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Abstract. The formation and functioning of a mitotic 
spindle depends not only on the assembly/disassembly 
of microtubules but also on the action of motor en- 
zymes. Cytoplasmic dynein has been localized to 
spindles, but whether or how it functions in mitotic 
processes is not yet known. We have cloned and ex- 
pressed DNA fragments that encode the putative ATP- 
hydrolytic sites of the cytoplasmic dynein heavy chain 
from HeLa cells and from Dictyostelium. 
Monospecific antibodies have been raised to the result- 
ing polypeptides, and these inhibit dynein motor activ- 
ity in vitro. Their injection into mitotic mammalian 

cells blocks the formation of spindles in prophase or 
during recovery from nocodazole treatment at later 
stages of mitosis. Cells become arrested with unsepa- 
rated centrosomes and form monopolar spindles. The 
injected antibodies have no detectable effect on chro- 
mosome attachment to a bipolar spindle or on motions 
during anaphase. These data suggest that cytoplasmic 
dynein plays a unique and important role in the initial 
events of bipolar spindle formation, while any later 
roles that it may play are redundant. Possible mecha- 
nisms of dynein's involvement in mitosis are dis- 
cussed. 

T 
HE segregation of chromosomes during mitosis is 
accomplished by a series of temporally and spatially 
organized movements. In mammalian cells the most 

prominent of these events are the separation of the spindle 
poles in prophase, chromosome attachment to the spindle 
followed by congression to its equator during prometaphase, 
movement of chromosomes toward the poles in anaphase A, 
and spindle elongation in anaphase B. All these movements 
are to some extent microtubule dependent, and at least some 
of them appear to be mediated by microtubule-dependent 
mechanochemical enzymes. Some members of the kinesin- 
like protein superfamily of mechanoenzymes have been 
localized to the mitotic spindle and are thought to be in- 
volved with the motile events during spindle formation and 
function (reviewed in Sawin and Scholey, 1991; Mclntosh 
and Pfarr, 1991). 

Cytoplasmic dynein is a distinct motor enzyme, also capa- 
ble of generating movement along microtubules (Paschal et 
al., 1987; Lye et al., 1987). It has been localized to membra- 
nous vesicles, including lysosomes in interphase cells (Lin 
and Collins, 1992) and vesicles in axonal processes (Hiro- 
kawa et al., 1990). These localizations, and some in vitro ex- 
periments (Schnapp and Reese, 1989; Schroer et al., 1989; 
Lacey and Haimo, 1992) suggest that cytoplasmic dynein 
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acts as a motor for vesicle transport. During the onset of mi- 
tosis, dynein distributes to the mitotic spindle and to the 
kinetochores of chromosomes (Steuer et al., 1990; Pfarr et 
al., 1990), suggesting that it may also play a role in mitosis. 
Certainly a number of indirect observations have implicated 
a minus end directed microtubule motor in several mitotic 
events (reviewed in Mclntosh and Hering, 1991). While dy- 
nein's localization is consistent with many long-held ideas of 
how mitosis may "work, there is little direct evidence of 
dynein's contribution to mitotic events. 

To investigate the functional roles of cytoplasmic dynein 
in the mitotic apparatus, we have generated two preparations 
of affinity-purified antibodies that inhibit dynein's action in 
vitro. In this paper we describe the microinjection of these 
antibodies into mammalian tissue culture ceils and their 
effect on the formation and functioning of the mitotic 
spindle. 

Materials and Methods 

DNA Cloning Techniques and Antigen Expression 
Unless otherwise indicated, the molecular methods were performed as de- 
scribed in Sambrook et al., (1989). Sequencing was performed using the 
dideoxy chain termination method and Sequenase 2.0 (U.S. Biochem. 
Corp., Cleveland, OH). The 2085-bp fragment of Dictyostelium cytoplas- 
mic dynein heavy chain (CDHC) 1 was obtained by a BgllI digestion of a 
h-gtll clone (Koonce et al., 1992). 

