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Abstract. We report here that disruption of a recently 
discovered kinesin-like protein in Drosophila melano- 
gaster, KLP61F, results in a mitotic mutation lethal to 
the organism. We show that in the absence of KLP61F 
function, spindle poles fail to separate, resulting in the 
formation of monopolar mitotic spindles. The resulting 
phenotype of metaphase arrest with polyploid cells is 
reminiscent of that seen in the fungal bimC and cut7 
mutations, where it has also been shown that spindle 

pole bodies are not segregated. KLP61F is specifically 
expressed in proliferating tissues during embryonic 
and larval development, consistent with a primary role 
in cell division. The structural and functional homol- 
ogy of the KLP61F, bimC, cut7, and Eg5 kinesin-like 
proteins demonstrates the existence of a conserved 
family of kinesin-like molecules important for spindle 
pole separation and mitotic spindle dynamics. 

T 
HE existence of microtubule-dependent force generat- 
ing molecules has been known for nearly thirty years 
(reviewed in Vallee and Shpetner, 1990). The intrinsic 

polarity of the microtubule suggests there should be two 
classes of molecules capable of transducing force in either 
direction along the fiber. In general, dyneins move or- 
ganelles along microtubules in the minus-end direction, 
whereas kinesins have been implicated in plus end-directed 
movement (reviewed in Endow, 1991; Goldstein, 1991; 
Mclntosh and Pfarr, 1991; Sawin and Scholey, 1991; Vallee, 
1991). The matriarch of the kinesin superfamily (kinesin) 
was discovered in squid axoplasm and as such, is likely to 
function in axonal transport (Allen et al., 1985; Brady, 
1985; Vale et al., 1985). As expected for this role, mutation 
of the kinesin heavy chain in Drosophila melanogaster 
results in lethality with associated disruption of neuromuscu- 
lar function (Gho et al., 1992; Saxton et al., 1991). 

Since the initial identification of the kinesin heavy chain, 
a number of studies have led to the conclusion that a super- 
family of kinesin-like proteins (KLPs) ~ plays diverse roles in 
cellular functions in all single- and multi-cellular eukaryotes 
examined to date (reviewed in Endow, 1991; Goldstein, 
1991). These KLPs all share homology within the motor do- 
main of the protein which is involved in ATP hydrolysis, 
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microtubule binding, and force generation. Two PCR-based 
screens (using primers to conserved sequences within the 
mechanochemical region) in Drosophila melanogaster have 
identified six, and probably more, genes encoding potential 
KLPs (Endow and Hatsumi, 1991; Stewart et al., 1991). 
Functional analysis is incomplete at best, and awaits the dis- 
covery of mutations in these putative KLP genes. 

In addition to axonal transport, what other cellular 
processes may require microtubule-based motility? In the 
cell, the minus-ends of microtubules are embedded in the 
centrosome or microtubule organizing center, while the plus 
ends extend into the cytoplasm. The most dramatic cellular 
rearrangements occur during cell division. A mitotic spindle 
is first constructed from the duplicated centrosomes and the 
disassembled interphase microtubule array, and then used to 
segregate sister chromatids and separate spindle poles dur- 
ing cell division. One would expect these rearrangements to 
use molecules capable of generating directed movements of 
centrosomes, of chromosomes along microtubules, and of 
microtubules with respect to one another. 

Key breakthroughs in the analysis of mitotic spindle dy- 
namics have resulted from genetic analyses in fungal sys- 
tems. Kinesin-like molecules have been implicated in the 
proper assembly and maintenance of the mitotic spindle 
(Enos and Morris, 1990; Hagan and Yanagida, 1990, 1992; 
Hoyt et al., 1992; O'ConneU et al., 1993; Roof et al., 1992; 
Saunders and Hoyt, 1992). In Aspergillus nidulans, the 
bimC KLP is necessary for the separation of duplicated spin- 
dle pole bodies (Enos and Morris, 1990). Similarly, altera- 
tion of the kinesin-like cut7 protein in Schizosaccharomyces 
pombe also blocks spindle formation, again owing to the in- 
ability of spindle pole bodies to separate (Hagan and Yana- 
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gida, 1990). The resulting phenotype in both these cases is 
that polyploid cells arise due to repeated DNA replication 
in the absence of chromosome segregation and cell division. 
In Saccharomyces cerevisiae, the CIN8 and KIP1 gene prod- 
ucts appear to be redundant with one another, performing 
functions similar to that required of the bimC and cut7 KLPs 
(Hoyt et al., 1992; Roof et al., 1992). CIN8 and KIP1 addi- 
tionally appear to be required for maintenance of an estab- 
lished spindle; assembled preanaphase bipolar spindles col- 
lapse when these both of these molecules are inactivated 
(Saunders and Hoyt, 1992). The recent discovery that muta- 
tions in the KAR3 gene, also encoding a KLE can suppress 
the defects in CIN8 and KIP1 mutants, and the discovery that 
klpA can act as a suppressor of bimC in A. nidulans empha- 
sizes the interplay among these KLPs in spindle dynamics 
(O'Connell et al., 1993). 

Potentially analogous molecules have also been identified 
in nonfungal systems. The Xenopus Eg5 gene encodes a 
kinesin-like protein that acts as a plus end-directed motor, 
and appears to be important for bipolar spindle assembly in 
vitro (Le Guellec et al., 1991; Sawin et al., 1992). Strik- 
ingly, the bimC, cut7, CINS, KIP1, and Eg5 proteins all have 
motor domain sequences more similar to each other than to 
other members of the kinesin superfamily (Hoyt et al., 1992; 
Roof et al., 1992), suggesting that they may form a subfam- 
ily of related proteins and functions. Two KLPs have addi- 
tionally been identified in human tissue culture cells. The 
CENP-E centromere protein is a large (312 kD) KLP that ap- 
pears to be required for the progression from metaphase to 
anaphase (Yen et al., 1991, 1992). In addition, human 
MKLP1 may be involved in sliding anti-parallel microtu- 
bules during spindle elongation (Nislow et al., 1992). 

Although two Drosophila KLPs whose function had been 
analyzed genetically in Drosophila, ncd (nonclaret disjunc- 
tional) and nod (no distributive disjunction), appeared to 
play a role in meiotic chromosome segregation and spindle 
organization (Endow et al., 1990; McDonald and Goldstein, 
1990; Zhang et al., 1990), these and kinesin heavy chain 
mutants exhibited no obvious defects in mitosis. In addition, 
whether any of the many Drosophila KLPs identified by PCR 
played a role in mitosis, analogous to that played by the KLPs 
discovered genetically in fungi, was unclear. We report here 
that a lethal mitotic mutation in Drosophila is a result of a 
transposon insertion in one of the KLPs identified molecu- 
larly. This KLP, KLP61E bears a striking structural and 
functional resemblance to the bimC/cut7/Eg5 family of KLP 
genes, and thus clearly demonstrates the existence of a 
highly conserved family of KLPs important for mitotic spin- 
dle dynamics. 

