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Abstract. Microtubules are long, proteinaceous fila- 
ments that perform structural functions in eukaryotic 
cells by defining cellular shape and serving as tracks 
for intracellular motor proteins. We report the first ac- 
curate measurements of the flexural rigidity of micro- 
tubules. By analyzing the thermally driven fluctuations 
in their shape, we estimated the mean flexural rigidity 
of taxol-stabilized microtubules to be 2.2 x 10 -23 Nm 2 
(with 6.4% uncertainty) for seven unlabeled microtu- 
bules and 2.1 x 10 -23 Nm 2 (with 4.7% uncertainty) 
for eight rhodamine-labeled microtubules. These val- 
ues are similar to earlier, less precise estimates of mi- 
crotubule bending stiffness obtained by modeling flagel- 
lar motion. A similar analysis on seven rhodamine- 
phalloidin-labeled actin filaments gave a flexural rigid- 
ity of Z3 x 10 -26 Nm 2 (with 6% uncertainty), consis- 

tent with previously reported results. The flexural rigid- 
ity of these microtubules corresponds to a persistence 
length of 5,200 #m showing that a microtubule is rigid 
over cellular dimensions. By contrast, the persistence 
length of an actin filament is only ,,,,17.7 #m, perhaps 
explaining why actin filaments within cells are usually 
cross-linked into bundles. The greater flexural rigidity 
of a microtubule compared to an actin filament mainly 
derives from the formers larger cross-section. If  tubu- 
lin were homogeneous and isotropic, then the microtu- 
bule's Young's modulus would be -1 .2  GPa, similar to 
Plexiglas and rigid plastics. Microtubules are expected 
to be almost inextensible: the compliance of cells is 
due primarily to filament bending or sliding between 
filaments rather than the stretching of the filaments 
themselves. 

M 
ICROTUBUL~S are proteinaceous filaments that 
play a central role in cell physiology. In shape, 
they are hollow cylinders with extreme outer and 

inner diameters of ,x,30 and 18 nm, respectively, and with 
lengths of up to 100/~m or more. The wall of the cylinder 
is composed of a regular lattice of the heterodimeric protein 
tubulin (Amos and Klug, 1974; Beese et al., 1987; Chr&ien 
and Wade, 1991). Microtubules, together with several as- 
sociated proteins, constitute one of the components of the eu- 
karyotic cytoskeleton: they form the moving cores of cilia 
and flagella, they are the tracks along which intraceUular 
motor proteins move, and they are thought to define the mor- 
phology of many cells. All these roles are structural: they re- 
quire that microtubules have sufficient resistance to bending. 
To determine whether microtubules possess appropriate me- 
chanical properties for these cellular functions, we have 
measured the bending stiffness of purified microtubules in 
vitro. 

We report here the first direct measurements of the flexural 
rigidity of microtubules. Theflexural rigidity (El) or bend- 
ing stiffness is the quality that describes a filament's resis- 
tance to bending forces, just as stiffness describes a fila- 
ment's resistance to elongation. For a spring, Hooke's law 
states that force equals stiffness times elongation; for a thin 
flexible rod, the analogous "beam equation" (Feynman et al., 
Address correspondence to J. Howard, Department of Physiology and Bio- 
physics, University of Washington, Seattle, WA 98195. 

1964) states that at each point along the filament the bending 
moment (the torque acting about the point) equals the flex- 
ural rigidity times the curvature (the inverse of the radius of 
curvature). The flexural rigidity of a proteinaceous filament 
such as a microtubule is completely determined by the prop- 
erties of the bonds between the atoms within each protein 
subunit and properties of the bonds which hold the subunits 
together in the polymer. 

In principle, one could directly measure the flexural rigid- 
ity by applying a small, known force to one end of a clamped 
microtubule and measuring its deflection. But, owing to the 
small size of the microtubule, such a method is technically 
difficult. We have chosen, instead, to measure the bending 
of unconstrained microtubules by thermal forces. Thermal 
bending has been used previously to measure the flexibility 
of actin filaments, another component of the cytoskeleton. 
Nagashima and Asakura (1980) and Yanagida et al. (1984) 
measured the thermal fluctuations of the end-to-end distance 
of an actin filament; these fluctuations can be related to the 
filament's flexural rigidity (Landau and Lifshitz, 1980). Un- 
fortunately, microtubules are too rigid to display significant 
fluctuation in their end-to-end distance, so such measure- 
ments on microtubules are not feasible. Furthermore, such 
measurements lack a test of internal consistency, which is de- 
sirable because of the difficulty of distinguishing fluctuations 
from measurement noise and nonthermal bending. This is 
crucial for microtubules, which are much stiffer than actin 

�9 The Rockefeller University Press, 0021-9525/93/02/923/12 $2.00 
The Journal of Cell Biology, Volume 120, Number 4, February 1993 923-934 923 



filaments, and which thus display much smaller  fluctuations 
relative to measurement error. Moreover, for microtubules, 
even very small convective currents cause bending as large 
as thermal bending, so that again a consistency check is 
important.  

Our strategy for measuring the flexural rigidity of micro- 
tubules was to resolve the thermal bending in a single fila- 
ment. To do this, we characterized the shape of  the filament 
as the sum of  cosine waves (or modes) of  increasing fre- 
quency: that is, we performed a Fourier  decomposition.  
Each shape that the filament assumed uniquely defined the 
amplitude of  each of  the constituent modes. As the fi laments 
shape fluctuated over t ime due to thermal motions, the am- 
plitude of  each mode fluctuated, and the variance of  the am- 
plitude of  each mode provided an estimate of  the flexural ri- 
gidity of  the filament. Because the amplitude of each mode 
varied independently of  that of  the other modes, each mode 
provided an independent estimate of  the flexural rigidity. In 
practice, we could statistically resolve at most only three 
modes in a given microtubule. This was sufficient, however, 
to provide a test of internal consistency: for example, we ex- 
pect convective flow to affect the different modes to different 
extents, and so consistent measurements between modes 
makes it unlikely that the observed bending is due to convec- 
tive currents. As a further check for systematic error, we 
compared estimates of  flexibility between microtubules of  
different lengths, and as expected found no dependence. 

Along with our analysis of  microtubule flexibility, we per- 
formed a parallel  analysis of  the flexural rigidity of  actin fila- 
ments, in which case as many as four independent modes 
were analyzed per filament. As in the case of microtubules, 
the estimates of  the flexural rigidity were found to be consis- 
tent between modes, and between filaments of  different 
lengths. The results for actin are in general agreement with 
those of  Nagashima and Asakura (1980) and Yanagida et al. 
(1984). 

The mathematical derivations used for the fluctuation 
analysis are all contained in the Materials  and Methods. 
However, intuitive definitions of  all the concepts are con- 
tained elsewhere so the paper  is readable even i f  the mathe- 
matical sections are skipped. 

MO). A few microliters of this solution were pipetted onto a clean micro- 
scope slide, and a clean cover glass was placed on top; the resulting solution 
depth of <3 #m between the surfaces (measured using the calibrated mi- 
croscope focusing mechanism) effectively constrained the microtubules to 
move in only two dimensions. The edges of the coverslip were sealed with 
immersion oil to prevent fluid flow due to evaporation; this was important 
because even the gentlest flow caused substantial flexure of the microtu- 
bules. Nonlabeled microtubules with lengths ranging from 24.5 to 57.2/~m 
were observed under a dark-field microscope using a 1.2-1.4 numerical- 
aperture condenser (Carl Zeiss, Inc., Thornwood, NY) and viewed with a 
Diastar microscope (Leica, Buffalo, NY). Rhodamine-labeled microtu- 
bules ('-equimolar tetramethylrhodamine-tubulin and non-labeled tubulin; 
Hyman et al., 1991) with lengths ranging from 39.1 to 63.2 ~m were ob- 
served by fluorescence microscopy; in this case, the buffer was augmented 
with 0A mg/ml glucose oxidase, 0.02 mg/ml catalase, 10 mM D-glucose, 
and 1% BME (2-mercaptoethanol) to slow photobleaching (Kishino and 
Yanagida, 1988). All experiments were performed at room temperature 
(24-26~ The temperature of shallow aqueous solutions under the 
same illumination was directly measured using 50-/~m-diarneter T-type 
thermocouple wire (Physitemp Instruments, Inc., Clifton, NJ); the tem- 
perature of the filaments under observation was estimated at <1" above 

