addition are shown. (C) A time 
course of single-stranded DNA extraction resistant RP-A stain- 
ing. In an experiment parallel to that in B, samples were re- 
moved, diluted, and extracted on ice with single-stranded DNA 
for 30 min before spinning onto coverslips and fixing. (D) A time 
course of biotin dUTP incorporation. In the same reaction in B, 
the incorporation of biotin-dUTP was visualized. 
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tion from "pre-replication" foci to focal RP-A associated 
with unwound DNA in initiation structures (see Adachi 
and Laemmli, 1994). The final transition to diffuse RP-A 
staining occurs later and we also saw the reappearance of 
RP-A focal structures following the completion of replica- 
tion, as observed by Yan and Newport (1995). 

We examined whether the appearance of RP-A staining 
in pre-replication foci and initiation complexes was 
blocked by GST-p21 at concentrations sufficient to block 
replication foci (3 IxM). The early appearance of RP-A pre- 
replication foci was not appreciably affected by p21, con- 
firming previous reports (Fig. 9 B; Adachi and Laemmli, 
1994; Yan and Newport, 1995). In contrast, the later ap- 
pearance of RP-A initiation structures was substantially 
diminished by the additioniof p21 (Fig. 9 C). The addition 
of aphidicolin, an inhibitor of DNA polymerase or, did not 
block the appearance of either pre-replication foci or initi- 
ation complexes containing RP-A (Fig. 9, B and C), but 
rather blocked the disappearance of these loci. This would 
be consistent with a requirement for DNA polymerase ac- 
tivity to disassemble an RP-A containing initiation com- 
plex before later steps in replication. Both p21 and aphidi- 
colin blocked the formation of biotin-dUTP containing 
replication foci (Fig. 9 D). Thus, p21 apparently blocks the 
transition from pre-replication loci to initiation complexes 
and aphidicolin blocks the transition from initiation to 
subsequent polymerase activity. This is similar to what was 
argued by Yan and Newport (1995), but they used a quan- 
titative increase in diffuse RP-A staining as a marker for 
the transition from initiation to later replication. 

Discussion 

The Cyclin E/Cdk2 Complex Is Necessary for 
DNA Replication 

Several experiments presented here show that in Xenopus 
interphase extracts, cyclin E is specifically required for 
early steps of chromosomal DNA replication. These steps 
may include initiation or the switch to elongation, but not 
later steps of replication, such as elongation itself. The 
specificity of the step in replication that is affected is sug- 
gested because treatments that block cyclin E inhibited 
replication of sperm, but not single-stranded, DNA. These 
blocking treatments include immunodepletion of cyclin E 
protein, the addition of purified anti-cyclin E antibodies, 
and the addition of the cyclin E/Cdk2 inhibitor p21 c~P1. 
These blocks could be rescued by adding Xenopus cyclin 
E protein, but not generally by other cyclins. 

A complex of activated Cdk2 with cyclin E and possibly 
some associated proteins is the form important for replica- 
tion. The cyclin E complex is ,-~440 kD and contains ~75 % 
of the Cdk2-associated H1 kinase activity in the activated 
egg. The Xenopus cyclin E protein appears in interphase 
extracts as multiple species of 50--54 kD. Therefore, the pre- 
viously identified, Cdk2-associated 54-kD protein "doublet" 
(Fang and Newport, 1991) is likely to be composed of forms 
of cyclin E and the requirement for the cyclin E/Cdk2 
complex can be shown by depletion of either component. 
Immunoprecipitated Cdk2 kinase was a potent activator 
of replication in cyclin E-depleted extracts in the sperm 
replication assay, whereas Cdk2 protein did not stimulate 

replication. The inability of Cdk2 alone to rescue replica- 
tion demonstrates that cyclin E-depletion blocks replica- 
tion because of a cyclin E requirement rather than because 
the associated Cdk2 is missing after cyclin E depletion. 

Recent reports of low molecular weight inhibitors of cy- 
clin-dependent kinases suggest that the in vivo activity of 
these kinases may be highly dependent on inhibitors (Du- 
lic et al., 1992; EI-Deiry et al., 1993; Gu et al., 1993; Harper 
et al., 1993; Xiong et al., 1993; Polyak et al., 1994a,b; 
Toyoshima and Hunter, 1994). Since added p21 or p27 will 
affect sperm replication and the cyclin E/Cdk2 kinase ac- 
tivity, this type of negative regulation could be functional 
in egg extracts. We are presently limited by the lack of di- 
rect probes for these proteins in Xenopus. However, in in- 
terphase extracts, we have noticed consistently much higher 
levels of cyclin E dependent H1 kinase activity by immu- 
noprecipitation than by direct measurements of activity in 
crude extracts. Thus, during immunoprecipitation, we may 
be gaining kinase activity by losing inhibitory activities. Re- 
cent evidence has suggested the presence of CDK inhibi- 
tors in egg extracts (Lee, T., A. Philpott, and M. Kirschner, 
unpublished results). Thus, the activity of cyclin E or Cdk2 
kinases may be effectively buffered by these inhibitors. 