1. Abbreviations used in this paper: CDHC, cytoplasmic dynein heavy 
chain; DHC, dynein heavy chain. 
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For Northern blotting, 1 #g of poly (A) + RNA from HeLa cells (see be- 
low) was separated on a 0.8% formaldehyde-denaturing agarose gel, trans- 
ferred to nitrocellulose, then hybridized with labeled DNA. Hybridization 
for Northern and Southern blotting was performed using the ECL kit 
(Amersham Corp., Arlington Heights, 1L) as suggested by the manufac- 
turer, except that 32p-labeled probe was used instead of the peroxi- 
dase-DNA conjugate. 

Preparation of cDNA and the PCR 
A 438-bp clone (Hp22) of human CDHC, was generated by reverse tran- 
scription of HeLa mRNA, followed by PCR (Compton, 1990). Two degen- 
erate primers were used: (a) TATGGATCC(T/C)TNACNGA(T/C)(A/C)- 
GNTG(T/C)TA, which encodes the LTDRCY sequence common to sea 
urchin flngellar and Dictyostelium cytoplasmic DHCs and contains an en- 
gineered BamHI restriction site at its 5' end; and (b) CACGAATTCCC- 
NGC(A/G)TANCCNGG(A/G)TTCA, which encodes the MNPGYAG se- 
quence and contains an EcoRI site at it's 5' end. Restriction enzyme recogni- 
tion sites were included to facilitate subsequent identification and subclon- 
ing of PCR DNA products. 

Poly(A) + mRNA was purified from HeLa cells using a Fast Track 
mRNA purification kit (Invitrogen, San Diego, CA). 1 #g of mRNA was 
reverse transcribed with AMV reverse transcriptase (Promega, Madison, 
WI) in a Taq polymerase buffer, supplemented with 2 mM MgCI2, 0.5 mM 
of each of four deoxynucleotides, 0.5 U of RNAsin (Promega) and with a 
sequence-specific degenerate oligonucleotide primer (primer 2). After the 
completion of the reverse transcription, AMV polymerase was inactivated 
by heating to 950C for 5 rain, then the second sequence-specific oligonucle- 
otide primer (primer 1) and Taq polymerase (Promega) were added directly 
to the reaction mixture. Five cycles of amplification were performed with 
an annealing temperature of 370C, followed by 30 cycles with annealing at 
48°C. The entire reaction product was electrophoresed on an agarose gel, 
and a band of ,,o440-bp was excised, glass purified, and cloned into the 
pCRI000 vector (Invitrogen) according to the manufacturer's instructions. 
Resulting clones were analyzed for presence of BamHI and EcoRI restric- 
tion sites, and only those containing both of these sites were selected for 
further analysis. 

Production of Antibodies and Immunoblotting 
For antibody preparation, Dictyostelium and human DNA sequences were 
subcloned into the pET5c expression vector, and protein was expressed in 
the lysogenic Escherichia coli host BL23(DE3) (Studier et ai., 1990). 

Inclusion bodies containing the expressed protein were isolated as de- 
scribed by Lin and Cheng (1991) and fractionated by gel electrophoresis 
(Laemmli, 1970). After electrophoresis, proteins were transferred from the 
polyacrylamide gel to nitrocellulose. Bands of expressed proteins were ex- 
cised, air dried, dissolved in a minimum volume of DMSO, then mixed with 
an equal volume of Freund's adjuvant, and used to immunize rabbits. 

For affinity column preparation, inclusion bodies were washed with wa- 
ter and solubilized in 100 mM Na-borate buffer, pH 9.0, containing 0.5% 
SDS. Solubilized protein was coupled to BrCN-Sepharose (Pharmacia Fine 
Chemicals, Piscatuway, NJ) at room temperature according to the rnanufac- 
turer's protocol, except that 0.5% SDS was present in the coupling buffer 
and during the subsequent washes. Affinity chromatography was performed 
as described by Harlow and Lane, (1988). Fractions containing antibodies 
were immediately neutralized with 1 M tris/Cl, pH 8.0, and diluted with 
5 vols of 0.1 M tris/Cl, pH 8.0. The IgG fractions of affinity purified antibod- 
ies and of the preimmune antisera were purified on a column of protein 
A-Sepharose (Pharmacia Fine Chemicals). Purified immunoglobulins were 
concentrated and transferred into 50 mM potassium glutamate, 0.5 mM glu- 
tamic acid, 0.5 mM MgC12, pH 6.5, using a Centricon 30 device (Amicon 
Corp., Danvers, MA). 