Materials and Methods 

P Lethal Insertion Lines 

The mutants described in this paper were derived from a large scale (22,000 
crosses) single P element mutagenesis screen previously carried out in 1989 
(described in (Karpen and Spradiing, 1992). The 15-kb mutator P element 
(PZ) carried the Drosophila rosy + gene (allowing for eye color selection), 
the bacterial ~-galactosidase (lacZ) gene (serving as a reporter gone), and 
a bacterial origin of replication and kanamycin resistance gene (Mlodzik 
and Hiromi, 1992). All 7,825 independent insertions of the PZ element were 
homozygosed and characterized with respect to pbenotype (e.g., lethality, 
female sterility, male sterility). 958 lethal insertion lines on chromosome 
II or HI were balanced and formed the collection used in these experiments. 

Identification of Mitotic Mutants 
555 chromosome III lethal insertions were rebalanced over TM6B in order 
to use the dominant Tubby larval marker (Th). Larvae homozygous for the 
PZ insertion were Tb +, and therefore could be distinguished from their 
heterozygous Th siblings. To determine the time of lethality during develop- 
ment, the viability of Tb + homozygous larvae was determined in the cul- 
ture vials. 140 of the 555 third chromosome lethals were found to die late 
in larval or pupal development. These late lethals were subsequently studied 
to ascertain the status of mitosis. Third instar homozygous larvae from each 
late lethal stock were selected and washed of adherent food in EBR (129 
mM NaC1, 4.7 mM KC1, 1.9 mM CaC12, 10 mM Hepes, pH 6.9). Brains 
and imaginal discs were dissected and fixed in 45% acetic acid for 3 min 
at room temperature. Brains were squashed in 45 % acetic acid by pressure 
between a microscope slide and a siliconized glass coverslip. The prepara- 
tion was frozen on dry ice for 10 rain. The coverslip was then flicked off 
with a razor blade and the slide rebydrated in PBS (150 w_M NaCI, 10 mM 
NaHPO4, pH 7.2) to remooe the acetic acid. Slides were then stained for 
10 rain in PBS containing 0.05% TX-100 and 0.1 /~g/rul DAPI (4',6- 
diamidino-2-phenylindole). After rinsing in PBS, the preparations were 
sealed under coverslips in Mowiol (Calbiocbem-Behring Corp., San Diego, 
CA). Neuroblast spreads were subsequently examined by fluorescence mi- 
croscopy and photographed on a Zeiss Axiophot microscope (Carl Zeiss, 
Oberkocben, Germany). 

Excision of the PZ element to test for phenotypic reversion was con- 
ducted by crossing the P lethal lines to the P[A~-3199B transposase source 
(l~.obertson et al., 1988) as described previously (Cooley et al., 1988). Se- 
quences flanking a PZ element insertion site were cloned by virtue of the 
bacterial origin of replication and Kanamycin resistance gene engineered 
into the P element also as published (Cooley et al., 1988). 

Immunofluorescence on Neuroblast Squashes 
Third instar homozygous (Th+) and heterozygous sibling (Tb) larvae were 
washed of adherent food in EBR. Brains and imaginal discs were dissected 
and incubated in PHEM (60 mM Pipes, 25 ram Hepes, 10 mM EGTA, 2 
mM MgC12, pH 6.8) until the required number of brains were collected. 
No more than three brains were then gently squashed in PHEM containing 
4% paraformaldebyde (EM Science, Gibbstown, NJ) between a Con 
A-treated glass cover slip (Heck and Earnshaw, 1986) and a square of 
Parafilm. Preparations were fixed in this sandwich for 6 min at room tem- 
perature. The parafilm was gently peeled off and the cooer slip placed (cells 
up) in one well of a six-well multi-dish containing K B -  (150 mM NaC1, 
10 mM Tris, pH 7.7, 0.1% BSA). When all preparations were fixed, the cells 
were permeabilized in KB (KB-  with 0.1% TX-1G0) for 10 rain (with one 
change of solution). After a rinse in K B - ,  primary antibody was added for 
30 rain at 37°C (mouse monoclonal anti-/3 tubulin; Amersham Corp., 
Arlington Heights, IL; rabbit polyclonal anti-V tubulin; generous gift of Dr. 
Harish Joshi, Emory University, Atlanta, GA). A moistened paper towel 
on the inside of the top of the dish prevented evaporation. After three washes 
in K B -  for 2, 5, and 3 min, secondary antibody was added for 30 rain at 
37°C (FITC-conjugated goat anti-mouse; Cappel Laboratories, Cochran- 
ville, PA; biotinylated goat anti-rabbit; Vector Laboratories, Burlingame, 
CA). After three more washes in K B -  for 2, 5, and 3 rain, cover slips were 
incubated in Streptavidin/Texas red (GIBCO-BRL, Gaitbersburg, MD) for 
30 rain at 37°C. Coverslips were then washed for 2 rain in K B - ,  5 min 
in K B -  containing 0.5 ~tg/rul DAPI, and then in K B -  two more times for 
3-rain each. Coverslips were mounted in Slowfade (Molecular Probes). 
Digital images were acquired directly from an Olympus Vanox microscope 
equipped with a DAGE-MTI SIT-66 camera (detailed in Mackay et al., 
1993). 

Isolation and Sequencing of KLP61F cDNAs 
The KLP61F gene was identified in a PCR-based screen (using primers to 
conserved regions of the kinesin-like motor domain) for now members of 
the kinesin superfamily (Stewart et al., 1991), and was initially named 
KLP2 (the now name reflects the genomic position). Four KLP61F cDNA 
clones were isolated from a 0-4 hour Drosophila cDNA library (Brown and 
Kafatos, 1988) using a small genomic fragment of the KLP61F gene as a 
probe. The largest two of these were subcloned into pBlueScript and se- 
quenced using standard methods. The longer clone was 3,709 nucleotides 
in length and terminated with a long polyA tract; the shorter one was trun- 
cated at the 5' end relative to the longer clone (beginning at nucleotide 207) 
and also ended with a long polyA tract. The longest clone was sequenced 
on both strands completely. The noncoding strand was sequenced using e x o -  
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nuclease HI generated deletions, the coding strand was sequenced using 
newly synthesized oligonucleotides at intervals of approximately 200 
nucleotides. The sequence of this clone is presented in Fig. 1; it is the one 
analyzed in the text. The shorter clone was sequenced on only one strand 
using the oligonucleotides. We found 20 differences in nucleotide sequence 
between the two clones, only three of which change the predicted protein 
sequence. Relative to the sequence presented in Fig. 1, these three differ- 
ences are G at 2081 (M595 to V), A at 2904 (R869 to K), and G at 3010 
(H904 to Q). Given that the shorter clone is capable of rescuing the defects 
in KLP61F mutants, we currently regard it as the wild-type sequence, al- 
though the sequence changes in the longer clone are relatively conservative 
and may be natural polymorphisms. 

P Element-mediated Germline Transformation 
Construction of  Pwum2. The Pwum2 vector allows transcription of a 
transgene in a constitutive, tissue-independent manner by placing it under 
the control of the Drosophila polyubiquitin promoter (Up) region (Lee et 
al., 1988). Contiguous with Up is a fragment encoding 12 amino acids of 
c-myc (Munro and Pelham, 1987) that can be used to immunolocalize or 
immunoprecipitate the protein of interest with an anti-myc antibody. This 
vector was constructed by taking a 2-kb BglII fragment containing the pro- 
moter and 5' leader sequence (Lee et al., 1988) and modifying it in pBlue- 
script so that the ubiquitin initiator methionine became part of an NcoI site. 
An NcoI-EcoRI fragment encoding the 12 amino acid myc epitope (Munro 
and Pelham, 1987) was then placed in frame with the nhiquitin initiator me- 
thionine. (There are also KpnI and NotI cloning sites between the myc and 
the EcoRI site; the sequence of this region is available upon request.) This 
final construct was then cloned into the BamHI-EcoRI sites of PW8 
(Klemenz et al., 1987) to give Pwum2. 

