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Abstract. To analyze the binding requirements of 
LFA-1 for its two most homologous ligands, ICAM-1 
and ICAM-3, we compared the effects of various LFA-1 
activation regimes and a panel of anti-LFA-1 mAbs 
in T cell binding assays to ICAM-1 or ICAM-3 coated 
on plastic. These studies demonstrated that T cell 
binding to ICAM-3 was inducible both from the ex- 
terior of the cell by Mn 2+ and from the interior by an 
agonist of the "inside-out" signaling pathway. T cells 
bound both ICAM ligands with comparable avidity. A 
screen of 29 anti-LFA-1 mAbs led to the identification 
of two mAbs specific for the c~ subunit of LFA-1 
which selectively blocked adhesion of T cells to 
ICAM-3 but not ICAM-1. These two mAbs, YTH81.5 
and 122.2A5, exhibited identical blocking properties 
in a more defined adhesion assay using LFA-1 trans- 
fected COS cells binding to immobilized ligand. Block- 
ing was not due to a steric interference between anti- 
LFA-1 mAbs and N-linked carbohydrate residues pres- 

ent on ICAM-3 but not ICAM-1. The epitopes of 
mAbs YTH81.5 and 122.2A5 were shown to map to 
the I domain of the LFA-1 o~ subunit. A third I domain 
mAb, MEM-83, has been previously reported to uni- 
quely activate LFA-1 to bind ICAM-1 (Landis, R. C., 
R. I. Bennett, and N. Hogg. 1993. J. Cell Biol. 
120:1519-1527). We now show that mAb MEM-83 is 
not able to stimulate binding of T cells to ICAM-3 
over a wide concentration range. Failure to induce 
ICAM-3 binding by mAb MEM-83 was not due to a 
blockade of the ICAM-3 binding site on LFA-1. This 
study has demonstrated that two sets of functionally 
distinct mAbs recognizing epitopes in the I domain of 
LFA-1 are able to exert differential effects on the bind- 
ing of LFA-1 to its ligands ICAM-1, and ICAM-3. 
These results suggest for the first time that LFA-1 is 
capable of binding these two highly homologous 
ligands in a selective manner and that the I domain 
plays a role in this process. 

T 
HE integrin lymphocyte function-associated antigen 
(LFA)~-I mediates adhesion events between leuko- 
cytes and a variety of other cell types which express 

one or more of its ligands, namely interceUular adhesion 
molecule (ICAM)-I (Simmons et al., 1988; Staunton et al., 
1988), ICAM-2 (Staunton et al., 1989), and ICAM-3 (Faw- 
cett et al., 1992; Vazeux et al., 1992; de Fougerolles et al,, 
1993). The ICAM ligands are members of the immunoglob- 
ulin superfamily (IgSF), with ICAM-1 and ICAM-3 display- 
ing particular similarity. Both are composed of five extracel- 
lular C2-1ike Ig domains and exhibit ~50% amino acid 
identity rising to 77 % in the second domain. LFA-1 is a typi- 
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1. Abbreviations used in this paper: APC, antigen-presenting cells; ICAM, 
intercellular adhesion molecule; IgSE immunoglobulin superfamily; LFA, 
lymphocyte function-associated antigen; LIB, ligand-induced binding; 
PdBu, phorbol dibutyrate; VLA, very late antigen. 

cal integfin composed of a unique ct subunit (CDlla) (Larson 
et al., 1989) and a common 132 subunit (CD18) (Kishimoto 
et al., 1987; Law et al., 1987). The c~ subunit contains a 
197-amino acid "inserted" (or "I') domain located between 
repeated domains 2 and 3. A closely related I domain is pres- 
ent in the other two/32-type integrins, Mac-1 and p150,95, 
and also two members of the/3~ integrins, very late antigen 
(VLA)-I and VLA-2 (Corhi et al., 1987, 1988; Ignatius et 
al., 1990; Takada and Hemler, 1989). Comparisons of the 
intron/exon boundaries of p150,95 with the platelet integrin 
GPllbllla suggest that the I domain has been inserted as an 
evolutionarily conserved unit into the basic integrin struc- 
ture (Corbi et al., 1990; Heidenreich et al., 1990). Similar 
domains are present in a number of unrelated proteins and 
the integrin I domains are now recognized as belonging to 
a larger family of so-called type "A" domain proteins (for re- 
view see Colomhatti and Bonaldo, 1991). 

LFA-1 mediates leukocyte adhesion events at diverse 
stages of the immune response, including adhesion to en- 
dothelium and extravasation into inflamed tissues, priming 
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of T cells by antigen presenting cells (APCs) and killing of 
target cells by effector T cells (for review see Harvey et al., 
1993). The details of which ICAM ligand is used at each of 
these steps is still unclear, but it is currently thought that 
ICAMs-1 and -2 are principally required for leukocyte adhe- 
sion to endothelium, whereas ICAMs-1 and -3 are involved 
in formation of APC:T cell couples. During the APC:T cell 
interaction ICAM-1 appears to be the favored ligand on 
memory T cells whereas ICAM-3, which is expressed at 
higher levels on resting T cells, may be initially favored dur- 
ing early stages of primary antigenic responses (de Fou- 
gerolles and Springer, 1992). 