For Fabl preparation, IgGs from Ddl serum were purified on a column 
of protein A-Sepharose CL-4b (Pharmacia Fine Chemicals) and digested 
with papain (1:100 wt/wt) in 100 mM tris/HC1, pH 8.0, 1 mM DTT at 37°C 
until no intact IgG heavy chain was visible on an overloaded Coomassie 
blue-stained SDS-polyacrylamide gel. The reaction was stopped by addi- 
tion of iodoacetamide (Sigma Chemical Co., St. Louis, MO) to 20 mM, 
followed by incubation for 30 rain at room temperature. Fab fragments were 
further purified by affinity chromatography and concentrated as described 
above. 

Preparation of Dynein from HeLa Cells and In Vitro 
Motility Assay 
HeLa cell extract, microtubule pellet and ATP extract from the microtubule 

pellet were prepared as described by Hollenbeck (1989) for chicken brain, 
except that 20 #M taxol was present during ATP extraction, and microtu- 
bules were removed from the extract by centrifugation at 150,000 g for 45 
rain. For dynein preparation, an ATP extract was prepared as described 
above, except that AMPPNP was omitted. Dynein was further purified by 
5-20% sucrose gradient centrifugation, and motility assays were performed 
as described (Lye et al., 1987). To assay antibody inhibition, coverslips with 
preadsorbed dynein were incubated with the antibody for 15 min at room 
temperature in a humid atmosphere and rinsed with buffer before addition 
of taxol-stabilized microtubules and ATP. Micrombule gliding rates were 
measured using the Metamorph image processing system (Universal Imag- 
ing Corporation, West Chester, PA). Displacements during four 5 s inter- 
vals were averaged to obtain a velocity for each microtubule. 

Cell Culture and Microinjection 
HeLa cells were grown in spinner culture, using MEM (Sigma Chemical 
Co.) supplemented with 7% horse serum (GIBCO BRL, Gaithersburg, 
MD), 100 U/ml of penicillin G and 100 #g/ml of streptomycin sulfate. 

PiKl cells were grown at 37°C in Ham's F-12 medium supplemented 
with 50 U/ml of penicillin G and 50 #g/mi of streptomycin sulfate antibiot- 
ics. Cells were plated on etched-glass coverslips (Bellco Glass, Inc., 
Vineland, NJ) and allowed to grow for 24-36 h before microinjection. 
Microinjections were performed as described by Nislow et al. (1990). Anti- 
bodies were transferred into buffer containing 50 mM potassium glutamate, 
0.5 mM glutamic acid and 0.5 mM MgC12, pH 6.5. For some experiments 
fluorescent dextran (FITC-dextran, 10 kD; Sigma Chemical Co.) was in- 
cluded in the injection buffer to a final concentration of 1 mg/mi to simplify 
identification of injected cells. Dextran fluorescence was abolished after 
fixation with methanol or permeabilization with saponin (see below), and 
thus did not interfere with subsequent staining of cells for immunofluores- 
cent microscopy. 

For direct observation of mitotic cells immediately after injection, cover- 
slips with injected cells were placed on slides with pamfilm spacers, sealed 
with wax, leaving gaps for medium changes, and kept on the microscope 
stage at 35 + I*C. Cells were imaged with a Zeiss Photomicroscope II (Carl 
Zeiss, Inc., Thornwood, NY) equipped with phase-contrast optics and an 
MTI NC-67M video camera (DAGE-MTI, Inc.), connected to S-VHS 
recorder (HS-423UR, Mitsubishi). The medium in the chamber was re- 
placed every 30 rain. 

For nocodazole disruption experiments, ceils were incubated at 0°C for 
45-55 min in medium containing 10 t~g/ml nocodazole, then in nocodazole 
for 40--45 min at room temperature (while injections were performed). 
Drug was removed by several washes with fresh medium, and cells were 
allowed to recover in fresh medium at 37°C. 