Construction and Transformation of  Pwum2KLP61F. The shorter of 
the two KLPtlF cDNA clones (described above) within the vector pNB40 
(Brown and Kafatos, 1988) was digested with MunI (New England Biolabs, 
Beverly, MA) and the resulting 5' overhang was filled with Klenow. This 
MunI site is 12-bp upstream of the initiator methionine of KLP61F. After 
digestion with EcoRI, a 3.5-kb MunI-EcoRI fragment was isolated and 
ligated into PvuII- and EcoRI-digested pRsetB (Invitrogen) to give 
pRsetKLP61E For construction of Pwum2KLP61F, pRsetKLPtlF was 
digested with BamHI, filled with Klenow and digested with EcoRI; the 
resulting 3.5-kb fragment was then gel isolated. This fragment was then 
ligated into Not.I-digested Pwum2, filled with Klenow, and subsequently 
digested with EcoRI. The resulting KLPtlF fusion protein therefore con- 
rains 10 additional amino acids (encoded by the pRset vector) between the 
myc tag (see above) and the KLP61F initiator methionine. This 10 amino 
acid sequence is: DPSSRSAAGT. Pwum2KLPtlF was transformed using 
the helper plasmid p~r25.7x~ (Karess and Rubin, 1984) into the host y w 
strain. One w + transformant was recovered from 100 G0's. This 
Pwum2KLP61F transgene maps to the second chromosome. 

Detection of the ~-galactosidase Reporter Gene 
in Larvae 
The original mutator PZ element served as an enhancer trap because it car- 
ried the bacterial lacZ reporter gone under control of the weak P element 
promoter. Cellular enhancers have been shown to influence/~-galactosidase 
expression, often mimicking the expression of the endogenous gene. In lar- 
vae, we detected/~-galaetosidase by either enzyme activity assays or im- 
munolocalization of the polypeptide. 

For activity assays, larvae were rinsed with EBR and pulled open at the 
mouth hooks to expose larval tissues. Preparations were fixed in 3.7 % form- 
aldehyde/0.1% glutaraldehyde in PBS for 10 rain at room temperature. After 
three rinses for 5 rain in PBS, preparations were rinsed in staining solution 
and then incubated in staining solution containing 0.27% X-Gal at 370C. 
When staining was judged to be complete, preparations were rinsed twice 
in PBS, and then equilibrated in 70% glycerol in PBS. Desired tissues were 
dissected from the "whole mount" preparations and mounted in 70% 
glycerol in PBS. Preparations were observed using Nomarski optics and 
photographed on a Zeiss Axiophot microscope. 

For immunodetection of lacZ polypeptide, larvae were similarly dis- 
sected, then fixed in 4% paraformaldehyde (EM Sciences) in PBS for 2 h 
at room temperature. Preparations were rinsed with at least six changes of 
PBS + 0.1% TX-100 (PTX) over 90 rain, and then blocked for 2 h with 
10% normal goat serum (NGS) in PTX. Preparations were incubated over- 
night at 4°C in mouse monoclonal anti-/~-galactosidase (Promega Biotec, 
Madison, WI) in 3 % normal goat sermn/PTX. After washes in PTX (every 
30 rain for 4 h), preparations were blocked as above. Preparations were in- 

cubated overnight at 4°C in HRP-conjugated goat anti-mouse (Jackson Im- 
munoResearch Labs, West Grove, PA) in 3 % NGS/PTX. The next morning, 
preparations were washed in PTX (every 30 min for 4 h), then reacted with 
diaminobenzidine (0.4 mg/ml) and NiC1 (0.06%) in PBS containing 0.02% 
H202. When staining was complete, the reaction was stopped by washing 
in PTX. Tissues were equilibrated and mounted in 70% glycerol in PBS. 
Preparations were observed using Nomarski optics and photographed on a 
Zeiss Axiophot microscope. 

Detection of the ~-galactosidase Reporter Gene 
in Embryos 

Mouse monoclonal anti-/~-galactosidase, followed by HRP-conjugated goat 
anti-mouse was used to detect the/~-galaetosidase polypeptide in whole 
mount embryos as described in (Patel et al., 1989). 

Analysis of RNA Expression in Embryos 
In situ hybridization was performed according to (Tautz and Pfeifle, 1989) 
with modifications as follows. 

bIxat/on. After devitellinization, embryos were transferred to 100% eth- 
anol, and treated with xylene. After a rinse in 1:1 ethanol/xylene, embryos 
were soaked in xylene for 2 h. Another rinse in ethanol/xylene was followed 
by dehydration in 100% ethanol, which was replaced with 100% methanol. 
Embryos were hydrated into PBT (PBS, 0.2% BSA, 0.1% TX-100) through 
a series of graded MeOH/PBT steps. Proteinase K treatment (0.05/~g/ml 
in PBT, 4 rain) was followed by several quick washes in PBT and finally, 
the second 5 % formaldehyde treatment. 

Hybridization. Embryos were washed with several changes of PBT be- 
fore treatment with 1:1 PBT/hybridization solution (50% formamide, 5x 
SSC, 50/xg/ml heparin, 0.1 mg/ml sonicated salmon sperm DNA, 0.1% 
Tween-20). Embryos were then placed into hybridization solution at 55°C. 
After 2 h, most of the hybridization solution was removed, and probe was 
added. The probe was hybridized for 2 d at 55°C. 

Probe. A Boehringer kit was used to synthesize the digoxigenin-UTP 
riboprobe (Boehringer-Mannheim Biochemicals, Indianapolis, IN), follow- 
ing the instructions provided with the kit. Anti-sense digoxigenin-UTP- 
labeled riboprobe was prepared from a KLP61F cDNA insert in the PBS-SK 
vector. Probe was reduced in size by treatment at pH 10.2 and then precipi- 
tated before being added to hybridization buffer. Sense KLP61F digoxige- 
nin-UTP riboprobe was used as a control for non-specific hybridization 
(results not shown). 

Probe Detection. After probe incubation, embryos were washed in six 
changes of fresh hybridization solution for a total of 3 h at 55°C. Embryos 
were then brought to room temperature and rehydrated by graded steps into 
PBT before being washed several times in PBT alone. Pre-absorbed (4-h in- 
cubation with fixed unprobed embryos at room temperature) alkaline- 
phosphatase-conjugated anti-digoxigenin was added. After 2 h, embryos 
were washed with five changes of PBT and then transferred into reaction 
solution (0.1 M Tris-HC1, pH 9.5, 0.1 M NaCI, 0.05 M MgC12, and 0.1% 
Tween-20). BCIP and NBT solutions, provided in the kit, were used at the 
suggested concentrations. Embryos were staged according to (Campos- 
Ortega and Hartenstein, 1985). 