p21 Can Work through Multiple Mechanisms 

The inhibition of cyclin/Cdk2 kinases is not the unique 
mode by which p21 inhibits DNA replication. Recently, 
p21 was shown to inhibit the reconstituted SV-40 replica- 
tion reaction by association with PCNA (Flores-Rozas et 
at., 1994; Waga et al., 1994a,b). We have shown here that 
p21 will inhibit sperm replication at a dose similar to the 
concentration of cyclin E/Cdk2 and can be rescued by cy- 
clin E protein, but not by PCNA. The failure of PCNA to 
rescue p21 inhibition of sperm replication and the inability 
of PCNA to block p21 inhibition of cyclin/Cdk-associated 
H1 kinase activity (Zhang et al., 1994) suggested that PCNA 
and cyclin E/Cdk2 bind to independent sites on p21. Re- 
cent experiments demonstrate that separate domains of 
p21 bind to cyclin/Cdk2 versus PCNA and that the cyclin/ 
Cdk2 binding domain inhibits the cyclin E kinase (Chen et 
al., 1995; Jackson, P. K., unpublished results). The cyclin/ 
Cdk2 binding domain mimicked the properties of full 
length p21 in Xenopus extract: it inhibited sperm replica- 
tion activity at similar concentrations and was rescuable by 
cyclin E, but not PCNA. These experiments strongly sup- 
port the model that p21 inhibits sperm replication by a cy- 
clin/Cdk2-dependent mechanism. However, it has recently 
been demonstrated that cyclin A or E will rescue p21 inhi- 
bition of sperm replication (Strausfeld et al., 1994). Al- 
though the p21 inhibition of replication does not clearly 
distinguish between a requirement for cyclin A or cyclin E, 
both p21 and depletion of cyclin E block at initiation. 
Thus, we cannot rule out an additional requirement for cy- 
clin A at initiation, but the requirement for cyclin E is es- 
tablished by the immunodepletion (see below). 

The abundance of PCNA in interphase extracts is much 
greater (~8 ~M; Leibovici et al., 1990), so p21 inhibition 
of sperm replication was unlikely to work by simple sto- 
ichiometric association with PCNA in the egg. However, 
at much higher doses, similar to those of endogenous 
PCNA, p21 can inhibit single-stranded DNA replication in 
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Xenopus extract and that inhibition is rescuable by PCNA. 
This is consistent with a mechanism where PCNA is re- 
quired for single-stranded replication and where PCNA is 
blocked by stoichiometric amounts of p21, as recently sug- 
gested (Flores-Rozas et al., 1994). Further, the COOH- 
terminal PCNA binding domain of p21 will inhibit either 
sperm or single-stranded DNA replication at N10 ~M 
(Chen et al., 1995) and these inhibitions are rescued by 
PCNA and not cyclin E. Thus, the PCNA binding function 
of full-length p21 can inhibit sperm DNA replication in 
Xenopus extracts, but this activity was masked by the 
more sensitive cyclin E/Cdk2-dependent mode of inhibi- 
tion. In general, the mode by which p21 inhibits replica- 
tion appears to depend on the concentrations of its two 
targets, but the importance of these targets for the func- 
tion of p21 is not yet fully understood. 

Cyclin Requirements for DNA Replication 

Depletion of interphase extract by Sucl beads substan- 
tially depleted cyclin E and inhibited replication. This de- 
pletion could only be partially rescued by a GST-cyclin E 
fusion protein, suggesting that cyclin E is an important, 
but not unique target of Sucl-depletion. What might the 
other Sucl-depleted factors be? While we found that most 
cyclins did not rescue replication in Sucl-depleted ex- 
tracts, cyclin A almost completely rescued replication. 
This result raises the question of what are the respective 
roles of cyclin A and E? 

Several studies suggest that cyclin A is required for S 
phase in cultured somatic cells (Girard et al., 1991; Pagano 
et al., 1992). Although cyclin A could function at several 
steps in replication, recent studies have colocalized cyclin 
A with replication proteins RP-A and PCNA and with 
replication origins, suggesting that it may play a role at the 
replication complex (Cardoso et al., 1993; Sobczak-Thepot 
et al., 1993). However, we have yet to directly identify a 
cyclin A requirement in interphase extracts. Xenopus cy- 
clin A1 is expressed and accumulates in the first cell cycle 
almost immediately after fertilization or activation (Min- 
shull et al., 1990), although its function remains unclear. 
Accumulation of cyclin A1 can be blocked by pre-soaking 
eggs in cycloheximide before activation (Shibuya et al., 
1992) and this treatment does not suppress the ability of 
interphase extracts to efficiently replicate their DNA, 
even though there is no measurable cyclin Al-associated 
H1 kinase activity (Jackson, P. K., and M. N. Kirschner, 
unpublished data). Moreover, immunodepletion experi- 
ments by Fang and Newport (1991) and antisense experi- 
ments by Walker and Mailer (1991) indicated that cyclin 
A1 is not required for DNA replication in the first or sec- 
ond cell cycles. Our experiments have failed to show an ef- 
fect of cyclin A1 immunodepletion on DNA replication 
(Jackson, P. K., unpublished results). Thus, there is no ap- 
parent requirement for cyclin A1 in DNA replication. Per- 
haps this is not surprising given that Xenopus cyclin A1 
has homology to and expression consistent with mitotic cy- 
clins (MinshuU et al., 1990) in contrast to the human cyclin 
A, which is expressed during S phase (Pines, 1993). More 
recently, a second Xenopus A-type cyclin, called cyclin 
A2, which has a higher degree of homology to human cy- 
clin A, has been identified (Howe, J. A., et al., 1995). The 

Xenopus cyclin A2 protein can stimulate replication 
strongly, and thus would be an appealing candidate for an- 
other cyclin required for replication (Jackson, P. K., and 
M. W. Kirschner, unpublished results). Would cyclin E 
and cyclin A function similarly or at different steps in 
DNA replication? 