LFA-1 is not constitutively avid for ICAM-1 (Dustin and 
Springer, 1989; van Kooyk et al., 1989) but rapidly acquires 
high avidity binding in response to one of three basic types 
of signals: (1) agonists that trigger a so-called "inside-out" 
signal in leukocytes, which include phorbol esters or mAbs 
against other surface receptors, such as CD3, CD2, and 
CD31 (for review see Pardi et al., 1992); (2) changes in the 
extracellular concentrations of the divalent cations Mg 2+, 
Mn 2+, and Ca 2+ (Dransfield et al., 1992; Dranstield and 
Hogg, 1989); and (3) special "activating" anti-LFA-1 mAbs 
which directly induce the ligand-binding conformation on 
the receptor (Andrew et al., 1993; Landis et al., 1993; 
Robinson et al., 1992; Keizer et al., 1988). The activation 
epitope for one of these mAbs, MEM-83, has been mapped 
and shown to localize to the I domain, thereby suggesting a 
regulatory role for this domain in LFA-1 activation. Support 
for such a role has been provided by the finding that a novel 
Mac-1 "activation-reporter" epitope is also located in the I 
domain (Diamond and Springer, 1993). No information is 
available on the potential role of the I domain in the binding 
of ICAM-2 or ICAM-3 by LFA-1. 

Stable interaction of LFA-1 with ICAM-1 has been shown 
to be dependent not only upon stimulation of LFA-1 by 
agonist but also by prior ligation with ICAM-1, referred to 
as the "ligand induced binding" (LIB) interaction, which 
represents a necessary step leading to the full activation of 
LFA-1 (Cabafias and Hogg, 1993). A similar event has been 
identified in the integrin GPl/bRIa, in which case stable 
binding of ligand fibrinogen was shown to be dependent upon 
a prior interaction with the RGD motif contained within 
fibrinogen (Duet al., 1991). These findings suggest that a 
common feature of integrin activation may be participation 
by ligand in acquisition of the high avidity-binding confor- 
marion. 

In the present study we have examined whether LFA-1 is 
able to bind selectively to its most homologous ligands, 
ICAM-1 and ICAM-3. We demonstrate that two functionally 
distinct sets of anti-LFA-1 mAbs recognizing epitopes in the 
I domain are able to exert differential effects on the binding 
of T cells or LFA-l-transfected COS cells to immobili7ed 
ICAM-1 and ICAM-3. These results therefore suggest for the 
first time that LFA-1 is capable of binding selectively to 
ICAMs-1 and -3 and that the I domain has a role in this 
process. 

Materials and Methods 

Preparation of ICAM-1 and ICAM-3-coated Plates 
ICAM-1 and ICAM-3 fusion proteins, consisting of the first two extracellu- 

lax domains fused to a human IgG1 Fc fragment (ICAM-Fcs) have been pre- 
viously described (Fawcett et al., 1992). Each preparation of protein 
A-Sepharose purified ICAM-Fc was checked for purity by SDS-PAGE anal- 
ysis and found to migrate as a single band under reducing conditions of 70 
kD in the case of ICAM-1 and a diffuse band of between 75-80 kD in the 
case of ICAM-3. ICAM-3-Fc was degiycosylated at 100 #g/mi in buffer con- 
raining 20 mM phosphate, pH 8.0 plus 25 mM EDTA by sequential incuba- 
tions for 20 and 16 h at 37°C in the presence of 4 and 2 U/ml N-Olycosidase 
F (Boehringer-Mannheim, UK). For T cell adh~ion assays, ICAM-Fcs 
were added at 500 ng/well in PBS to Immulon 1 96-well plates (Dynatech 
Laboratories Inc., Chantilly, VA). For LFA-1/COS cell assays, ICAM-Fcs 
were added at 500 ng/well to Immulon 3 plates precoated with 1 #g/well 
goat-anti-human-Fc Ig (Sigma Chemical Company Ltd., Dorset, U.K.). 
Plates were coated overnight at 40C and non-specific sites were blocked be- 
fore the adhesion assay with 2.5% BSA (Fraction V, Sigma) in PBS for 2 h 
at room temperature. All ICAM-Fc constructs were coated to plates at 
saturating levels, as determined by ELISA and T cell binding assays. 