Results 

ldenU'fication of a Gene Essential:for Mitosis 
in Drosophila 
To identify genes required for mitosis, we searched through 
lethal mutations for disruptions in normal mitotic progres- 
sion. This screen was motivated by two features of Drosoph- 
i/a development. First, the components for the early embry- 
onic cleavage divisions are maternally supplied. Therefore 
the maternal genotype determines the nature of early embry- 
onic cleavage divisions. Second, larval growth proceeds 
largely as a consequence of an increase in cell size and not 
cell number. Endoreduplication of the genome in the absence 
of cell division results in the large polyploid cells that com- 
prise the vast majority of larval tissues. Mitosis is only re- 
quired in the nervous system, abdominal histoblasts, and in 
the developing imaginal discs that are to become the adult 
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Figure 1. W'dd type (A-C) and mutant (D-F) mitotic figures in neuroblast spreads. Brains isolated from crawling third instar larvae were 
fixed, squashed, and stained with the DNA-binding dye, DAPI. (.4) Prophase, (B) metaphase, (C) anaphase figures from Oregon R (P2) 
larvae. (D-F) Three examples of mitotic figures from KLP61F 3 brains. 

structures upon metamorphosis. In the absence of these tis- 
sues, the animal survives until it attempts to metamorphose. 
Gatti and Baker demonstrated previously that mutations in 
zygoticaUy active genes encoding essential cell cycle func- 
tions in Drosophila cause death late in larval or pupal devel: 
opment (Gatti and Baker, 1989). 

Because of the relative ease of cloning and identification 
of genes using transposon-tagged mutations, a collection of 
~1,000 P element-induced autosomal lethal mutations 
served as our starting source of mutations (Karpen and Sprad- 
ling, 1992). To determine which of the lethal mutations 
caused death late in larval or pupal development, all chromo- 
some III lethal lines were rebalanced to take advantage of the 
dominant larval marker, Tubby. After rebalancing, heterozy- 
gotes were Tubby, while homozygotes for the P lethal chro- 
mosome appeared Tubby + (or phenotypically normal). For 
142 of the 555 (26%) chromosome III P lethals, dying 
Tubby + larvae or pupae were observed in the culture vials, 
a value that corresponded well to the previously observed 
frequency for late larval lethality of 28% (Shearn, 1978). 
The other lethal lines died earlier in development- either as 
embryos or first or second instar larvae (the phase was not 
precisely determined). The 142 chromosome III late larval 
lethals then constituted the pool of mutations to be examined 
for mitotic phenotype. Since development of the nervous sys- 
tem is dependent on mitotic activity, dividing cells can be ex- 
amined in larval brains. 

To identify those lines with defects in mitosis, brains were 
isolated f rom homozygous larvae, and neuroblast spreads 
prepared from them. Mitotic figures in neuroblast spreads 
were observed in the fluorescence microscope following 
staining of the chromatin with DAPI. Normal prophase, 
metaphase, and anaphase figures from a wild type culture are 
shown in Fig. 1 (A-C). Among 70 late lethal lines whose mi- 
totic figures were initially examined, three showed the strik- 
ing mitotic defect described below. The three lines failed to 
complement, and thus appeared to define a single genetic lo- 
cus. Fig. 1 (D-F) shows three examples of mitotic figures 
from larvae homozygous for the KLP61F 3 allele. (By this 
assay, the phenotypes of the three alleles were indistinguish- 
able.) The mutant phenotype is characterized by a meta- 
phase arrest, as evidenced by an increased mitotic index 
(16.6% relative to 6.0% for wild type larval brains) and the 
complete absence of anaphase figures. One consequence of 
the metaphase arrest is the observed hypercondensation of 
the chromosomes as compared to wild type, similar to that 
seen when cells are blocked in mitosis with colchicine. 
Highly polyploid cells are also a common feature of the mu- 
tant phenotype. The observed polyploidy suggests that mu- 
tant cells can reenter the cell cycle to replicate the genome 
repeatedly without chromosome segregation and cytokine- 
sis. Only normal mitotic figures were observed in neuroblast 
spreads from beterozygous sibling larvae (data not shown). 

Polyploid cells could result because of a defective spindle 
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Figure 2. Immunofluorescent detection of mitotic spindles in neuroblast spreads from KLP61F 3 heterozygous (normal) and homozygous 
(mutant) larvae. Fixed neuroblast spreads were reacted with antibodies to B- and 7-tubulin to visualize microtubles (green) and centrosomes 
(red), and counterstained with DAPI to visualize the chromatin (blue). The inset in the upper left shows a normal bipolar spindle from 
a heterozygous larva, while the large field shows monopolar spindles with unseparated centrosomes observable in homozygous larva. Bar, 
5/xm. 

or because of defective kinetochore attachment to an other- 
wise normal spindle. Drs. Wilson and Fuller (personal com- 
munication) have observed that centrosomes fail to segregate 
in the urchin alleles of the KLP61F gene. We have indepen- 
dently confirmed this observation using our P insertion 
alleles. To directly observe the mitotic apparatus in this mu- 
tation, we performed immunofluorescent localization of 
both/3- and 7-tubulin (to visualize microtubules and cen- 
trosomes), along with DAPI fluorescent visualization of 
the chromatin. In the inset of Fig. 2, a normal bipolar spin- 
dle (with two centrosomes) from a larva heterozygous for the 
KLP61F 3 allele is shown. The large field of Fig. 2, on the 
other hand, shows six monopolar spindles observed in one 
neuroblast spread from a larva homozygous for KLP61FL 
The localization of -y-tubulin to only one diffuse pole in the 
mutant suggests that duplicated centrosomes fail to separate, 
resulting in the formation of monopolar spindles. Because of 
the defective spindles, cells cannot segregate chromosomes 

and complete cell division and thus become polyploid. From 
this result alone, we are unable to ascertain the structural in- 
tegrity of the centrosomes. This phenotype is strikingly simi- 
lar to that observed for mutations in the bimC and cut7 KLPs 
in A. nidulans (Enos and Morris, 1990) and S. pombe (Ha- 
gan and Yanagida, 1990). 

The PZ Insertions Are Localized at the Site of  One of  
the Drosophila KLP Genes 

To use the PZ element as a molecular tag to the flanking 
genomic DNA, we first needed to show that the PZ ele- 
ment caused the mutation. For all three PZ insertions, we 
found that excision of the PZ element was accompanied by 
reversion of lethality and the abnormal mitotic phenotype. 
Therefore, the PZ element caused these mutations. We then 
localized the site of PZ insertion by performing in situ hy- 
bridization to salivary gland polytene chromosomes. All 

Heck ¢t al. A Kinesin-like Protein Essential for Mitosis in Drosophila 669 



Figure 3. Genomic map of PZ 
insertions in the KLP61F 
gene. The three PZ insertions 
spanning 1.5 kb are depicted 
as triangles (the PZ insertion 
within the KLP61F transcrip- 
tion unit [dashed line] is 
shown as the solid triangle). 
Genomic DNA upstream of 
the KLP61F gene was cloned 

by plasmid rescue, and is indicated by the shaded line on the left of the figure. The DNA downstream of, and including, the KLP61F gene 
was cloned by screening of a Drosophila genomic library, and is depicted by the striped line on the right of the figure. 

three PZ elements were found to hybridize to 61F3-4, close 
to the distal tip of the left arm of chromosome HI, near the 
previously reported site for one of the KLP genes (Stewart 
et al., 1991). That all three PZ elements hybridized to the 
same site provided further evidence that insertion of the PZ 
element caused the mutation. 