Materials and Methods 

Microtubules 
Microtubules were polymerized from thrice-cycled, phosphoceUulose- 
purified tubulin (Weingarten et al., 1974) that was cycled once again before 
use in order to remove inactive protein (Hyman et al., 1991). Tubulin at 
2-6 mg/ml was polymerized by incubation for 30-1,0 rnin in 80 mM Pipes, 
1 mM EI~A, 5 mM MgCI2, I mM GTP, and 5% DMSO (Aldrich Chemi- 
cal Co., Milwaukee, WI), pH 6.85, with KOH, at 37~ The microtubules 
were stabilized with 10/~M taxol (Drug Synthesis and Chemistry Branch, 
Division of Cancer Treatment, National Cancer Institute, Bethesda, MD) 
to prevent depolymerization and were used within a few hours. The struc- 
ture of these microtubules is similar to those of microtubules polymerized 
in the absence of DMSO (Chrdtien and Wade, 1991): in a sample of 51 
frozen-hydrated microtubules, 20 % had 13 protofllaments, 69 % had 14, 8 % 
had 15, and 4% had 16 protofilaments. The average number of protofila- 
ments was 14.0, different from the 13 protofilaments found in most, but not 
all, microtubules inside cells. The microtubules were diluted 100- to 1,000- 
fold into a solution with final concentrations ofS0 mM Pipes, 1 mM EDTA, 
1 mM MgC12, 10 ~M taxol, and ,'~0.4-1.0 mg/ml casein to prevent mi- 
crotubules from adhering to the glass surfaces (unless otherwise indi- 
cated, all reagents were obtained from Sigma Chemical Co., St. Louis, 

Figure 1. Video images of a microtubule (a) and an actin filament 
(b) undergoing thermal fluctuations in curvature. The filaments 
were constrained to move in a very shallow experimental chamber: 
the chamber depth of <3 t~m prevented the microtubule, which 
had a large fixed curve, from rotating axially. Each picture in the 
microtubule collage of dark-field images is separated by I0 s. Each 
picture in the actin-filament collage of fluorescence images is sep- 
arated by ,'~1.5 s. The scale bars represent 10/~m: the microtubule 
is 28.9/~m long, whereas the actin filament is 15.5/~m long. The 
fluorescent image in b fades with time due to photobleaching. Due 
to evanescent scattering, the image intensity along the microtubule 
is greatest where the filament is most closely apposed to the lower 
surface. Note that the high rigidity of the microtubule leads to very 
small fluctuations in curvature; while the fluctuations are clear 
from the video tapes, the reader must tilt the page to see them in 
this figure. 
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ambient temperature; throughout, 25~ is the assumed temperature. Im- 
ages (Fig. 1) were detected with a silicon-intensified-target camera (Hama- 
matsu C2400-8; Barrels and Stout, Bellevue, WA) and recorded with a 
1/2-inch video cassette recorder (Panasonic AG-6300, Proline, Seattle, 
WA). Video prints of taped images were made using a Sony UP 5000 video 
printer. 

To record the fluctuating shapes of the microtubules, five to 15 points 
along the recorded image were digitized from videotape using MEASURE 
hardware and software (M. Walsh Electronics, San Dimas, CA). The digi- 
tized images were corrected numerically for field distortion in the camera. 
From 51 to 113 such sets of data were acquired at intervals of from 5 to 
20 s. This sampling interval was so chosen to ensure that shapes at sequen- 
tial times were uncorrelated; that is, the sampling time was longer than the 
relaxation time for any of the modes (see below). 

Actin Filaments 

Actin filaments were provided by courtesy of Dr. Mild6s S. Z. Kellermayer 
and were prepared as described by Pardee and Spudich (1982). Actin fila- 
ments were stabilized against depolymerization with tetramethylrhodamine- 
isothiocyanate-phalloidin, diluted into buffer (25 mM imidazole-HCl, 25 
mM KC1, 4 mM MgC12, and 1 mM EGTA, titrated with HC1 to pH 7.4) 
augmented with 0.4 mg/ml glucose oxidase, 0,08 mg/mi catalase, 20 mM 
D-glucose, and 1% BME (2-mercaptoethanol). Additionally, casein was 
added (<0.5 mg/ml) to prevent actin from sticking to the glass. The actin 
filaments were observed by fluorescence microscopy. Sequential images of 
an actin filament undergoing thermal fluctuations is shown in Fig. 1 b. The 
fluctuating shapes of aetin filaments with lengths ranging from 3.7 to 22.7 
~m were digitized in the same manner as were the microtubules, and a simi- 
lar number of sets of data were acquired. A shorter sampling interval of 
'~0.5 s was used in the case of actin filaments because the fluorescence faded 
over a few minutes. For the longest actin filaments this sampling time was 
too short to provide many independent measurements of the lower order, 
more slowly relaxing modes (see below), but the greater flexibility of the 
actin filament over the microtubule permitted adequate resolution of higher 
order modes. 

Definition of  Flexural Rigidity 

If a thin flexible rod of fixed length L is constrained to bend within a plane 
(i.e., in two dimensions), its shape is completely specified by the tangent 
angle O(s) at every point s along the arc length of  the rod (0 < s < L). The 
curvature at each point (i.e., the reciprocal of the radius of curvature) is 
d0/ds. If the bending is slight (i.e., the radius of curvature is much greater 
than the filament diameter as in the cases under study), Hooke's law applies 
and the ffexural rigidity, E1 is defined by 

dU/ds = ~ E1 (dO/ds - dO~ 2 (1) 

where dU/ds is the bending energy per unit length and 0~ is the shape 
of the relaxed rod in the absence of applied or thermal forces, dU/ds is 
directly analogous to the energy stored in a spring, U = 1/2k(x - x0) 2 
where k is the stiffness and x - x0 is the extension beyond the spring's nat- 
ural length, x0. The total energy of bending of a thin rod in the plane is 

v = ~ El f~ ds(aO/as - dO~ ~. (2) 

Eqs. t and 2, and the concept of flexural rigidity apply microscopically to 
slightly bent linear molecules even if their molecular structure is com- 
plicated. 

If the rod is composed of  an isotropic elastic substance, E1 can be sepa- 
rated as the product of the Young's modulus, E, and the geometrical moment 
of inertia, L of the cross-section, 

1 = f/y2dA, O) 
crOss-section 

where y is distance in the direction of the curvature (Landau and Lifshitz, 
1986). For a hollow cylinder of inner radius r~ and outer radius r0, 

~r (ro* - r D .  (4)  

For the bending of a microtubule or an actin filament, however, the molecu- 
lar structure is not isotropic, and it is only an approximation to speak of 
E and I as having independent significance. 

Decomposition o f  Filament Shape into Cosine Modes 

We can express the shape O(s) as a superposition of a large number of Fou- 
rier ~modes, 

O(s) = O.(s)  . .  an c o s  . (5) 
n f f i 0  n = 0  

Fig. 2 shows an example of such a decomposition for the case of an actin 
filament. The choice of cosine "modes" in Eq. 5 is somewhat arbitrary, be- 
cause no boundary conditions have been imposed on O(s). This particular 
cosine expansion was chosen for computational convenience; a sine or 
mixed sine and cosine expansion could equally well have been used. The 
coefficients, an do not represent the true dynam/ca/mode amplitudes (see 
below); nevertheless, the energy of  bending U is a simple quadratic sum 
of these coefficients: 

U -= ~E1 ~ (n-r'12(an - an~ 2. (6) 
n = 1 L- ' -J  

Here, an ~ denotes the amplitude in the absence of applied or thermal forces 
and is nonzero if the relaxed filament is not absolutely straight. Note that 
the zero-order mode (ao) corresponds to the average orientation of the fila- 
ment and does not contribute to the bending energy. In equilibrium, the 
equipartitlon theorem (Reif, 1965) states that each quadratic term in Eq. 
6 contributes an average 1/2 kT: this implies that for n ~ 1, 

var(an) = ((an - a~ 2) -- k T ( L )  2. (7) 
EI"nw z 

The angle brackets denote an average. The lack of cross-terms in U implies 
that the quantities a~ - a ~ are uncorrelated for different n. Thus, the varia- 
tion, or fluctuation, in amplitude of each mode (n ~ 1) provides an indepen- 
dent estimate of the flexural rigidity. In our experiments, the high rigidity 
of microtubules allowed reliable measurement of only the first three modes. 
The lower rigidity of actin filaments allowed measurement of up to the sixth 
mode (a~). 