Monoclonal Antibodies 

Anti-LFA-1 ~ subunit mAbs MEM-83 and MEM-94 were generously 
provided by Dr. V. Horejsi (Prague, Czech Republic), mAb 122.2A5 by Dr. 
R. Vilella (Barcelona, Spain) and mAb YTH81.5 by Serotec (Oxford, U.K.) 
(Bazil and Horejsi, 1990; Schmidt, 1989). Anti-ICAM-1 mAb RR1/1 was 
a gift from Dr. R. Rothlein (Ridgefleld, CT) (Rothlein et al., 1986). The 
remaining mAbs, obtained from Dr. Reinhold Schmidt, were from the Leu- 
kocyte Typing Workshop IV (Schmidt, 1989) and included the anti-CDlla 
mAbs MHM24, 122.2A5, MEM-95, MEM-30, MEM-25, 2F12, F110.22, 
GRS3, I-roll, MI0, 0501, 25.3.1, 459, YTH 81.5, 1524, TMD3-1, CC5 liT/, 
and the anti-CD18 mAbs H-52, MHM23, TS1/18, M232, IC11, CLB-54, IB- 
4, YFC 51.1, YFC 118.3, and GRF1. Purified anti-CDlla mAbs MEM-83, 
38 and YTH81.5 were used in T cell adhesion assays at final concentrations 
of 2-5 #g/ml and in immuno-precipitation assays at 30 #g/ml. mAb 
122.2A5 was used as ascitic fluid diluted 1:300 in T cell adhesion assays 
and at 1:50 in immunoprecipitatiun assays. Purified anti-ICAM-1 .mAb 
RRI/1 was used in T cell binding assays at 10 #g/ml and the imrmmoprecipi- 
tation negative control CD8 mAb 14 was used at 30/~g/ml. All other CDlla 
and CD18 mAbs were used as ascitic fluids in T cell adhesion assays at 
saturating concentrations ranging between 1:100 and 1:1,000 dilutions de- 
pending on FACS titre. 

T Cell Adhesion Assay 

Human T cells were expanded in culture from unstimulated peripheral 
blood mononuclear cells and served as a model for inducible adhesion to 
immobilized ICAM-1 as previously described (Dransfield et ai., 1992). 
Briefly 5 × 107 cultured T cells were labeled with 25 #Ci [3H]methyl 
thymidine and washed three times in the appropriate essay medium sup- 
plemented with 0.2% BSA (Fraction V, Sigma). The medium employed in 
the binding assay was either RPMI 1640 or a defined Mn2+-containing 
medium, consisting of 20 mM Hepes, 140 mM NaC1, 2 mg/mi D-giucose, 
and 400 #M Mn 2+. 3H-labeled T cells were added to ICAM-Fc-coated 
plates in the presence or absence of phorbol dibutyrate 0MBu; 200 nM) at 
2.5 x 105 cells/well in a I00-#1 vol. Cells were preincubated on ice for 20 
rain in the presence of saturating titres of anti-LFA-1 mAbs in a 50-#1 vol, 
centrifuged at 30 g for 1 rain and incubated an additional 30 min at 37°C. 
ICAM-3 binding was carried out in the presence of mAb RRM1 (5 ~tg/ml) 
to eliminate LFA-1/ICAM-1 dependent clustering of T cells. Cells that re- 
mained bound to ICAM-Fc plates after 5 washes with prewarmed RPMI 
were lysed and the incorporated radioactivity quantitated using a Betaplate 
counter (LKB Instruments Inc., Bromma, Sweden). Stimulation index is 
defined as: Cell binding in the presence of agonist (IMBu or Mn2+)/binding 
in the absence of agonist. 

LFA-1 Transfection of COS Cells and Adhesion Assay 
COS cells were maintained in D-MEM medium supplemented with 10% 
FCS and passnged at confluence by trypsinization. COS cells were tran- 
siently transfected by DEAE Dextrun using CD1 la and CD18 cDNAs cloned 
into the expression vector PeDNA/AMP (In Vitrogen, U.K.). Briefly, COS 
cells were grown to confluence in 15-cm petri dishes and transfected with 
50 #g of each cDNA for 2-4 h at 37°C in the presence of 1 mg/ml DEAE 
dextran, followed by a 2-rain shock in 10% DMSO. LFA-1 transfected COS 
ceils were used in adhesion assays 48 h after transfection and were routinely 
20% LFA-1 positive by FACScan analysis (Becton Dickinson Immuno- 

The Journal of Cell Biology, Volume 126, 1994 530 



cytometry Systems, Mountain View, CA). The adhesion assay was per- 
formed similarly as described for T cells. Briefly, LFA-1/COS cells were la- 
beled overnight with [3H]methyl thymidine at 25 #Ci per 2 x 107 cells and 
harvested before the adhesion assay by ice-cold PBS supplemented with 
2 mM EDTA. Cells were washed three times in assay medium, consisting 
of RPMI supplemented with 2.5% FCS, and added to ICAM-F,c plates in 
a 30-#1 vol at 3 x 104 cells/well. Cells were preincubated on ice for 20 
rain in the presence of 50 ng/ml PMA and saturating titres of anti-LFA-1 
mAbs in a 25-/zl vol, followed by an additional 30-rain incubation at 37°C. 
Cells that remained bound after five washes with prewarmed RPMI were 
lysed and counted for incorporation of radioactivity as described above. 

cDNA Constructs of  the LFA-1 ~ Subunit 

The construction of the CD1 la deletion series used for epitope mapping has 
been previously described (Landis et al., 1993). The "nested" series of con- 
structs contained successive domain deletions starting from the NH2 ter- 
minus of the LFA-1 c~ subunit, with each fragment terminating in domain 
7 (designated as fragments N, 2, I, 3 and 4). Thus, the construct spanning 
from the NH2 terminus to domain 7 was labeled N, the construct spanning 
from domain 2 to 7 was labeled 2, and so on. A control fragment, which 
included the region between the end of domain 7 and the transmembrane 
domain, was designated C. A previously undescfibed fragment, which con- 
sisted only of the I domain plus domain 2 (amino acids 71-323), was desig- 
nated 2-I. PCR amplifications were carded out using a GeneAmp TM DNA 
amplification kit with Taq DNA polymerase (Perkin Elmer Cetus, Norwalk, 
CT) according to the manufacturer's instructions. 