Homozygous larvae were examined carefully for the phase 
of lethality. All three P element-induced alleles obtained in 
this screen die at the late third larval instar/early pupal stage. 
To determine if a more severe phenotype (i.e., earlier lethal- 
ity) existed for mutations at this locus, stocks heterozygous 
for the PZ chromosome and a deficiency for this region 
(Df[3L]61C3-4;62AS) were created. The transheterozygotes 
also exhibited a late larval/early pupal phase of lethality that 
could not be distinguished from the original homozygotes. 
Thus, it appeared likely that the phenotype observed was 
representative of either a null, or severely hypomorphic al- 
lele. However, we have recently isolated six EMS-induced 
alleles that all have an earlier lethality, dying as embryos 
(Pereira, A., unpublished results). This raises the possibil- 
ity that the P-insertion alleles are not nulls, and that this gene 
may function earlier in development. Therefore, in addition 
to being required for mitotic activity during larval develop- 
ment, this gene may also be required for embryonic cell divi- 
sions. This suggestion is supported by our expression data 
presented below. 

The PZ Insertions Disrupt KLP61F Function 

61F3-4 corresponded, interestingly, to the site for the 
KLP61F gene (KLP61F was originally named KLP2) (Stew- 
art et al., 1991). Since the mitotic arrest phenotype we ob- 
served was reminiscent of the original fungal bimC and cut7 
mutant phenotypes, and since bimC and cut7 had been 
shown to be KLPs, we wanted to determine whether our mu- 
tations were actually in the KLP61F gene. Genomic DNA 
flanking the PZ insertions were recovered by exploiting the 
fact that the PZ element contains a bacterial origin of replica- 
tion and drug resistance marker. Digestion of genomic DNA 
containing the PZ insert, followed by ligation and transfor- 
mation of bacteria to kanamycin resistance thus allowed the 
cloning of genomic sequences flanking the PZ element. Con- 
struction of a genomic restriction map surrounding the three 
sites of insertion showed that the three PZ elements were all 
independent insertions within a region spanning 1.5 kb (Fig. 
3). The DNA immediately flanking the downstream-most 
PZ insertion (KLP61F 3) was labeled on Southern blots of 
genomic DNA by a KLP61F eDNA probe. Analysis of the 
DNA sequence adjacent to KLP61F 3 indicated that this in- 

sertion indeed occurred within the 5'-untranslated region of 
the KLP61F transcription unit between nucleotides 62 and 
63 of the sequenced eDNA (236 nucleotides upstream of the 
ATG at nucleotide 299; see arrowhead in Fig. 4). 

These mapping data suggested that the mutant phenotype 
observed was due to disruption of the KLP61F gene. To rule 
out the possibility that a nearby gene was affected by the in- 
sertions, we used P element-mediated germline transforma- 
tion to confirm that the mutated gene was in fact KLP61F. 
We generated a KLP61F minigene in which the KLP61F 
eDNA was placed under the control of the constitutive tissue- 
independent ubiquitin promoter. This minigene, Pwum2- 
KLP61F, was introduced into the germline by injection into 
embryos and transposase-mediated integration. Progeny 
bearing one copy of the transgene and two mutant alleles of 
the KLP61F gene developed as headless adults; the headless 
defect appeared to be due to the inability of the transgene to 
fully rescue eye-antennal imaginal disc proliferation. All of 
the other imagined discs appeared to be fully rescued. Two 
copies of the Pwum2KLP61F transgene in a mutant back- 
ground allowed normal head development with a low fre- 
quency of incomplete eye development. These animals were 
fertile and healthy. Our rescue data demonstrated that the 
mitotic arrest phenotype arose from disruption of the 
KLP61F gene. 

The Sequence of KLP61F Reveals Striking Homology 
to the bimC Family of KLPs 
A small fragment of the KLP61F gene was first identified in 
a search for genes encoding kinesin-like proteins in Dro- 
sophila (Stewart et al., 1991). To determine the complete pri- 
mary sequence of the KLP61F protein, the original fragment 
was used as a probe to isolate two eDNA clones that were 
full-length for the protein coding region (Fig. 4 A). Sequence 
analysis revealed that the longest clone was 3,709 nucleotides 
in length; one long open reading frame beginning at the first 
ATG at position 299 was found. This open reading frame 
predicted a protein of 1,066 amino acids in length, with a pI 
of 6.54. A second slightly shorter clone was sequenced on 
one strand; the predicted amino acid sequence was identical 
with the exception of three residues in the nonmotor region 
(M595 to V, R869 to K, H904 to Q). Searches of current 
data bases revealed no obvious sequence similarity to pro- 
teins other than already recognized members of the kinesin 
superfamily. 

Further analysis of the KLP61F sequence revealed that it 
was composed of three domains. The first 354 amino acids 
shared significant similarity with the NH2-terminal 331 
amino acids within the head/motor region of Drosophila 
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Figure 4. KLP61F cDNA sequence. (A) The sequence of the longer KLP61F cDNA clone and its deduced amino acid sequence is shown. 
The inverted triangle indicates the position of the P element insertion within the 5' untranslated region of the KLP61F mRNA. The sequence 
has been submitted to C-enBank and has accession number U01842. (B) Structural predictions from the algorithm of Gamier et al. (1978) 
run in the UWC, CG Peptide Structure program. (C) Output from the algorithm of Lupas et al. (1991) which predicts regions likely to 
form c~-helical coiled coil. 

kinesin heavy chain (44 % identity, 60 % similarity) (Yang et 
al., 1989). The next approximately 600 amino acids were 
predicted to be or-helical by the method of Gamier et al. 
(Gamier et al., 1978) as implemented in the UWGCG com- 
puter package (Devereux et al., 1984) (Fig. 4 B).  The 

method of Lupas et al. (Lupas et al., 1991) predicted that this 
region was likely to form an or-helical coiled coil (Fig. 4 C). 
Surprisingly, heptad repeats were not particularly evident in 
this region and fourier analysis only revealed a few regions 
with pronounced periodicity. Further work will be needed to 
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Figure 5. Dotplot comparison 
of KLP61F sequence to other 
kinesin superfamily members 
using the UWGCG programs 
COMPARE and DOTPLOT. 
Comparisons are to bimC (A), 
cut7 (B), Eg5 (C), CIN8 (D), 
KIPI (E), and Drosophila me- 
lanogaster kinesin heavy 
chain (F). The horizontal ar- 
rows in A-C indicate a short 
region in the tail that is well 
conserved among these pro- 
teins. The region is aligned in 
G using the UWGCG program 
PILEUP. Residues identical 
between two or more proteins 
are boxed. The regions of 
sequence shown are amino 
acids 920-960 (EGS), 923- 
963 (KLP61F), 996-1036 
(BIMC), and 989-1029 
(CUT7). 

determine if this region truly forms an o~-helical coiled coil. 
Finally, there was a 111 amino acid tail region that may be 
globular, with a pl of 6.3. 