Definition of  Persistence Length Lp 

The thermal bending of flexible polymers is commonly discussed in terms 
of the three-dimensional persistence length/.1, = EI/kT, which is the arc 
length above which the angle O(s) becomes uncorrelated in three- 
dimensional motion. Specifically, 

( cos [ a03 ( s ) ] )  = exp(-s / / . . ) ,  (8) 

where Ae3(s) is the three-dimensional angle change over the arc length s 
(Landau and Lifshitz, 1980). Note that when the polymer is constrained to 
a plane, the decay length is doubled: (cos[A0(s)]) = exp(-s/2Lp), where 
AO(s) is the two-dimensional angle. For slightly flexible rods such as 
microtubules, the persistence length 4 is much greater than the length of 
the rod. For actin filaments such as those used in this study, 4 is of the 
same order of magnitude as the filament length. Using Eq. 7, the persistence 
length can be written as 

L~ (9) 
Lp = nhr2 var(a~) 

Numerical Estimation o f  Filament Shape 

To find the flexural rigidity E/from Eq. 7, or the persistence length Lp from 
Eq. 9, we used the following numerical procedure to calculate the Fourier 
coefficients an from a set of digitized two-dimensionnl coordinates taken 
along the length of the microtubule. N + 1 points, (Xk,YD, along the length 
of the curve were digitized. From these points, we derived the length 
= [(Xk + I -- xk) 2 + (Yk + ~ -- Yk)2] 1/2 and tangent angles Ok = tan - t  
[(Yk + i - yk)/(Xk + I -- Xk)] of a set of N segments that connect the points 
(Fig. 2). To calculate 

a n =  ~ I: ds 0(s)cos {n*rs~, ~ T J  (lO) 

which is the Fourier inverse ofEq.  5 for n ;~ 1, we used the approximation 

a a ~ - ~  ~ OkAskcos(nXsr~ia~ n---- 1 . . . .  N - l ,  i l l )  
t = l  ~,L k 1, , 
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Figure 2. Illustration of the methods by which the images were ana- 
lyzed. (a) The digitized (x, y) coordinates of 16 points along the 
length of the actin filament shown in Fig. 1 b, near the time of 
the first image in that sequence. (b) The tangent angle of each of 
the segments bounded by the digitized points, plotted against total 
arc-length up to the midpoint of that segment. (c) Curves showing 
the first five of the 14 cosine modes into which the tangent-angle 
curve has been decomposed. The amplitude of each of the cosines 
was calculated according to Eq. 11. In b, the sum of the first five 
modes is shown as a solid curve; the sum of all 14 modes would 
go through each data point. At successive times, the amplitudes of 
each mode changes as the actin filament shape fluctuates. Because 
the amplitudes of each mode are statistically independent, the 
bending energy in each mode will on average be 1/2kT, and in 
theory the variance of the amplitude of each mode provides an inde- 
pendent estimate of the flexural rigidity of the filament. 

where 

N 
L =  E 

k = l  
ASk (12) 

and 

$[nid . ASI "1- AS2 -t- . . . 4- A S k - I  q- I / 2 A S k .  (13) 

This procedure is summarized in Fig. 2. In principle, the variance of each 
of these an values as they fluctuate over time may be used to obtain an inde- 
pendent estimate of the flexural rigidity, E/, via Eq. 7. In practice, measure- 
ment noise prevents resolution of the higher order modes. 

Errors in Estimating the Mode Amplitudes 

The experimental estimates of the mode amplitudes obtained via Eq. 11 in- 
clude errors due to the limited resolution of the microscope and video sys- 
tem: each measured point along the filament deviates from the actual posi- 
tion on the filament by a random distance ek (Fig. 3). This experimental 
error, which varies from filament to filament depending on the image qual- 
ity, adds directly to the true variance of the amplitude of each mode and 
therefore introduces a bias, not just a random error, into the estimate of El. 
Therefore, to obtain an unbiased estimate of the flexural rigidity, the effect 
of this experimental error must be estimated for each experiment and sub- 
tracted from each measured variance. In this section, we derive an approxi- 
mate expression for the extra variance contributed by the measurement 
noise: using this expression we are able to estimate the measurement noise 
for each filament and make the appropriate adjustments. 

For small curvatures (the case here), the measurement errors ek contrib- 
ute to each an independently of the numerical value of an itself. To estimate 
the effect, we can therefore assume that the filament is straight and consider 
the deviations ek from a straight line (Fig. 3). As above, let N be the num- 
ber of segments. For simplicity, we assume all segments have equal length 
ASo when all the deviations ek are zero (though in practice the segments 
had somewhat variable lengths). When the ek are nonzero, the/~h segment 
has length and angle 

ASk ---- [AS0 2 -t- (~k+l --  r 1/2 ~ AS0 

Ok = t a n - l [ ( s  - -  6k)/AS0] ~ (ek+l  --  ~k) /As0 (14) 

where the orders Ek 2 and higher have been neglected. It follows from Eq. 
11 that the errors lead to Fourier-coefficient amplitudes 

noise ~ /2"  
an = V~ k=, ~ (,k+, - ,k)COS [-~(k - 1/2)] (15) 

where $~id . . ~  (k - 1/2)L/N is the midpoint of the k th segment. Note that 
any correction to the measured length L (see below) will only affect Eq. 15 
to higher order in the ~k. The variance, (a~ ~~ is now calculated by 
regrouping the terms on the right-hand side of Eq. 15 in terms of each dis- 

A S  k " 

�9 \ ,,,,:./T 
:.~ . . . . . . . . . .  ~: 

AS o 

Ek+ 1 

Figure 3. Definitions used in the text to discuss the errors in estimat- 
ing the mode amplitudes. The hypothetically straight curve is 
shown as a horizontal line. Points are chosen at an equal horizontal 
spacing ASo along the curve, but with some vertical error ~k. This 
results in a nonzero segment angle Ok, and a segment length As 
greater than As0. 
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tinct ~k, then using the fact that the ek'S are independent, identical random 
variables, and finally noting that 

N-I 

s in2(~_ k) = 8 .  
i=l 2 " 

<:.>- - + (16) 

Thisequation predic~ how themeasurementerrorcontributes to each an. 
In other words, we expeet themeasured var(an) to be given by 

var(an) ~ -- (h~)2 ~pp + ~-(~)[I + (N-l)sin2(~N) } . (17) 

This represents a two-parameter model for comparison with the data where 
the unknowns are/.I, and (e~. Its form is shown as the solid curves in Fig. 
5, a and b: the contribution to the variance from the thermal fluctuations 
decreases as n increases (Fig. 5, dashed line), whereas the contribution 
from the experimental error increases (Fig. 5, dotted fine). For each fila- 
ment, (t~) was estimated by least-squares curve fitting of var(aD as a func- 
tion of n (SigmaPlot, Jandel Scientific, Corte Madera, CA). By rearranging 
Eq. 17 and employing Eq. 16 for (a~ "~ we obtain a modified form of 
Eq. 9 that provides an almost unbiased (see next section) estimate for the 
persistence length: 

1 = kT = n~" 2 [ v a r ( a , ) ~  F p  ~ (-L-) - (a~)r~i"] (18) 

Error in Estimating the Filament Length 

Measurement error also leads to an overestimate of the filament length cal- 
culated by F.x 1. 12, and this overestimate will bias slightly the estimate of 
persistence length obtained by Eq. 18. Let L' denote the length as measured 
via Eqs. 12, and L denote the true length. From Eqs. 12 and 14, 

N N 

As k 1 I~k + t - -  Ek't2"l 
L' = ~ As~ + ~ [ - - ~ 0  ) J" (19) 

Averaging this expression over the N + 1-independent ek, and putting 
L = NAs0, we get to lowest order in (e~) 

L/L' ~ 1 - ~ (20) 
Aso 2 �9 

Because we used E in Eq. 18, Lp is overestimated by a factor (E/L) 3, from 
the explicit L 2 appearing in F.q. 18 and also from a factor L - In  appearing 
in aD (F_Xl. 11). 