In Vitro-Translation and Immunoprecipitation 

Transcription and translation of the nested CDlla eDNA deletion series was 
carried out using the one-step TNT TM T7 coupled reticulocyte lysate system 
(Promega Corp., Madison, WI) according to manufacturer's instructions. 
1/~g of cloned DNA in Bluescript TM KS + phagemid served as the template 
for the reaction, which was carried out for 2 h at 30°C, in a 50-#1 vol in 
the presence of [35S]methionlne (Amersham) and rabbit reticulocyte ly- 
sate (50% by volume). After translation, 25 ttl o f2x  EIA buffer (500 mM 
NaC1, 100 mM Hepes pH 7.0, 0.2% NP-40) was added to an equal volume 
of translation product and the total volume of the precipitation made up to 
200 itl with lx  EIA buffer. The primary incubation was carded out in the 
presence of 30 #g purified mAbs at 4°C for 3-5 h, before the addition of 
20/zl (packed volume) Sepharose Protein G beads. Immunoprecipitations 
were incubated an additional 3-5 h at 4°C before harvesting the Sepharose 
beads by a 30-s microcentrifugation. 10 #1 of the supernate was removed 
for monitoring of the translation efficiency of each fragment by SDS-PAGE. 
The remaining lysate was discarded and the beads washed three times with 
lx  EIA buffer plus 0.1% NP-40, and twice with lx  EIA buffer alone. Ap- 
proximately 25 #1 of electrophoresis reducing buffer was added to the beads 
before SDS-PAGE analysis on a 9% acrylamide separating gel. Gels were 
treated with ENHANCE TM (New England Nuclear Research Products, Bos- 
ton, MA) before autoradiography. 

Results 

Comparative Binding of  T Cells to ICAM-1 
and ICAM-3 

To determine whether ICAM-3 was recognized by LFA-1 in 
the same regulated manner as ICAM-1, we examined the 
effect of two LFA-l-activation regimes on T cell binding to 
immobilized ICAM-1 and ICAM-3. In these experiments, the 
high affinity conformation of LFA-1 was triggered either 
from the. exterior of the cell by the addition of Mn 2+ 
(Dransfield et al., 1992) or from the interior of the cell by 
the addition of PdBu, an agonist of the inside-out pathway of 
LFA-1 activation (Rothlein et al., 1986). Fig. 1 shows that 
ICAM-1 and ICAM-3 supported comparable levels of T cell 
adhesion stimulated through PdBu or Mn 2+. The index of 
stimulation was also equivalent between the two ligands, 
with an average stimulation index of 2.9 for ICAM-1 and 3.1 
for ICAM-3. These results demonstrate that LFA-1 exhibited 

Figure 1. T cell binding to ICAM-3 is induced by phorbol ester or 
Mn 2÷. 3H-labeled T cells (2.5 x 105) were added to ICAM-1 or 
ICAM-3 coated 96-well plates (Immulon 1, Dynatech) and stimu- 
lated either by the addition of PdBu in RPMI-1640 medium or by 
washing cells into Hepes buffered medium containing Mn 2+. 
ICAM-3 binding was carded out in the presence of anti-ICAM-1 
mAb RR1/1 in order to eliminate LFA-1/ICAM-1 dependent cluster- 
ing of T cells. Cell binding was quantitated after a 30-min incuba- 
tion at 37°C by measuring the radioactivity of the bound fraction 
of cells. Results are expressed as the average + SD of triplicate in- 
cubations from a single experiment, representative of four similar 
experiments. 

the same basic features of avidity-regulation towards its two 
most homologous ligands, ICAM-1 and ICAM-3. 

Effect of  anti-LFA-1 mAbs on Adhesion to ICAM-1 
and ICAM-3 

To determine whether LFA-1 could recognize ICAM-1 and 
ICAM-3 differentially, we screened a panel of anti-LFA-1 
mAbs (consisting of 19 mAbs against the t~ subunit and 10 
against the ~2 subunit) for blocking effects on T cell binding 
to either ligand. In this assay, T ceils were preincubated with 
the anti-LFA-1 mAbs indicated in Fig. 2, followed by a 30- 
min binding step in the presence of PdBu to immobilized 
ICAM-1 or ICAM-3. Although the blocking footprint of the 
mAb panel was broadly similar for each of the ligands, the 
screen identified two mAbs specific for the o~ subunit of 
LFA-1 which exhibited differential blocking between the two 
ligands. These two mAbs, YTH 81.5 'and 122.2A5, spe- 
cifically inhibited T cell binding to ICAM-3 but not ICAM-1 
(Fig. 2). 