Comparison of the KLP61F sequence to other kinesin su- 
perfamily members indicated that it was a member of the 
bimC family of kinesin-like proteins. First, sequence com- 
parisons of two different nested regions of the presumptive 
KLP61F motor domain (either amino acids 94 to 323 or 
amino acids 19 to 347) to comparable regions of other kine- 
sin superfamily members indicated that the motor region of 
KLP61F was most closely related to bimC, cut7, Eg5, CIN8, 
and KIP1, and rather more distantly related to all other 
known kinesin superfamily members. Second, KLP61F, 
bimC, cut7, and Eg5 all had a long central region predicted 
to be either u-helix or ix-helical coiled coil (Enos and 
Morris, 1990; Hagan and Yanagida, 1990; Le Guellec et al., 
1991). Third, KLP61F, bimC, cut7, and Eg5 all had a short 
region of shared sequence similarity within their tail do- 
mains (Fig. 5, arrows and alignment). This region of con- 
served sequence was centered around a conserved motif, 
TGXTPXK/RR, which could be a phosphorylation site for 
either the proline-dependent protein kinase (Vulliet et al., 
1989) or kinases of the ERK family (Crews et al., 1992), or 
for an as yet unidentified kinase. These data, in combination 
with the genetic results presented in this report, indicate that 

KLP61F is likely to be the Drosophila homologue of bimC, 
cut7, and Eg5. 

KLP61F Is Expressed in and Required for Proper 
Development of Actively Proliferating Tissues 

Larval Expression and Development. Transcriptional en- 
hancers "trapped" by the PZ element control the expression 
of lacZ, frequently mimicking the expression of the endoge- 
nous gene (Wilson et al., 1989). As demonstrated above, the 
PZ element in KLP61F was inserted in the 5-untranslated 
region of the KLP61F transcription unit. Therefore, the 
KLP61F promoter may be used to drive the expression of the 
/3-galactosidase (lacZ) reporter gene within the PZ element. 
Nuclear localization of the lacZ polypeptide is observed 
(resulting from the translational fusion of P transposase se- 
quences containing a nuclear localization signal with the 
lacZ sequences). We thus examined KLP61F expression by 
activity assays and by antibody detection of the lacZ poly- 
peptide (antibody detection having the advantage of finer 
resolution). 

Not unexpectedly, mitotically active tissues, such as the 
larval brains and imaginal discs (precursors of the adult tis- 
sues), exhibited lacZ expression (Fig. 6). In brains (Fig. 6, 
A-D), we observed expression both in the two optic lobes 

Figure 6. Detection of the/~-galactosidase reporter polypeptide in KLP61F 3 heterozygous and homozygous larval brains and imaginal tis- 
sues. Crawling third instar larvae were isolated from culture vials, and the internal tissues were processed for detection of/3-galactosidase 
immunologicaUy (A-F) or by activity assay (G-H). Brains from larvae heterozygous (A and C) and homozygous (B and D) for the PZ 
insertions are shown. C and D are fourfold higher magnifications of the ventral ganglion; many larger,/~-galactosidase-expressing nuclei 
are present in the homozygous brain (D, arrowheads). Wing discs from heterozygous (E) and homozygous (F) larvae are shown. A salivary 
gland from a larva homozygous for the KLP61F 3 mutation is shown at two magnifications in G and H. The nondividing polytene cells 
of the salivary gland do not express the/~-galactosidase reporter gene, whereas expression of the/~-galactosidase gene is detected in the 
imaginal ring, the dividing precursors of the adult salivary gland (H, arrowheads). 

The Journal of Cell Biology, Volume 123, 1993 672 



Heck et al. A Kinesin-like Protein Essential for Mitosis in Drosophila 673 



and in the ventral nerve cord. The nonrandom distribution 
of lacZ expressing ceils in the wild type ventral nerve cord 
(Fig. 6, A and C) corresponded closely to the observed pat- 
tern of BUdR-incorporating cells (Truman and Bate, 1988). 
Thus it appeared that the lacZ-positive cells were cycling, as 
opposed to quiescent. We observed many large, more in- 
tensely stained nuclei in the homozygous brain that were not 
apparent in the heterozygous brain (Fig. 6 B and arrows in 
D). These most probably represent the large polyploid cells 
we previously noted in the DAPI-stained brain squashes 
(Fig. 1, D-F). 

Though expression of the lacZ reporter gene was homoge- 
neous throughout the normal wing disc in Fig. 6 E, clusters 
of large, intensely stained nuclei were also present in the dis- 
organized imaginal discs from homozygous larvae (compare 
Fig. 6 E with F). With the exception of the eye imaginal disc 
in which we observed lacZ expression in and posterior to the 
morphogenetic furrow (thus correlating with the wave of mi- 
tosis; data not shown), all other wild type imaginal discs 
showed homogeneous expression of the lacZ reporter gene. 
In contrast, all polyploid tissues examined (e.g., salivary 
glands, the ring gland attached to the brain) were devoid of 
any lacZ expression (Fig. 6 G). The only detectable expres- 
sion of lacZ in the salivary gland was in the imaginal ring 
(Fig. 6 H, arrow), a set of dividing, diploid cells destined 
to become the adult salivary gland. 

Polyploid tissues (developing normally in the absence of 
cell division), such as the salivary glands and the ring 
glands, appeared normal (Fig. 6, G and H). The morphology 
of the polytene chromosomes by DAPI staining in these tis- 
sues appeared unaffected as well (data not shown). On the 
other hand, the size and morphology of mitotically active tis- 
sues in homozygous larvae was sensitive to disruption of the 
KLP61F gene. This was most easily visible in a direct com- 
parison of brains from wild type heterozygous (Fig. 6 A) and 
mutant homozygous (Fig. 6 B) larvae. By measurement of 
the diameter of the two optic lobes and the ventral nerve 
cord, the size of the mutant brain was only 75-80% that of 
the wild type. However, upon conversion to volume (assum- 
ing spherical shape for the optic lobes and cylindrical shape 
for the ventral nerve cord), the volume of the homozygous 
brain was only 55 % that of the heterozygous brain. There- 
fore, the loss of KLP61F function (and the ability to undergo 
cell division) significantly reduced the ability to form normal 
tissues. 