For nonlabeled microtubules in dark-field, the average measurement er- 
ror (estimated by least-square fits of E,q. 17) was ( e~ -0 .085  #m, whereas 
the overall average segment length was Aso u 4.5 #m, so that from Eq. 20 
the relative difference (L - L')/L'was only 0.04% and was ignored. For the 
rhodamine-labeled microtubules the error was smaller. For fluorescent actin 
filaments, (e~) ttz was 0.126 #m and &So was 1.38 #m on average, so the ra- 
tio (L - L')/E was 0.8%; this is discussed further in the Results. 

Uncertainty in the Measurement o f  Lp 

For each mode of each filament, Eq. 18 provides an unbiased measurement 
of the persistence length. To check that the measurements are consistent 
from mode to mode and from filament to filament, it is necessary to esti- 
mate the uncertainty in each measurement of 4 .  

The quantity var(a~) which in our case generally dominates Eq. 18, is 
expected to be distributed as X]2; the uncertainty or standard deviation is 
therefore 

8vat(an) m std[var(an)]m samples = ~ vat(an), (21) 

where M is the number of sample values (Box et al., 1978). Because the 
standard deviation in Eq. 21 is proportional to the mean, and because 
the distribution of the logarithm, ln[var(an)], is better approximated by the 
normal distribution than is vat(an) (Box et al., 1978), we performed our 
statistical analysis on ln[var(an)] and ln (4) ,  rather than on aD and/_~. 

We lack a precise estimate of the uncertainty in the quantity ~a~ ~i~. 

Uncertainty in ( a ~  nOise should include not only the error of the parameter 
(e~) obtained by fitting to the model (Eq. 17), but also the fact that model 
is inexact. We conservatively assign to (a~ ~ an uncertainty equal to its 
magnitude: 

8(a~) n~ = (a~) n~ �9 (22) 

Using these assumptions, and using ln(x 5: 6x) ~ In(x) + &/x, we obtain 
the following uncertainty in In(Lp): 

ln(L0 --- ln(Lp t~*) + ~ln(L v) = l n ( L ~ )  + 

[ M2----~l [var(an)m~,*--]2 + [(a~}nois,,]211/2 

[Va r ( an )  nmllurnd - -  (a~)noise] (23) 

Relaxation Times of Small-Amplitude Hydrodynamic 
Bending Modes 

How long does it take for the shape of a filament to change, and do we wait 
long enough between samples for successive shapes to be independent? The 
answer depends on the relaxation times of the dynamical modes. In princi- 
ple, it is even possible to estimate the flexural rigidity of a filament from 
these relaxation times. This would provide an independent confirmation of 
the measurements based on the variances of the amplitudes of the cosine 
modes. In practice, the exact solution for the dynamics of a polymer is in- 
tractable, even in two dimensions (Do• and Edwards, 1986). A more serious 
drawback from an experimental standpoint is that the solution depends on 
the hydrodynamic drag from the nearby surface that cannot be accurately 
measured (Brennen and Winet, 1977). Nevertheless, it is instructive to de- 
rive an approximate solution for the hydrodynamic modes (in the limit of 
very small bending) so that the order of magnitude of our persistence-length 
measurements can be confirmed. 

Our starting point is a relation between the bending moment M(s) and 
the curvature dOMs: 

E1 80 = M ( s )  (24) 
Os 

(Landau and Lifshitz, 1986). This relation is analogous to Hooke's law for 
a spring (kx = F,, where k is the spring constant, x is the extension, and 
F is the force). We may write the bending momem as an integral of the per- 
pendicular drag force F• = -yr177 where ~, is the perpendicular drag 
coefficient per unit length of the molecule and v• is the perpendicular 
velocity, 

M(s) =I L F• - s)ds'. (25) 

Differentiating twice with respect to s, we obtain 

$ 
02M(s) = F• = -3,v• = -7 Io  0-~-~0(s')ds' (26) 

882 Ot 

where in the last equality we have used a small-angle approximation for 
v• Differentiating again and substituting into Eq. 24 we obtain 

EI ~-~ "Y-~. (27) 

The boundary conditions for an unconstrained filament are that both 8 O~ 8s 
and 820/882 vanish at s = 0 and s = L, which follow from (25) from sym- 
metry under exchange of s for L - s. The differential equation is solved 
by separation of variables to yield the set of decay modes for On: 

On(s,t) = 

Ie-t /" [sinh a, sin ~-~ (s - L) + sin an sinh ~-- (s  - L)] ; n odd 

cos 2an ~n cosh ~ L ) ] ,  ~e-'/~[cosh ~n T ( s  - L) + cos - �9 n even 

(28) 
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where 

tan c~, = ( -1 )"  tanh c=. (29) 

and 

r n = ~ /  L 4 (3o) 

The solutions ~n determined by Eq. 29 are closely approximated by the 
solutions 

~n ~ (n + 1/2)~, n = 1,2,3 . . . . .  (31) 
Z 

Therefore, the relaxation times r.  are approximated by 

L 1' rn ~ ~ L ~ J  ' n = 1,2,3 . . . . .  (32) 

These dynamic modes are connected to our Fourier analysis as follows: 
as functions of s, each dynamic mode 8. in Eq. 28 resembles the function 
cos(nxs/L) in Eq. 5. Each dynamic mode 0, also has a time-dependent fac- 
tor e -t/r., i.e., a relaxation time r,. Because relaxation times correspond to 
correlation times of fluctuations (by the fluctuation-dissipation theorem; 
Landau and Lifshitz, 1980) we can use these r ,  as estimates of correlation 
times for the fluctuating amplitudes of the modes On and thus, approxi- 
mately for the fluctuating Fourier amplitudes an. 

To apply this equation to the microtubules and actin filaments, we use 
an approximate formula for % the perpendicular drag coefficient per unit 
length of a cylinder near a surface (Brennen and Winet, 1977: "r ~ 
4~r~/ln(2h/r), where ~ is the viscosity (~ = 0.89 x 10 -3 kg. m-Is -1 for wa- 
ter at 25~ h is the height of the cylinder axis above the surface (taken 
to be 1 #m), and r is the hydrodynamic radius of the cylinder. For our lon- 
gest mierotubule, L is 63.2/Lm, r is --15 nm and E1 is 2.1 x 10 -23 Nm 2 
(see Results) and E,q. 32 gives a relaxation time of rl = 3.9 s for the first 
mode. This time is short enough that we should observe no serial correlation 
with our sample time of 5-20 s, as was in fact the case (Fig. 4 a). In the 
case of actin filaments, the hydrodynamic radius is ,~4.5 nm and our final 
result for E1 is 7.3 x 10 -~6 Nm 2 (see Results). For our longest actin fila- 
ment (of length 22.7/zm) this r and E1 give r] = 15 s and r2 = 2.0 s, show- 
ing that with our sample time of 0.5-1.0 s, we would expect to find a large 
serial correlation in the first mode, and a moderate serial correlation in the 
second mode. This was in fact the case (Fig. 4 b). 