Having screened the panel of mAbs for selective effects on 
T cell adhesion to ICAMs-1 and -3, we subsequently exam- 
ined the blocking properties of mAbs YTH81.5 and 122.2,45 
in greater detail. To exclude donor variability, Fig. 3 a was 
compiled from eight different donors and confirmed that 
these mAbs exhibited good blocking of T cells to ICAM-3 
compared to a control blocking mAb 38, but no blocking to 
ICAM-1. Selective blocking was maintained under condi- 
tions which raised the affinity of LFA-1, using 3 mM Mg 2÷ 
and 1 mM EGTA (to chelate Ca2+), alone or in combina- 
tion with phorbol ester (data not shown). These T cell as- 
says, however, suffered from a potential drawback related to 
the high levels of expression of both ICAM-1 and ICAM-3 
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Figure 2. Effect of anti-LFA-1 panel of mAbs on T cell adhesion to ICAM-1 and ICAM-3. T cells were preincubated on ice for 20 rain 
in the presence of PdBu, and saturating doses of the anti-LFA-1 mAbs, specific for the ~ and/32 subunits of LFA-1, as indicated. ICAM-1 
and ICAM-3 binding assays were carried out as described in the legend to Fig. 1 and results expressed as% adherence relative to control 
binding in the presence of PdBu only. 

on the T cell surface (data not shown). Since PdBu activated 
T cells have been shown to aggregate via an LFA-1/ICAM-1 
dependent pathway (Rothlein et al., 1986), ICAM-3 binding 
assays were routinely carried out in the presence of a block- 
ing anti-ICAM-1 mAb RR-1/1 to prevent ICAM-1 dependent 
clustering between cells. This introduced the possibility that 
the behavior of T cell LFA-1 was being affected by anti- 
ICAM-1 mAb. Therefore, to completely rule out any in- 
volvement of cell surface ICAMs from the assay, we repeated 
the experiment using COS cells transfected with human 
CDlla and CD18 cDNAs (LFA-1/COS). Fig. 3 b shows that 
mAbs YTH81.5 and 122.2A5 blocked binding of LFA-1/ 
COS cells to ICAM-3 but not ICAM-1, in a manner analo- 
gous to that previously observed with T cells, and that the 
control mAb 38 inhibited binding to both ICAMs. These ex- 
periments therefore demonstrated unequivocally that mAbs 
YTH81.5 and 122.2A5 selectively blocked adhesion of LFA-1 
to ICAM-3. 

Effect of Deglycosylation on ICAM-3 Ligand Function 

ICAM-3 is an extensively glycosylated molecule which ex- 
presses five potential N-linked glycosylation sites on domain 
1 which are absent from the corresponding region of ICAM4 
(Fawcett et al., 1992; Vazeux et al., 1992; de Fougerolles et 
al., 1993). It is therefore possible that anti-LFA-1 mAbs 
YTH81.5 and 122.2A5 could be mediating their selective 
blocking effects indirectly, via a steric interaction with bulky 
carbohydrate residues present on ICAM-3 but not ICAM-1. 
To address this issue directly and to gain further insight into 
the role of glycosylation on ligand function, ICAM-3 was de- 
glycosylated at the asparagine glycosylamine linkage by treat- 
ment with N-Glycosidase E Fig. 4 a shows that treatment 
with N-Glycosidase F under non-denaturing conditions fully 
converted ICAM-3Fc from a diffuse band migrating at 75-80 
kD to a sharper band at 55 kD. No further removal of carbo- 
hydrate could be achieved by SDS-denaturing before N-Gly- 

cosidase F digestion, suggesting that ICAM-3Fc was fully 
deglycosylated under non-denaturing conditions (data not 
shown). The structural integrity of deglycosylated ICAM-3 
was verified by a panel of 14 anti-ICAM-3 mAbs, all of which 
demonstrated reactivity by ELISA assay with deglycosylated 
antigen coated onto plates (Littler, A., unpublished observa- 
tions). Fig. 4 b demonstrates that deglycosylated ICAM-3 
served as a ligand for LFA-1 on T cells and that blocking by 
anti-LFA-1 mAbs YTH81.5 and 122.2A5 remained unaf- 
fected. This experiment therefore excluded a possible role 
for N-linked carbohydrates on ICAM-3 in mediating the se- 
lective blocking effects by the anti-LFA-1 mAbs. These data 
also demonstrated that glycosylation was not an essential 
prerequisite for ligand function by ICAM-3, although a drop 
in ligand function between 35-50% was consistently ob- 
served. Deglycosylated ICAM-1 supported LFA-1 binding 
equally well as native ICAM-1 and exhibited unchanged block- 
ing profiles with anti-LFA-1 mAbs YTH81.5 and 122.2A5 
(data not shown). 