Embryonic Expression of  KLP61F 

In earlier Northern blotting studies, Drosophila embryos 
were shown to contain a pool of maternally deposited 
KLP61F mRNA (Stewart et al., 1991). We analyzed the ex- 
pression of the KLP61F gene in wild type embryos both by 
immunolocalization of the lacZ polypeptide (Fig. 7) and by 

Figure 7. Immunodetection of the B-galactosidase reporter poly- 
peptide in KLP61F~ embryos. Embryos at five sequential stages of 
development are shown. (A) Early cleavage (precellularization). 
(B) Syncytial blastoderm (pole cells at the posterior end have been 

pinched off, but ceUularization has not yet been completed). (C) 
Gastrulating, germband extended embryo. (D and E) Gastrulating, 
germband-retracted embryo. All views (except E) are lateral, 
shown with anterior-left, posterior-right, dorsal-top, ventral-down. 
(E) A ventral view of germband-retracted embryo. No expression 
of the/~-galactosidase gene is observed until gast~ation, with ex- 
pression being most prominent in the central and peripheral ner- 
vous system. 
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Figure 8. Whole mount in situ detection of the KLP61F mRNA in 
embryos. Digoxigenin-labeled probes were hybridized to fixed em- 
bryos and detected by alkaline phosphatase-conjugated antibody to 
digoxigenin. (A) Early gastrulating, ventral furrow formation; (B) 
gastrulating, cephalic furrow formation; (C) gastrulating, germ- 
band extended embryo; (D) lateral; and (E) ventral views of a 
germband retracting embryo. Expression of the KLP61F gene be- 
comes restricted to the central and peripheral nervous system, with 
intense expression observed in the proliferative zone of the brain 
cortices. 

in situ hybridization to the KLP6IF mRNA (Fig. 8). No lacZ 
polypeptide was detected early in embryonic development, 
before and including the stages of pole cell (the future germ 
line) formation and cellularization (Fig. 7, A and B). How- 

ever, lacZ expression was observed once gastrulation and or- 
ganogenesis initiated. In particular, we observed intense ex- 
pression in the developing nervous system in both germ band 
extended and germband retracted embryos (Fig. 7, C and D). 
We also detected expression in the peripheral nervous system 
(Fig. 7 E, ventral view). As in larval tissues, KLP6IF expres- 
sion in embryos appeared to correlate with regions of high 
mitotic activity. 

By in situ hybridization, we found the maternal store of 
KLP6IF mRNA to be distributed throughout the cytoplasm 
of unfertilized eggs (data not shown). This maternal comple- 
ment of KLP6IF message persisted, with decreasing inten- 
sity, until the onset of celluladz~tion. No KLP6IF mRNA 
was detectable in the newly formed pole cells, similar to 
what we observed with the lacZ reporter gene. KLP61F mes- 
sage was however detectable by in situ hybridization once 
gastrulation began (Fig. 8). 

During gastrulation, KLP6IF mRNA was first detected in 
a wide band of cells along the ventral midline, corresponding 
to the invaginating cells of the presumptive mesoderm. The 
KLP61F mRNA was also seen in a thinner, dorsal strip of 
cells, as well as cells beneath the shifting pole cells (Fig. 8 
A). Embryos in later stages showed staining in extensive 
areas of the head, along the cephalic furrow, along the ven- 
tral midline, and within the posterior region (Fig. 8 B). The 
patterns of expression were more discernable as germ band 
elongation ended (Fig. 8 C), and hybridization became re- 
stricted to regions of the head, cells along the ventral mid- 
line, and segmentally repeated units of cells in the extended 
germ band. The expression of the endogenous KLP61F gene 
correlated well with the embryonic expression of/3-galac- 
tosidase (compare the views of the germband extended em- 
bryos in Figs. 7 C and 8 C). 

KLP61F expression became limited to cells of the head 
and ventral neurogenic region once the germband retracted. 
Lateral and ventral views of a germband retracting embryo 
are shown in Fig. 8 D and E. Lateral clusters of KLP6IF ex- 
pressing cells along the ventral midline alternated in their ex- 
pression to first include cells in a wide band immediately 
surrounding the ventral midline (Fig. 8 E), then to bilat- 
eral domains of cells bracketing the midline (not shown). 
KLP61F expression then became restricted to the ventral re- 
gion once more, where expression remained along with the 
proliferative zone of the brain cortices (Fig. 8 D). This ex- 
pression of KLP61F mRNA during gastrnlation showed a re- 
markable correlation with domains of cell division (Foe, 
1989). 

A Potential Germline Role for KLP61F? 

We have shown that KLPt iF  is required for mitosis in so- 
matic tissues in Drosophila. Is KLP6IF also utilized in 
germline cells? KLP6IF mRNA was detectable by Northern 
blotting in adult testes and ovaries (Stewart et al., 1991). 
Using the lacZ reporter gene, we examined gonadal tissue 
for potential KLP61F expression (Fig. 9). We observed lacZ 
activity in both larval (Fig. 9, A and B) and adult (C and D) 
ovaries (A and C) and testes (B and D). The activity detected 
was strikingly restricted to germline cells, and not found in 
somatic cells. The expression pattern within region 2 of the 
germarium (Fig. 9 C, arrowheads) suggests that KLP6IF 
may be involved in oocyte determination (a process known 
to be sensitive to colchicine) (Koch and Spitzer, 1983). (The 
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Figure 9. Activity of the 
3-galactosidase reporter gene 
in KLP611 ~ heterozygous 
gonadal tissue. 3-galac- 
tosidase activity was assayed 
following fixation of tissues 
and incubation with the chro- 
mogenic substrate XGal. A 
larval ovary (A) and testis (B) 
is shown. Adult ovarioles 
from an ovary (C) and an 
adult testis (D) are shown. 
Expression in the gonads is 
limited to the germline- 
derived ceils. 

postmitotic 16-cell cysts within region 2 of the germarium 
in adult ovaries are differentiating into 15 nurse cells and one 
oocyte, with the two pro-oocytes forming synaptonemal 
complexes.) In adult testes, the primary spermatocytes ex- 
pressed the lacZ reporter gene, suggesting a possible in- 
volvement of KLP61F in meiosis I. Further genetic tests will 
be required to ascertain what function(s), if any, KLP61F 
may have in germline cells. 

Discuss ion  

Our discovery of the essential nature of the KLP61F kinesin- 
like protein in Drosophila is significant on a number of 
grounds. KPL61F is the first mitotic kinesin for which mu- 
tants are available in an organism easily amenable to both 
genetic and cytological analysis. Therefore, future studies 
focusing on detailed morphological aspects of spindle as- 
sembly or chromosome movement will be possible. In addi- 
tion, though at least five kinases and phosphatases have been 
shown genetically to play regulatory roles in the cell cycle 
in Drosophila (Axton et al., 1990; Biggs et al., 1990; Edgar 
and O'Farrell, 1989; Llamazares et al., 1991; Mayer-Jaekel 
et al., 1993), KPL61F represents one of perhaps only three 
Drosophila proteins (aside from tubulin) identified to date as 
having important structural roles in mitosis. The other rele- 
vant structural proteins that have been genetically analyzed 

are the regulatory light chain of nonmuscle myosin (Karess 
et al., 1991), and the l(1)zwlO gene product (Williams et al., 
1992). Our results have confirmed that structural proteins, 
perhaps the targets of regulatory kinases or phosphatases, 
are also mutable in Drosophila, and therefore may be sub- 
jected to rigorous genetic and functional characterization. 

We have shown that KLP61F is required for normal 
progression through the cell cycle. In its absence, dividing, 
diploid cells are blocked in metaphase with hypercondensed 
chromosomes. Aberrant mitoses in the absence of KLP61F 
often result in the production of large polyploid cells, which 
presumably are due to the failure of chromosome segrega- 
tion and/or cytokinesis. The block in mitosis has important 
consequences for the development of the organism. Tissues 
dependent on mitotic activity, such as the larval brain and 
imaginal discs, are affected both in their size and gross cellu- 
lar organization. Homozygous individuals lacking the pre- 
cursors of adult tissues die at the time when metamorphosis 
from larval to pupal stages should occur. KLP61F is there- 
fore not only essential for mitosis, but also for normal devel- 
opment as well. Thus the analysis of this KLP in a metazoan 
has revealed aspects of its function not apparent from study- 
ing unicellular eukaryotes. 