What Are the Cyclin-dependent Steps for 
DNA Replication? 
The block to appearance of replication loci with cyclin E 
antibodies or addition of I p~M p21 suggests that the initia- 
tion of replication is affected. Further, sperm replication 
reaction is sensitive to p21 for a window in the first 15-30 
min, during which initiation complexes form. Thus, cyclin 
E might control any of a series of steps in initiation such as 
origin recognition, DNA unwinding, stabilization of un- 
wound DNA by the single-stranded DNA binding protein 
RP-A, or priming activity by polymerase cx. 

The earliest known step in chromosomal replication is 
the association of RP-A with DNA. Adachi and Laemmli 
(1994) recently showed that p21 did not block the forma- 
tion of RP-A "pre-replication" loci. These structures are 
loosely associated with chromatin and can be extracted 
with single-stranded DNA. However, p21 did block the 
ability of RP-A to become tightly associated with regions 
of unwound DNA. We have obtained a similar block of 
the ability of RP-A to tightly associate with DNA with either 
the full-length p21 or the domain of p21 that associates 
with cyclin E/Cdk2 (Jackson, P. K., and M. W. Kirschner, 
unpublished data). It appears that cyclin E or a close rela- 
tive is important for replication upstream of the step where 
RP-A binds unwound DNA. 

At lower concentrations of p21 (0.2 ~M), replication 
loci appear even though overall DNA replication as mea- 
sured by dATP incorporation is reduced to less than 5%. 
This result could suggest that replication loci are irrele- 
vant for DNA replication, or, more likely, that p21 has a 
second, more sensitive mode of inhibition. Thus, in this 
concentration range, p21 blocks the transition from the 
formation of replication loci to the elongation phase of 
DNA replication. We do not know what this p21 sensitive 
transition might be. One clue may be the experiment 
showing that the PCNA binding domain of p21 will inhibit 
replication loci at 10 tLM concentration (Chen et al., 1995). 
This block is rescuable by PCNA. Thus, the visualization 
of replication loci apparently requires PCNA. An interest- 
ing possibility is that p21 can block the switching from 
polymerase s-dependent primer formation to processive 
replication using polymerase ~ and PCNA, possibly via its 
dual association with PCNA and a cyclin/Cdk2 complex. 
Recent results by Hurwitz and colleagues suggested that 
loading of PCNA onto DNA may be blocked by p21 
(Flores-Rozas et al., 1994). 

Cyclins may thus take two roles in replication, as sug- 
gested by the two classes of events blocked by p21. Cyclin 
E appears to have a role in initiation, perhaps controlling 
origin firing or unwinding events. Its role in this step is 
supported by an overall requirement for cyclin E in repli- 
cation, the ability of cyclin E to promote the function of 
replication loci as assayed by biotin dUTP incorporation, 
and the earlier timing of cyclin E expression seen in mam- 
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malian cells. The association of Cdk2 with RP-A loci in 
the nucleus suggests that cyclin/Cdk2 complexes may be 
directly assembled with the replication machinery and 
possibly have a structural role in addition to its kinase ac- 
tivity (Cardoso et al., 1993; Sobczak-Thepot et al., 1993). 
We have found that cyclin E is predominantly nuclear in 
tissue culture cells and is present in nuclei assembled in ex- 
tracts (Jackson, P. K., and M. W. Kirschner, unpublished 
data). We have observed cyclin E protein in punctate, sub- 
nuclear domains. Although this localization is provocative, 
additional studies will be required to address its localiza- 
tion relative to cyclin A, Cdk2, and replication proteins 
like PCNA or RP-A. 

A second role for cyclins may promote switching from 
priming to processive replication, and this could be a role 
for cyclin A. The colocalization of cyclin A and Cdk2 with 
PCNA (Cardoso et al., 1993; Sobczak-Thep0t et al., 1993) 
and the later timing of cyclin A expression relative to cy- 
clin E would be consistent with a cyclin A role at this step. 
Further, in rescuing replication in Sucl-depleted extracts, 
cyclin A appears more effective than cyclin E at promot- 
ing dATP incorporation. Since the bulk of dATP incorpo- 
ration is limited by the switch to elongation, cyclin A ap- 
pears the more likely candidate to control this step. 
Quantitation of the relative ability of cyclin A and E to 
promote initiation versus switching and a closer examina- 
tion of when they become localized to specific replication 
structures may help establish their respective roles. 
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