Mapping of the YTH81.5 and 122.2A5 Epitopes 

To identify regions within the extracellular domain of the 
LFA-1 ce subunit that might be involved in the blocking of 
ICAM-3 binding, we mapped the epitopes of YTH81.5 and 
122.2A5. This was accomplished by immunoprecipitation of 
in vitro-translated protein fragments of the LFA-1 ce subunit. 
A eDNA deletion series of the LFA-1 ce subunit was con- 
structed, which consisted of five successive single domain 
deletions beginning from the NH2-end and terminating in 
domain 7 (each fragment labeled according to its NH2 ter- 
minus as N, 2, I, 3, 4), plus a control fragment (C) which 
included the rest of the ce subunit terminating at the trans- 
membrane domain (see Materials and Methods). Radiola- 
beled proteins corresponding to these constructs were im- 
munoprecipitated by the anti-LFA-1 mAbs of interest or an 
irrelevant anti-CD8 mAb (mAb 14) and resolved by SDS- 
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Effect of  mAb MEM-83 on ICAM-1 vs ICAM-3 Binding 

We have previously identified a unique LFA-1 activation epi- 
tope, recognized by mAb MEM-83, which is also located in 
the I domain of the LFA-1 ot subunit (Landis et al., 1993). 
It was therefore of interest to determine whether this mAb 
could induce binding of LFA-1 to ICAM-3 in a manner simi- 
lax to that previously reported for ICAM-1. Fig. 6 demon- 
strates that mAb MEM-83 was not able to stimulate binding 
of T cells to ICAM-3 over a wide concentration range, in 
contrast to the induced binding to ICAM-1. 

Although differential binding to ICAM-1 in the presence 
of mAb MEM-83 might be due to selective effects on the 
LFA-1 activation process, it is equally possible that it is sim- 
ply due to blocking by mAb of the ICAM-3 binding site on 
LFA-1. To test this latter possibility, mAb MEM-83 was as- 
sessed for its ability to inhibit binding of LFA-1 to ICAM-3 
when LFA-1 was activated via another stimulus. Fig. 7 shows 
that mAb MEM-83 does not block Mn2+-induced binding 
to either ICAM-1 or ICAM-3, while reiterating the fact that 
it could selectively induce de novo binding to ICAM-1. These 
results demonstrate that mAb MEM-83 can influence LFA-1 
activation in favor of ICAM-l-binding in the absence of any 
intrinsic ICAM-3 blocking properties. Taken in conjunction 
with the selective blocking properties of mAbs YTH81.5 and 
122.235, these results with mAb MEM-83 demonstrate that 
epitopes exist within the I domain of LFA-1 which can regu- 
late the binding to different ICAM ligands. 

Figure 3. mAbs YTHS1.5 and 122.2A5 selectively block adherence 
of T ceils and LFA-1/COS cells to ICAM-3. (a) 3H-labeled T cells 
were adhered to ICAM-1 or ICAM-3 coated 96-well plates in the 
presence or absence of PdBu and anti-LFA-1 c~ subunit mAbs indi- 
cated. Results represent the average + SD % of input T cells adher- 
ing to plates from eight independent experiments. (b) LFA-1 trans- 
fected COS ceils were assessed as in u for binding to ICAM-1 and 
ICAM-3 plates. The histogram depicts average + SD adherence of 
LFA-1/COS cells from a single experiment, each condition per- 
formed in sepmplicate, representative of four similar experiments. 

PAGE. The upper panel of Fig. 5 a demonstrates that mAbs 
YTHS1.5 and 122.2A5 immunoprecipitated protein frag- 
ments which contained the I domain (fragments N, 2 and I), 
but not fragments from which the I domain had been deleted 
(3, 4, and C). Nonspecific binding by the control mAb 14 
was minimal. The lower panel of Fig. 5 a represents the non- 
precipitated fraction and shows that efficiency of translation 
and incorporation of radiolabel within each protein fragment 
was comparable across the entire deletion series. Although 
in vitro translation generated truncated protein fragments, 
only full length translation products (marked by an arrow) 
were immunoprecipitated. To provide further evidence that 
the I domain was sufficient for recognition by these mAbs, 
the LFA-1 ~x subunit was deleted from the COOH-terminal 
end of the I domain, creating a fragment consisting only of 
the I domain plus domain 2 (2-I). Fig. 4 b demonstrates that 
mAb YTH81.5 could recognize this construct, thereby 
confirming that it mapped to the I domain of LFA-1. 

Discussion 

We have demonstrated that the integrin LFA-1 can bind selec- 
tively to its two most homologous ligands, ICAM-1 and 
ICAM-3, and that the I domain has a critical role in this pro- 
cess. The experimental approach was to screen a panel of 
anti-LFA-1 mAbs for differential effects on T cell binding to 
ICAM-1 vs ICAM-3. By this means, we identified three 
mAbs specific for the c~ subunit of LFA-1 which allow dis- 
crimination of LFA-1 binding to ICAM-1 and ICAM-3. mAb 
MEM-83 induced LFA-1 to bind ICAM-1 but not ICAM-3, 
whereas mAbs YTHS1.5 and 122.2A5 exhibited selective 
blocking of ICAM-3. Differential blocking was confirmed in 
an independent adhesion assay which employed LFA-1- 
transfected COS cells binding to immobilized ligand. Impor- 
tantly, the COS cell assay was free from any possible inter- 
ference by cell surface ICAMs. This was relevant because the 
T cells used in our studies expressed cell-surface ICAM-1 
and ICAM-3 at equivalent levels (data not shown). 