Our analysis of the developmental expression of KLP61F 
demonstrated that KLP61F was expressed in all proliferating 
tissues. The comparison of the expression pattern in larval 
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brains of a lacZ reporter gene under control of the KLP61F 
promoter with the BUdR incorporation studies of Tru- 
man and Bate suggested that KLP61F may be expressed 
specifically in cycling ceils (Truman and Bate, 1988). This 
hypothesis was also consistent with the pattern of KLP61F 
mRNA expression observed in whole-mount embryos. 
KLP61F mRNA distribution correlated with regions that 
were among the first to divide in the gastrulating embryo. In 
addition, the patterns of mRNA distribution closely followed 
the domains of mitotic activity documented in gastrulating 
embryos (Foe, 1989). Expression of the KLP61F gene in 
these domains was transient during embryogenesis, and in at 
least some of the domains appeared to precede mitosis. 
These findings are all consistent with our expectations for a 
protein required for mitosis. 

The observation that KLP61F mRNA may be present only 
in cells about to divide has two other implications. First, it 
is likely that KLP61F functions only in mitosis, and does not 
function in nonmitotic microtubule-based transport events. 
Thus it will be interesting to examine protein distribution as 
antibodies become available. Second, it is possible that 
KLP61F mRNA is regulated at the level of transcription or 
stability by cell cycle cues. What the cues might be is obscure 
at present, but another mRNA, string (the Drosophila homo- 
log of cdc25) appears also to be expressed in spatial patterns 
that anticipate the mitotic domains (Edgar and O'Farrell, 
1989). These genes may thus use similar regulatory strate- 
gies for their cell cycle-dependent expression. Incidentally, 
CENP-E protein, a kinesin-like component of the kineto- 
chore corona (Cooke, C. A., T. J. Yen, and W. C. Earnshaw, 
personal communication) throught to be involved in chromo- 
some movement and/or spindle elongation, accumulates 
specifically in the G2 phase of the cell cycle (Yen et al., 
1992). 

The patterns of KLP61F expression suggest an additional 
role for this protein in germline cells. Previously, the analy- 
sis of two female-specific, recessive meiotic mutants in Dro- 
sophila revealed a role for two other KLPs in meiosis 
(reviewed in Carpenter, 1991; Endow, 1992). Mutations at 
either the ncd (nonclaret disjunctional) or nod (no distribu- 
tive disjunction) locus exhibited high frequences of nondis- 
junction during meiosis I, implying the existence of multiple 
motor molecules in the meiotic spindle (Endow et al., 1990; 
McDonald and Goldstein, 1990; Zhang et al., 1990). LacZ 
expression in primary spermatocytes suggested a possible 
role for KLP61F in meiosis I. We also observed lacZ expres- 
sion early in oogenesis once the 16-cell cysts have formed, 
but not in the final maturation stages of oogenesis when 
meiotic spindle assembly is occurring. KLP61F may thus ad- 
ditionally be required for oocyte determination which in- 
cludes the accumulation of centrioles (from the nurse cells) 
in the oocyte. In light of this possibility, it is interesting to 
note that the spindle poles of mature oocytes appear to lack 
a number of centrosomal antigens, though the antigens are 
present at spindle poles early in oogenesis (Theurkauf and 
Hawley, 1992). 

The Drosophila KLP61F gene encodes a protein that is a 
member of the bimC/cut7/Eg5 family of KLPs; this family 
may also include the CIN8 and KIP1 proteins from S. cere- 
visiae although these latter two kinesins lack the COOH- 
terminal tail motifs found in the others. The finding that the 
KLP61F protein has a structure and a function similar to the 

bimC, cut7, Eg5, and CIN8/KIP1 proteins is intriguing for 
several reasons. In particular, this finding suggests that 
metazoans may use a machinery similar to that of fungi for 
separating spindle poles/centrosomes during mitosis. As the 
minus ends of microtubules are embedded in the centriolar 
material, a plus end-directed motor such as Eg 5 (Sawin et 
al., 1992), and other members, could function to separate 
duplicated centrosomes, thus facilitating the establishment 
of a bipolar spindle. We have here reported that KLP61F is 
required for centrosomal segregation. Thus KLP61F appears 
to be analogous to the other family members, both in struc- 
ture and in its specific role during mitosis. 

In S. cerevisiae, CIN8/KIP1 also appear to function fol- 
lowing spindle pole separation and spindle assembly in the 
maintenance of a bipolar metaphase spindle. Whether 
KLP61F also performs this role is unknown at this time. 
However, given that cut7, Eg5, and epitope-tagged CIN8 
have been immunolocalized to metaphase spindles, and thus 
may have metaphase function, it is tempting to speculate that 
KLP61F may also play a role in bipolar spindle maintenance 
(Hagan and Yanagida, 1992; Hoyt et al., 1992; Sawin et al., 
1992). Antibodies allowing us to address subceUular local- 
ization throughout the cell cycle are currently being pre- 
pared. 

An intriguing aspect of the current work concerns the role 
of the tail domains of the bimC family members. It is striking 
that bimC, cut7, Eg5, and KLP61F all have a shared motif 
in the COOH-terminal segment of the predicted protein. Per- 
haps these tail motifs all interact with a conserved cen- 
trosomal or cytoskeletal cargo required for centrosomal 
separation. Additionally, this motif may be a kinase recogni- 
tion sequence, and thus regulated by posttranslational modi- 
fication. The CIN8 and KIP1 proteins, however, have tail se- 
quences distinct from the other bimC family members. Pos- 
sibly the bimC tail motif is found on another protein in 
S. cerevisiae. Whether the sequence differences reflect func- 
tional differences between these proteins or that the motif is 
not actually required for a common function remains to be 
elucidated. 

KLP61F is essential in Drosophila, whereas CIN8 and 
KIP1 appear to be functionally redundant. This result earl be 
explained by postulating that the NH~-terminal heads of both 
CIN8 and KIP1 are able to carry out both mechanoehemical 
activity and the binding of a component needed for cen- 
trosomal separation. To slide apart opposing microtubules, 
CIN8 and KIP1 must dimerize via their COOH-terminal tails 
(hetero or homo) to carry out the function of the single 
KLP61F molecule. Functional redundancy is thus explained 
by the ability of CIN8 and KIP1 to form functional homo- 
dimers in the absence of one of the two molecules. 

Perhaps the most illuminating aspect of our results is the 
demonstration of KLP61F as a member of the conserved 
bimC/cut7/Eg5 family of kinesin-like proteins. The KLP61F 
gene is essential for mitosis and development in Drosophila, 
apparently without a redundant counterpart. The situation in 
A. nidulans and S. pombe is unclear as only ts, not true 
"knock-out; mutants of bimC and cut7 have been reported. 
It is not yet known whether these represent complete loss of 
function mutants. Why apparently homologous functions are 
redundant in some, but not other organisms, is not clear at 
present. Perhaps this reflects distinct structural requirements 
in different systems or merely evolutionary happenstance. 
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