Resul ts  

Fluctuations in Curvature of  Microtubules 

We observed the thermal fluctuation in the shape of taxol- 
stabilized microtubules constrained to move in a shallow ex- 
perimental chamber with thickness <3/~m: Fig. 1 a shows a 
nonlabeled microtubule visualized by dark-field microscopy. 
The shallow chamber effectively restricted the movements to 
two dimensions, conferring upon our experiments two ad- 
vantages: the entire filament was always in the plane of  focus, 
and the analysis of  the shape was greatly simplified. Due to 
structural defects, microtubules are not perfectly straight, 
but contain fixed bends (Amos and Amos, 1991b) such as 
those seen in Fig. 1 a. Such intrinsic bends were useful 
because noticeably bent microtubules could not freely ro- 
tate axially in the depth of  the chamber: artifactual fluctua- 
tions of apparent shape due to such rotations were therefore 
avoided. 

Owing to the great rigidity of microtubules, the fluctua- 
tions in their curvature are much smaller than those of the 
much-less-rigid actin filaments studied in parallel experi- 
ments (Fig. 1 b). Although the fluctuations in the microtu- 
bule of Fig. 1 a are readily apparent on the video tapes, the 
reader must tilt the page to see shape fluctuations from the 
photographs. 
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Figure 4. The amplitude of each bending mode of (a) the microtu- 
bule shown in Fig. 1 a and (b) the actin filament shown in Fig. 1 b. 
The mode amplitude is plotted as a function of time in each of the 
subpanels (the 16 min of data in a excludes an unusable 4-min 
lacuna). Some times do not have values for the highest modes 
(largest n) because the number of points digitized was variable. 
Note that the large fixed bend in the microtubule, apparent in Fig. 
1 a, shows up as a nonzero mean amplitude in the lowest modes. 
Information about the flexural rigidity of the filaments is contained 
in the variance of the mode amplitudes. For both filaments, the 
lowest modes have a higher variance than the higher modes, whose 
amplitudes become dominated by experimental noise. The 10-s 
sampling interval for the microtubule is sufficiently long that suc- 
cessive points are uncorrelated. The 0.5-s sampling interval for the 
actin filament was too short to prevent correlation for the first 
mode, as can be seen in the first (n = 1) subpanel, but for the higher 
modes the correlation is negligible. For the microtubule, no statisti- 
cally significant cross-correlation between the first two modes was 
measured, as expected by the theory. This rules out the possibility 
that the variance in these modes is due to microtubule rotation. 

To measure the tiny fluctuations of the particular microtu- 
bule in Fig. 1 a, we decomposed the shape of the microtubule 
into a sum of cosine modes. In a typical measurement, 10 
points along the length of  this microtubule were digitized, 
the lengths and tangent angles of the nine segments between 
these points were calculated, and then the tangent angle was 
expressed as a sum of eight cosine waves or modes with am- 
plitudes at (n = 1 . . . . .  8) calculated by Eq. 11. This pro- 
cedure is illustrated in Fig. 2 which, for clarity, uses not a 
microtubule but the more flexible actin filament of  Fig. 1 b. 
Such measurements were repeated at 10-s intervals for a to- 
tal of 16 min; the choice of  points along the microtubule and 
their total number were variable. The amplitude of each of 
the modes for this microtubule is plotted as a function of  time 
in Fig. 4 a. The time between measurements was sufficiently 
long that sequentially acquired amplitudes were uncor- 
related, even for the first mode which is the slowest to change 
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(see Materials and Methods). The large value for the mean 
of a~ (,,00.75 #m 1/2) corresponds to the large fixed bend. 

The property of interest is not the mean amplitude but the 
fluctuation about the mean: the vertical width of the clouds 
of points seen in each of the panels in Fig. 4 a is related to 
the flexural rigidity of the filament. The variance of each a, 
about its mean, var(a,), is graphed in Fig. 5 a. Notice that 
the variance is different for the different modes. If  all the 
variance were due to measurement noise then we would ex- 
pect the variance to rise monotonically with n as shown in 
the dotted line. But this is not the case: the variance starts 
high, then falls to a minimum before rising again. The excess 
variance at small n (the lower order modes) is due to bending 
caused by thermal motions. For these lower order modes, the 
thermal fluctuations dominate the variance, while for the 
high order modes the experimental noise dominates. To re- 
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Figure 5. The variance of the Fourier coefficients of each mode plot- 
ted against mode number for (a) the microtubule shown in Fig. 1 
a and (b) the actin filament shown in Fig. 1 b. The solid curve is 
the least-squares fit of Eq. 17 to these variances (with the fit per- 
formed on the logarithm of the data, as appropriate for analyzing 
variances of normally distributed quantities). The estimated vari- 
ance due to thermal fluctuations in shape is shown by the dashed 
line, whereas the estimated variance contributed by experimental 
noise is shown by the dotted line. Thermal fluctuations dominate 
the variance of the lower modes, while the experimental noise 
dominates the variance of the higher-order modes. In b, the lowest 
mode (n = 1) is not included because strong temporal correlations 
made its value statistically unreliable. 

move the experimental-noise contribution from the vari- 
ance, we modeled the experimental error [Eq. 17] and per- 
formed a least-squares curve fit to the data to estimate its 
magnitude (Fig. 5, dotted curve is experimental noise, and 
the dashed curve is thermal fluctuation). For each mode, the 
experimental error was subtracted and the flexural rigidity 
was calculated [via Eq. 18]; only values with a final relative 
uncertainty of <50 % were used. 

In addition to the flexural rigidity we also calculated the 
persistence length, which is defined as flexural rigidity 
divided by kZ, where k is Boltzmann's constant and Tis abso- 
lute temperature. The persistence length is a convenient 
measure of the flexibility because it has a familiar dimension 
(/~m) and is directly proportional to flexural rigidity. The in- 
tuitive meaning of persistent length is the length of filament 
over which the thermal bending becomes appreciable. The 
actin filament of Fig. 1 b has a length approximately equal 
to its persistence length and the fluctuations in curvature are 
appreciable, whereas the microtubule of Fig. 1 a has a length 
of <1% of its persistence length, and so the thermal bends 
are only very slight. 

Flexural Rigidity of  Microtubules 

The flexural rigidity (and persistence length) measured from 
seven nonlabeled microtubules and eight rhodamine-labeled 
microtubules is plotted in Fig. 6 a. The data points, whose 
standard errors were estimated by Eq. 23, include the first 
three modes of two labeled microtubules, the first two modes 
of four nonlabeled and five labeled microtubules, and the 
first mode only of the remaining four microtubules. For both 
the nonlabeled microtubules and the labeled microtubules, 
the persistence length was independent of the microtubule 
length as expected. 

The measured flexural rigidity was consistent over all 
modes and all microtubules. For the seven nonlabeled 
microtubules, the weighted mean and standard error (Fig. 6, 
legend) of the flexural rigidity was 2.19 + 0.14 • 10 -23 
Nm 2. The extreme deviation from the mean among the 11 
data points was 2.3 standard errors; for 11 trims this is ex- 
pected with probability P -- 0.21; these data are consistent 
with each other and with our estimated uncertainties (P = 
0.15, X 2 with d = 10). The flexural rigidity derived from 
the seven first-order modes (2.34 + 0.18 • 10 -23 Nm:) was 
not significantly different (P = 0.071) from that derived from 
the four second-order modes (1.80 + 0.24 • 10 -23 Nm2), 
yielding no systematic difference between values obtained 
from the two modes. For the eight rhodamine-labeled 
microtubules, the mean and standard error were 2.12 + 0.10 
• 10 -23 Nm 2 and again there is no significant deviation of 
individual mode values from the mean (P = 0.17, X 2 with 
d = 16). Furthermore, the flexural rigidities derived from 
the eight first-order modes (2.12 + 0.12 • 10 -23 Nm2), the 
seven second-order modes (2.33 + 0.20 • 10 -23 Nm2); the 
two third-order modes (1.57 + 0.26 • 10 -23 Nm 2) were not 
significantly different (P = 0.064). 