A trivial explanation for the selective blocking effects by 
mAbs YTH81.5 and 122.235 might be invoked if the affinity 
of LFA-I is greater for ICAM-1 than for ICAM-3, in which 
case binding to the latter ligand might be more easily 
blocked. Several facts argue against this possibility. Firstly, 
such differential inhibition was not observed with any other 
mAbs studied in the panel. Secondly, avidity of binding 
to ICAM-1 and ICAM-3 was comparable using either acti- 
vated T cells or LFA-l-transfected COS cells. These results 
confirm a previous observation that T cells are able to bind 
ICAM-1 and ICAM-3 with comparable avidity (Campanero 
et al., 1993) but are not in accordance with an earlier report 
that ICAM-1 is the favored ligand for LFA-1 (de Fougerolles 
and Springer, 1992). Apparent differences could depend on 
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Figure 4. Selective block- 
ing by rnAbs YTH81.5 and 
122.2A5 is not dependent 
upon N-linked carbohydrates 
on ICAM-3. (a) ICAM-3 Fc 
was digested under non-dena- 
turing conditions with N-Gly- 
cosidase F and compared with 
a mock-treated control for 
completeness of deglycosyla- 
tion on a 7.5% SDS-PAGE gel 
(4 /,~g/lane) visualized by 
silver-stain. (b) Plates were 
coated with mock-treated or 
deglycosylated ICAM-3 Fc 
and T cell binding was as- 
sessed as described in the leg- 
end to Fig. 3. Results repre- 
sent mean adhesion + SD of 
triplicate incubations from a 
single experirnent, represen- 
tative of three similar experi- 
ments. 

a number of distinctive factors between the adhesion assays 
employed in these studies, such as cell type, source of 
ICAM-3, activation regimes and inversion of the binding as- 
say (i.e., binding of ICAM-expressing cells to immobilized 
LFA-1). It should be noted that none of these adhesion assays 
are suitable for obtaining monomolecular affinities between 
receptor/ligand pairs and that such a determination for 
ICAM-1 and ICAM-3 will require competition and equilib- 
rium binding experiments of the type used to measure the 
affinity constant for mouse LFA-1 to ICAM-1 (Lollo et al., 
1993). 

ICAM-3 contains five potential asparagine-linked glyco- 
sylation sites in domain 1 which are absent from the corre- 
sponding domain of ICAM-1. As the LFA-1 binding site of 
ICAM-3 has been localized to domain 1 and part of domain 
2 (Holness, C., manuscript submitted for publication), it 
could be argued that mAbs YTH81.5 and 122.2A5 might be 
artefactually preventing access to the binding site via a steric 
interaction with bulky carbohydrate residues selectively ex- 
pressed on domain 1 of ICAM-3. To address this possibility, 
ICAM-3 Fc was deglycosylated by treatment with N-Glyco- 
sidase F, which has previously been shown to remove aspara- 
gine-linked oligosaccharides under non-denaturing condi- 
tions from a variety of proteins (Tarentino et al., 1985). The 
resultant deglycosylated ICAM-3Fc retained reactivity with 
a panel of 14 mAbs specific for the first two domains of 
ICAM-3 and still supported binding of LFA-1 expressed on 
T cells. These results suggest that the extensive glycosylation 
on domain 1 is not essential for maintaining conformation 
or ligand function of ICAM-3. The ability of deglycosylated 
ICAM-3 to support binding of LFA-1 was similar to results 
obtained using ICAM-1 (data not shown) and a previous re- 
port on ICAM-1 ligand function (Diamond et al., 1991). Fur- 
thermore, experiments using deglycosylated ICAM-3 ligand 
ruled out carbohydrates as possible mediators of the selective 
blocking effects by anti-LFA-1 mAbs YTHS1.5 and 122.2A5. 

The third anti-LFA-1 mAb MEM-83 selectively induced 
binding of T cells to ICAM-1 but not ICAM-3, which 

provided a second line of evidence that binding of LFA-1 to 
these two ligands was distinct. Again there are several possi- 
ble explanations as to how this mAb might be working. One 
possibility is that mAb MEM-83-activated cells failed to 
bind ICAM-3 simply because the mAb blocked the high 
affinity ICAM-3 binding site. This was not the case, however, 
as MEM-83 did not block the LFA-1/ICAM-3 interaction 
when the high affinity state of LFA-1 was induced by Mn 2+. 
An alternative possibility is that mAb MEM-83 could be ex- 
erring its effects at an earlier phase of the LFA-1/ICAM inter- 
action. The high affinity phase of ICAM-1 binding is depen- 
dent not only upon agonist stimulation of LFA-1 but also a 
preceding ligation with ICAM-1 via the so-called "LIB" in- 
teraction, which represents a necessary step leading to the 
full activation of LFA-1 (Cabafias and Hogg, 1993). It is not 
yet certain whether the LIB interaction with ICAM-1 is re- 
quired to stabilize a transiently activated LFA-1 conformer 
or whether ICAM-1 directly induces a higher affinity state 
of LFA-1. Thus, mAb MEM-83 could be directly induc- 
ing/stabilizing an active ICAM-1 binding conformer of LFA-1 
or alternatively preventing the alteration necessary for 
ICAM-3 binding or both. A similar argument may also be 
applied to explain the selective blocking effects of mAbs 
YTH81.5 and 122.2A5. The role of LIB interactions with 
ICAM-3 in the LFA-1 activation process is currently under 
investigation. 

There are examples in other systems of differential binding 
by one integrin of multiple ligands. For example, VLA-2 ex- 
hibits cell-type specific adhesion towards ligands collagen 
and laminin (Elices and Hemler, 1989; Kirchhofer et al., 
1990) and VLA-4 can bind the IgSF ligand VCAM-1 and the 
CS1 region of fibronectin depending on the cellular context 
in which they are expressed (Elices et al., 1990). These 
binding patterns can be influenced not only by the local cell 
environment but also by treatment with divalent cations and 
activating mAbs (Chan and Hemier, 1993; Matsumoto and 
Hemler, 1993). In contrast, the present results suggest that 
recognition of the two IgSF ligands ICAM-1 and ICAM-3 by 
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Figure 5. mAbs YTH81.5 and 122.2A5 map to the I domain of LFA-I. (a) The lower panel depicts the migration on an SDS-PAGE gel 
of six [~SS]methionine-labeled protein fragments of the LFA-1 ,~ subunit, created by transcription/translation of a eDNA deletion series. 
The eDNA series consisted of five consecutive single-domain deletion fragments, beginning from the NH2 terminus and ending in domain 
7 of the LFA-1 c~ subunit 0abeled according to the NH2 terminus as N, 2, L 3, 4), plus a control fragment (C) spanning from the end 
of domain 7 to the transmembrane region. Arrows indicate the expected molecular size for full length protein translation products. The 
upper panel depicts immunoprecipitation of translation products by anti-LFA-1 mAbs YTH81.5 and 122.2A5 or a control anti-CD8 mAb 
14. Only full length translation products (arrows) containing the I domain were immunoprecipitated by mAbs YTHSI.5 and 122.2A5. 
(b) Depicts immunoprecipitation by mAb YTHS1.5 of the NH2-terminal deletion fragments N and 3, plus a COOH-terminal deletion 
fragment (labeled 2-I), consisting only of the I domain plus domain 2. Autoradiograms from a single experiment are shown, representative 
of four similar experiments. 
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Figure 6. mAb MEM-83 induces binding of T cells to ICAM-1 but 
not ICAM-3. T cells were preineubated on ice for 20 rain with the 
designated doses ofmAb MEM-83, before binding to ICAM-1- and 
ICAM-3-coated plates. The results show adherence + SE of quad- 
ruplicate incubations from a single experiment, representative of 
three similar experiments. 

LFA-1 is not discriminated by different cell environments 
(comparing T cells and COS cells) or regimes of LFA-l-acti- 
vation (comparing PdBu, Mn 2÷, or Mg2+-data not shown), 
but may be distinguished by activating antibodies directed 
against the LFA-1 c~ subunit. 

Finally, epitope mapping studies revealed that the two 
ICAM-3-inhibiting mAbs YTH81.5 and 122.2A5 and the 
LFA-1 activating rnAb MEM-83 (Landis et al., 1993) all map 
to the I domain of the LFA-1 ct subunit. Based on competition 
binding experiments, the three mAbs appeared to recognize 
a cluster of closely related epitopes (data not shown). All 
three mAbs can recognize a recombinant I domain fusion 
protein, which was also shown to contain a ligand binding 
site for ICAM-1 (Randi and Hogg, 1994). An attractive 
speculation would be that alternative forms of the LFA-1- 
binding site exist normally on the cell surface after activation 
and that rnAbs used in this study are able to induce/stabilize 
(MEM-83) or interfere with (YTHS1.5 and 122.2A5) one of 
these forms. Function-affecting mAbs to the I domain may 

Landis et al. Selective Binding of  LFA-1 to ICAM-I and ICAM-3 535 



Figure 7. mAb MEM-83 does not block Mn2+-induced ICAM-3 
binding. ICAM-1 and ICAM-3 binding-assays were carried out in 
the presence or absence of mAb MEM-83 (2 tzg/ml) using T cells 
in RPMI-1640 medium or washed into a Hepes buffered medium 
containing 400/~M Mn 2+. Results represent average :t: SD adhe- 
sion of quadruplicate incubations from a single experiment, repre- 
sentative of three similar experiments. 

therefore be directly influencing the ligand binding site 
within this domain. 
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