Because there was no significant difference in flexural ri- 
gidity between the nonlabeled and labeled microtubules, we 
combined the data to obtain an overall mean of 2.15 • 
10 -23 Nm 2 (Fig. 6 a, horizontal line) with a relative uncer- 
tainty of 3.8 %. This corresponds to a persistence length of 
5,200 + 200/~m. 
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As noted above, the overall estimate obtained from the first 
modes and the overall estimate obtained from the second 
modes were statistically indistinguishable. Our estimated 
uncertainties were consistent with the distribution of  the data 
(P = 0.12, X 2 with d = 27). Individually, among the 11 

E first mode-second mode pairs, we found only one case (L = 
z 44.8 /zm) in which the first and second modes gave 
c, significantly different rigidities (P = 0.040, 11 trials). Ex- 

cluding this point did not significantly change the weighted 
mean, and so we retained it. We do not consider this one 
value to seriously cast doubt on our assumption that the 

(2 )  -r_ different modes estimate the same quantity. We also per- 
formed a X 2 analysis and found that at the 95 % confidence 

_~ level, the variation in flexural rigidity of  the population of 
" microtubules is ~10% or smaller. Thus, there is no evidence 

that we are sampling from a heterogeneous population. 

% 

-g_ 

t~  

x 

Figure 6. The flexural rigidity (right-hand scale) and persistence 
length (left-hand scale) are plotted against filament length L for (a) 
15 microtubules and (b) seven actin filaments. In both cases, results 
from different modes of the same filament are separated slightly 
along the horizontal axis for visibility, and the mode numbers (n 
values) are indicated above or below the point. In a, the open sym- 
bols correspond to rhodamine-labeled microtubules, whereas the 
closed symbols correspond to nonlabeled microtubules. Note that 
the vertical scale, is a logarithmic one (appropriate for analyzing 
variances of normally distributed data) which makes the standard 
errors of each measurement more nearly equal. The horizontal line 
in a is the mean of the measurements (weighted by the standard er- 
rors, with the calculation performed on the logarithms of the data). 
It corresponds to a flexural rigidity of 2.15 x 10 -23 Nm 2, and a 
persistence length of 5,200 #m. Because the individual measure- 
ments do not significantly deviate from the weighted mean, there 
is no evidence that we are sampling from a heterogeneous popula- 
tion of microtubules. In b, the lowest mode (n = 1) of the actin fila- 
ment of length 8.1 #m gives a value significantly lower than the 
population average of the other filaments. The horizontal line is the 
weighted mean of all the modes from the other actin filaments. It 
corresponds to a flexural rigidity of 7.29 x 10 -26 Nm 2, and a per- 
sistence length of 17.7 #m. 

Flexural Rigidity of Actin Filaments 

A similar analysis was performed for seven rhodamine- 
phalloidin-labeled actin filaments. The much greater flexi- 
bility of  the actin filament leads to large fluctuations in shape 
(Fig. 1 b). These large shape fluctuations obscure any possi- 
ble intrinsic bends the actin filaments may have. Fig. 4 b 
shows the mode amplitudes of the particular actin filament 
in Fig. 1 b; it is apparent that serial correlations exist in the 
first mode. These correlations make the estimate of  flexural 
rigidity from this mode unreliable. Good estimates from the 
next three modes of this particular filament were obtained 
from the variances plotted in Fig. 5 b. 

The flexural rigidity and persistence length of  seven actin 
filaments were calculated as described above for microtu- 
bules, and are plotted against filament length in Fig. 6 b. As 
in the case of microtubules, the persistence lengths deduced 
from different modes were consistent with each other, and 
independent of  actin filament length as expected. The ex- 
treme deviation among the 15 values for flexural rigidity was 
4.0 standard errors below the mean, occurring in the first 
mode of the filament of length 8.1 #m. This is a highly 
significant deviation (P < 0.01). We conclude from this outly- 
ing value that the flexural rigidity of  our filaments is variable. 
If  we exclude this actin filament, the weighted mean and 
standard error for the flexural rigidity is 7.29 + 0.44 x 
10 -26 Nm 2, and the persistence length is 17.7 + 1.1 /~m. 

Evaluation of Sources of Error 

When fluctuation analysis is used as a measurement method, 
particular attention must be paid to experimental errors: ex- 
perimental errors add to the true variance and therefore in- 
troduce bias or systematic error, not just imprecision or ran- 
dom error. To check for systematic errors, we performed 
three general tests: (a) Were the amplitudes of  different 
modes uncorrelated? (b) Did different modes give consistent 
estimates for flexural rigidity? (c) Were the flexural rigidities 
of different microtubules the same and independent of  
microtubule length? In all three cases, the answer was yes, 
as expected if no systematic errors were present. We now 
evaluate the effects of specific sources of error on the mea- 
surements. 

(a) The most serious noise is due to the random error as- 
sociated with the digitization of the images-measurement er- 
ror. The error arises from the limited resolution of the micro- 
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scope and video apparatus. We modeled this source of 
variance, estimated its magnitude for each filament (Fig. 5), 
and subtracted it from the measured variances. Because this 
variance contributed generally <5 % to the variance of the 
first mode, any residual systematic error arising from this 
source is certainly <10% of the mean. 

(b) The measurement error also leads to an overestimation 
of the true length of the filament and therefore an overestima- 
tion of the persistence length. As discussed after Eq. 20, the 
bias is negligible for the microtubule measurements, but for 
the actin filaments the length may be overestimated by as 
much as ,~0.8 %, leading to an error in flexural rigidity of 
up to 'x,2.5 %. A second effect leads to a small underestima- 
tion of the filament length: by partitioning the filament into 
finite-sized straight-line segments the derived length will be 
slightly underestimated due to slight bends within the seg- 
ments. Because the segments were chosen to be much 
shorter than the persistence lengths (<10 #m for the microtu- 
bules and <2 #m for the actin filaments), this error will affect 
the flexural rigidity by <1%. 

(c) The nonzero depth of the experimental chamber leads 
to two types of errors. The smaller is due to the fact that the 
filament can tilt slightly in and out of the plane of focus; we 
actually observed and measured the projection of the fila- 
ment onto the focal plane. Because the persistence length of 
the microtubules is much greater than the microtubule 
lengths, little bending occurs in the plane orthogonal to the 
focal plane, and so the measured length underestimates on 
average the true length by 1/4(h/L) 2 where h is the depth of 
the chamber. For a chamber depth of ",,2 #m and microtu- 
bule lengths of >20 #m, this effect is smaller than that of (b) 
above. For the shortest actin filament the length might be un- 
derestimated by as much as 7 %, and the flexurai rigidity un- 
derestimated by as much as 23 %. The effect on the longer 
filaments is much smaller. 

A potentially large error introduced by a nonzero chamber 
depth is the artifactual variance caused by free axial rotation 
of intrinsically bent microtubules. Although the effect is 
negligible for the actin filaments because their shape fluctua- 
tions are much larger than their intrinsic bends, this effect 
may lead to an underestimate of the true flexural rigidity of 
microtubules. There are two reasons for thinking that this 
effect is small. First, such rotation is expected to introduce 
correlation between the Fourier amplitudes of the modes; no 
significant correlation was found. Second, the magnitude of 
the effect depends on the intrinsic shape of the filament via 
the mean Fourier coefficients a,~ in general these varied 
from mode to mode and from filament to filament, yet all 
modes and all filaments gave consistent values for the flex- 
ural rigidity. 

(d) Another conceivable source of error is torsion: even 
when intrinsic bends prevent free rotation of microtubules, 
local twisting of fixed bends may mimic planar bending 
when viewed from above. However, for elastic rods, the tor- 
sional rigidity must be of the same order of magnitude as the 
flexurat rigidity (Landau and Lifshitz, 1986); from this, one 
finds that over lengths much smaller than the persistence 
length, the angle of thermal twisting must be very small, and 
the projection of a rotating bend would hardly change its cur- 
vature at all. 

(e) Convective currents in the chamber can cause microtu- 
bules to bend, especially if they become attached at one 

point on the surface. This is one reason why our initial mea- 
surements of flexural rigidity on microtubules (Gittes et al., 
1992) were 40% smaller than those reported here. In these 
earlier measurements, the microtubules showed some slight 
drift. To circumvent this problem, we used immersion oil to 
seal all the chambers used in this study; under these condi- 
tions there was little if any drift. As in the case (c), convec- 
tive currents are likely to introduce correlations and to affect 
different modes and different microtubules to different 
degrees, and no such effects were observed. 

(f) The final potential artifact is the possibility that all we 
are measuring is the fluctuation due to a small number of 
weak spots along the microtubule that completely dominate 
the microtubule's compliance: in this case the deduced flex- 
ural rigidity would not correspond to a fundamental prop- 
erty of the microtubule's structure. If there existed a small 
number of such weak spots, their position along the microtu- 
bule and their number per microtubule is expected to be 
quite variable. Thus we would expect that different modes 
would display different apparent rigidity, and that the flexural 
rigidity would vary widely from microtubule to microtubule. 
That this was not the case argues strongly against this possi- 
bility. 

None of the considerations (b) through (f) should affect 
our estimate of rnicrotubule rigidity appreciably. In the case 
of actin filaments, both (b) and (c) may introduce appreciable 
biases; nevertheless, because these biases are still estimated 
to be substantially smaller than the experimental uncer- 
taint-y, we have not attempted to modify our results to com- 
pensate for them. 

Discussion 

By analyzing their thermally driven fluctuations in curva- 
ture, we have measured the flexural rigidity, El, of taxol- 
stabilized microtubules to be 2.15 + 0.08 x 10 -23 Nm 2. 
The systematic error is likely to be <10%. This flexural ri- 
gidity corresponds to a persistence length of 5,200 #m. Be- 
cause the microtubules used in this study had protofilament 
numbers ranging from 13 to 16 (the most common being 14 
[69%] and 13 [20%]; S. Ray, E. Meyhffer, R. Milligan, and 
J. Howard, submitted for publication), it may at first seem 
surprising that we found no evidence that the microtubule 
population used for this study was heterogeneous. But de- 
creasing the diameter of a microtubule by reducing the 
protofilament number from 14 to 13 is expected to decrease 
the flexural rigidity by only about 20% (-~1 - [13/14] 3 from 
Eq. 4; the exponent is 3 rather than 4 because the microtu- 
bule wall remains the same thickness). This difference is 
within the experimental error associated with each microtu- 
bule. Given the distribution of protofilament munbers, we 
expect the coefficient of variation of rigidity of the microtu- 
bule population to be 0.11, too small to be resolved in our 
data (see Results). 

We should mention earlier studies by Yamazaki et al. 
(1982) and Mizushima-Sugano et al. (1983) who attempted 
to measure the persistence length of microtubules assembled 
from microtubule proteins (tubulin plus microtubule- 
associated proteins). They estimated the persistence length 
from measurements of the end-to-end distance. We believe 
that their values of 79 + 30 #m and 73,5 + 8.6 #m, nearly 
two orders of magnitude smaller than ours, are gross un- 
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derestimates due to measurement error. In the first study the 
variance of their end-to-end distance was independent of the 
microtubule length, and their persistence length increased 
linearly with microtubule length; both findings are expected 
if the variance of the measurement noise is much greater than 
that originating from thermal fluctuations. In the second 
study, outlying data points, probably corresponding to in- 
trinsically bent microtubules, may have biased their mea- 
surement. 

Our measurement of the flexural rigidity of a microtubule 
is consistent with indirect estimates derived from intact 
flagella. Computer modeling of the bending of Ciona sper- 
matozoa yielded an estimate of 10 -23 Nm ~ with an uncer- 
tainty of"at least a factor of 2" for the flexural rigidity of the 
cellular microtubules found in the terminal filament of this 
flagellum (Omoto and Brokaw, 1982). The flexural rigidity 
of live echinoderm spermatozoa was directly measured using 
calibrated glass needles (Okuno and Hiramoto, 1979): the 
flexural rigidity of the immotile, most-relaxed flagella 
ranged from 3 to 7 x 10 -22 NmL This agrees with our 
measurements if three assumptions are made: the nine dou- 
blet microtubules in the "9 + 2" array each have two to three 
times the stiffness of a single microtubule (the central "2" are 
singlet microtubules); the microtubules are free to slide with 
respect to each other; and the microtubules dominate the 
bending stiffness of the relaxed flagellum. Thus, our results 
lend support to these assumptions. 

The similarity between our direct measurements of 
microtubule flexural rigidity, and indirect measurements ob- 
tained from flagellar microtubules in vivo argues that the 
particular in vitro conditions used for the microtubules in 
this s tudy-the buffer solution, the taxol used for preventing 
depolymerization, and the absence of microtubule-associated 
proteins-do not radically affect the stiffness of the polymer. 
However, it is possible that microtubule-stabilizing factors 
such as taxol and microtubule-associated proteins do affect 
the flexural rigidity. Indeed, preliminary measurements of 
microtubules in the absence of taxol gave a persistence length 
between 700 and 1,500 #m (12 data points; Mickey, B., E 
Gittes, and J. Howard, unpublished observations), showing 
that these unstable microtubules may be less stiff than taxol- 
stabilized ones. 

The flexural rigidity provides an estimate of the load- 
bearing capacity of microtubules. Our value corresponds to 
a persistence length of 5.2 mm, much longer than either the 
microtubules used in this study or the microtubules found in 
cells. This is consistent with microtubules playing a struc- 
tural role in defining cell morphology, since microtubules 
are clearly stable to thermal deformation over cellular 
dimensions. As an example, our result means (using, e.g., 
Eq. 2) that --8 k T  of work is required to bend a 10-#m 
microtubule through an angle of 10 ~ Another corollary is 
that a 10-/~m microtubule free to pivot about its end points 
has a critical buckling force, Fc = r2EI/L 2 (Feyuman et al., 
1964), of '~ 2 pN, which is of the order of magnitude of the 
force thought to be exerted by a single motor protein, such 
as dynein (Kamimura and Takahashi, 1981) or myosin (Bag- 
shaw, 1982; Kishino and Yanagida, 1988). The 24-nm spac- 
ing between dynein arms in ciliary axonemes is easily small 
enough to prevent buckling of the intervening filament. 

Knowledge of the flexural rigidity of microtubules permits 
the estimation of the force exerted by microtubule-based mo- 
tor proteins in vivo and in vitro. Aist and Bayles (1991) ob- 

served buckling of a 7.6-/zm-long mitotic spindle of the 
fungus Nectria haematococca during anaphase B. With our 
value for the flexural rigidity (corrected for 13 protofila- 
ments), this implies a force of >3.0 pN per microtubule. 
The force generated by dynein heads in the axoneme can be 
estimated from the shape of beating spermatozoa. The calcu- 
lation is somewhat involved because of the complicated 
geometry of the axoneme. We assume the following: the 
center-to-center spacing of adjacent doublets is 60 nm 
(Amos and Amos, 1991a), the average center-to-center spac- 
ing projected onto the plane of bending is w = (2/w)60 nm 
= 38 nm (Brokaw, 1975), the average spacing of the heads 
along one doublet is d = 6 nm (24 nm for both the outer and 
inner arms, each arm containing two heads; Amos and 
Amos, 1991a), the beat amplitude is 4.7 #m, the beat wave- 
length measured along the flagellum is 30 #m (Ciona; 
Brokaw, 1966), and the flexural rigidity of each doublet is 
E1 = 5 x 10 -23 Nm 2 as suggested by the discussion above. 
We model the dynein activation as an alternating pattern with 
a fraction n = 0.5 of heads active, with all heads active in 
one half of the axonemal section and none active on the 
other. We have derived an expression F = (Eld/nw) 
020/Os 2 relating force per head F to the rate of curvature 
change 020/Os 2 a calculation yields a force per active head 
of F = 0.6 pN. This calculation ignores any passive shear 
forces between doublets as well as viscous forces acting on 
the swimming axoneme; it has been calculated that an addi- 
tional force of •0.18 pN per active head would be required 
to overcome the viscous force (Brokaw, 1975; counting 
inner-arm dynein heads). Our estimated force agrees quite 
closely with the ~1 pN force measured from telescoping 
flagella (Kamimura and Takahashi, 1981). As a third exam- 
ple, we estimate the force exerted by kinesin to buckle 
microtubules in vitro. Amos and Amos (1991b) observed a 
microtubule moving across a kinesin-coated surface become 
stuck at its leading end: the motors at rear produced 
sufficient force to buckle a 3-#m section of the microtubule. 
Because the microtubule segments at each end of the buckle 
were constrained not to pivot, the buckling force is four 
times higher than it would be if the ends were free to pivot 
(Landau and Lifshitz, 1986), and the force exerted by the 
kinesin motors must exceed 96 pN. Brokaw (1986) deduced 
comparable forces generated by unspecified motor proteins 
by using a computer model of the bending of microtubules 
in squid axoplasm. Because the number of motors is not 
known, it is not possible to deduce the force per motor. 

On a microscopic level, our measurement of E/does  ac- 
curately reflect the longitudinal compliance of the microtu- 
bule lattice. However, we know nothing about the spatial dis- 
tribution of this compliance within and between the tubulin 
dimers. Only if the microtubule wall can be described as an 
elastic continuum do E and I have separate physical mean- 
ings. If we make the gross assumption that the microtubule 
wall is isotropic, our measured value of flexural rigidity im- 
plies a Young's modulus, E, of ~1.2 GPa. (This estimate uses 
Eq. 4 to calculate I and assumes that the inner radius corre- 
sponds to the "contact radius" measured by Chr6tien and 
Wade [1991] to be 11.48 um for a 14-protofilament microtu- 
bule and that the wall thickness is 2.7 rim, which gives the 
correct microtubule mass per unit length.) This value for 
Young's modulus is similar to rigid plastics such as polypro- 
pylene or Plexiglas. 

For actin filaments, we found the flexural rigidity to be 
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variable; our best estimate is E1 = 7.29 + 0.44 • 10 -26 
Nm 2, where an aberrant value of E1 = 3.57 :]: 0.54 • 10 -2~ 
Nm 2 was excluded. Our measured value for the flexural ri- 
gidity of an actin filament corresponds to a persistence 
length of 17.7 5:1.1 #m. These results are in general agree- 
ment with previous estimates. Nagashima and Asakura 
(1980) measured the fluctuation in end-to-end distance and 
the decay length expressed in Eq. 8; from both measure- 
ments performed on actin filaments decorated with myosin 
and observed by dark-field microscopy in the absence of 
phalloidin they obtained a persistence length of 12 + 1 #m, 
which increased to 21 + 2/zm when tropomyosin was pres- 
ent. We note that this paper contains an erroneous relation- 
ship between persistence length and flexural rigidity: we 
traced this error to Eq. 38 of Harris and Hearst (1966) in 
which the "3" should be replaced by "2" because there are 
only 2 degrees of freedom for the angle of a line segment. 
Yanagida et al. (1984) measured the persistence length of 
phaUoidin-labeled actin filaments to be 15.6/zm (with no un- 
certainty reported); decoration by myosin had no consistent 
effect. Comparison of our results to the earlier studies shows 
that it is unlikely that the binding of phalloidin drastically al- 
tered the flexural rigidity of the filaments. 

Unlike microtubules, the cross-section through an actin 
filament deviates significantly from radial symmetry (Holmes 
et al., 1990). Therefore the measured value of E1 corre- 
sponds to the geometric mean of the flexural rigidities mea- 
sured along the two principal axes of the cross-section (Lan- 
dau and Lifshitz, 1986). If we model the cross-section of the 
actin filament as an ellipse with major and minor radii of 3 
and 2 nm, respectively (sufficient to incorporate all the pro- 
tein mass of the filament), and make the gross assumption 
that the filament is isotropic, we deduce a Young's modulus 
of 2.6 GPa. Hence, actin filaments are *300  times less resis- 
tant to bending than microtubules only because they are thin- 
ner and not because actin is more compliant than tubulin. 
The tubular shape of the microtubule is an economical way 
to make a rigid structure with a minimum of protein mass: 
even though the mass per unit length ofa microtubule is only 
,,ol0-fold higher than that of an actin filament, the microtu- 
bule is more than 100 times more resistant to bending. The 
superior flexural rigidity of microtubules accounts for the 
observations that microtubules often appear as independent 
structural elements, whereas actin filaments usually appear 
in cross-linked bundles such as microvilli, stereocilia, stress 
fibers and sarcomeres, or in cross-linked networks such as 
the cell cortex and terminal web. 

The Young's moduli for actin and tubulin are similar to the 
Young's moduli of several other proteinaceous filaments 
deduced from macroscopic measurements (Wainwright et 
al., 1976): 5-10 GPa for silk (in Bombyx mori), 4 GPa for 
keratin (in wool), and 0-2.5 GPa for collagen (in rat-tail ten- 
don, where stiffness depends on the strain). These Young's 
moduli are thousands of times greater than the Young's 
moduli of rubber-like proteins such as elastin, resilin, and 
abductin (~0.6 MPa). It is perhaps not surprising that 
microtubules and actin filaments have Young's moduli, 
which are similar to those of the above tensile proteins; be- 
cause the principal function of both actin and tubulin is struc- 
tural, there has probably been evolutionary pressure on both 
proteins to maximize their mechanical rigidity. 

Even though the Young's moduli of microtubules and actin 

filaments are only likely to be correct to within an order of 
magnitude, we can nevertheless draw some strong conclu- 
sions regarding the compliance of cells. Dennerll et al. 
(1988, 1989) used calibrated glass needles to measure the 
longitudinal stiffnesses (spring constants) of neurites from 
PC-12 cells and chick dorsal root ganglion cells grown in 
culture. The mean stiffness was 240 ~Nm -~ for PC-12 cells 
with neurites of average length ~100/~m. Similar results 
were obtained for the dorsal root ganglion cells. Each section 
through a neurite probably contains 10 or more microtubules 
(Bass et al., 1987), and perhaps as many actin filaments. The 
question arises: Is the neurite stiffness compatible with the 
predicted stiffness of the microtubules and actin filaments? 
The surprising answer is no: the cytoskeletal filaments are 
much stiffer than the neurite! The stiffness (EA/L) of a single 
microtubule with length (L) 100 /~m, Young's modulus 
(E) 1.2 GPa, and cross-sectional area (A) 190 nm ~ is 2.3 
mNm -~, whereas the stiffness of a single, 100-/zm-long ac- 
tin filament is 470 #Nm -~ (E = 2.6 GPa, A = 18 nm2). 
Thus a single actin filament and a single microtubule are, 
respectively, two and 10 times stiffer than the entire neurite. 
This implies that the compliance (the inverse of stiffness) of 
the cytoskeletal filaments is negligible compared to the com- 
pliance of the neurite: in order to accommodate strain, the 
actin filaments and microtubules cannot be continuous 
throughout the length of the neurite, and sliding must occur 
between these filaments. This conclusion is reinforced by the 
observation that the neurites can be elongated by up to 16%: 
this is likely to be an order of magnitude greater than the 
breaking strain of actin filaments (Kishino and Yanagida, 
1988) or microtubules. The compliance must originate in 
other neurite material; if proteins crosslink the cytoskeletal 
polymers, then these proteins must be highly compliant 
compared to the cytoskeletai filaments themselves. If neu- 
ronal axons in vivo are of similar stiffness to neurites in cul- 
ture, there is no reason to postulate that neurofilaments, 
members of the family of intermediate filament proteins 
which comprise the third component of cytoskeleton, serve 
purely mechanical roles: the presence of actin filaments and 
microtubules is expected to provide the axon with ample me- 
chanical rigidity. 

In conclusion, we have measured the bending stiffness of 
taxol-stabilized microtubules and phalloidin-stabilized actin 
filaments. We believe that this information provides a foun- 
dation for the understanding of the dynamic structure of eu- 
karyotic cells. We hope to use knowledge of the flexural ri- 
gidity of the cytoskeletal filaments to deduce the force 
exerted by motor proteins in vitro, and to understand the 
forces exerted in vivo that result in changes of cell shape. 
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