Immunofluorescent Microscopy 
For immunofluorescence, cells were fixed with cold methanol (-20"C) for 
6 rain, or permeabilized with 0.05% saponin in 100 mM Pipes, 2 mM 
MgC12, 2 raM EGTA, 1 mM DTT, pH 6.9, for 5 min and fixed with 2% 
paraformaldehyde and 0.1% glutaraldehyde in the same buffer. Immuno- 
staining was performed as described (Nislow et al., 1990). Centrosomes 
were visualized by staining with the Human CREST serum 5051 (Calarco- 
Gillam et al., 1983), kindly provided by Dr. Patricia D. Calareo (University 
of California, San Francisco, CA). 

Results 

Cloning of DictyosteUum and Human Dynein Heavy 
Chain Fragments 
The predicted primary structure of CDHC from Dictyo- 
stelium (Koonce et al., 1992) contains regions with sig- 
nificant similarity to corresponding domains of sea urchin 
sperm flagellar /3-dynein (Gibbons et al., 1991; Ogawa, 
1991). The segment with the greatest similarity contains the 
putative site for ATP hydrolysis (Koonce et al., 1992). Such 
conservation suggests a functionally significant region of this 
protein, one that might elicit crossreactive and possibly in- 
hibitory antibodies. 

A 2.1-kb fragment ofDictyostelium CDHC cDNA that en- 
codes the first two putative phosphate-binding consensus se- 
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Figure 1. Cloning summary of 
the Dictyostelium and human 
(Hp22) cytoplasmic dynein 
heavy chain fragments (,4) and 
alignment of predicted amino 
acid sequence of the human 
CDHC fragment and corre- 
sponding fragments of Dictyo- 
stelium cytoplasmic (Koonce 
et al., 1992) and sea urchin 
flagellar DHC (Gibbons et 
al., 1991; Ogawa, 1991) (B); 
identical amino acids relative 
to the HeLa sequence are rep- 
resented as dashes. The con- 
sensus sequence for the P-loop 
of the ATP-binding site is un- 
derlined. The nucleotide se- 
quence of the human eDNA 
clone Hp22 is available from 
GenBank under accession 
number L23958. 

quences of the CDHC (Fig. 1) was subcloned into a protein 
expression vector and used to generate antigen for immuni- 
zations (Fig. 1). 

The high degree of sequence conservation in this region 
of the protein also allowed us to design oligonucleotide 
primers with which to amplify and clone a corresponding 
fragment of a human DHC (Fig. 1). Two degenerate primers 
were synthesized-one encoding the LTDRCY sequence lo- 
cated 17 amino acids upstream from the first phosphate- 
binding consensus sequence (GPAGTGKT) of the Dic- 
tyostelium enzyme (Koonce et al., 1992). The second primer 
encoded MNPGYAG, a sequence located 95 amino acids 
downstream from the GPAGTGKT site. Reverse transcrip- 
tion was performed on poly(A) + mRNA isolated from 
HeLa cells using the downstream oligonucleotide as a 

Figure 2. Nortbem (left 
panel) blot analysis of HeLa 
mRNA probed with Hp22 
DNA and Southern (right 
panel) blot analysis of human 
genomic DNA probed with 
Hp22 DNA at high stringency. 
Similar results were obtained 
at low stringency (not shown). 
Positions of molecular weight 
markers (kb) are indicated on 
the left on each figure. Re- 
striction enzymes used for the 
digestion of genomic DNA 
are listed at the top of each 
lane on the right panel. Hp22 

cDNA clone does not contain sites for HindIH, KpnI, BamH, 
EcoRI, ApaI, and BglI enzymes. Digestion with HphI should result 
in the production of three fragments of 389, 33, and 6 bp. 

primer; PCR was used to amplify the resulting eDNA. Prod- 
ucts of the PCR reaction were cloned into the pCR1000 vec- 
tor and sequenced (see Materials and Methods for details). 

We examined 62 independent clones derived from four in- 
dependent PCR reactions (made with 2 HeLa mRNA prepa- 
rations). 31 clones contained an identical 438-bp sequence 
(Hp22) which encodes the amino acid sequence shown in 
Fig. 1 B. The encoded polypeptide is 70% identical and 84 % 
similar to the corresponding region of the Dictyostelium 
CDHC (Fig. 1 B) and I00% identical to the corresponding 
region of CDHC from rat brain (Mikami et al., 1993). Four 
additional clones differed in only one nucleotide, and one 
differed in two nucleotides, presumably as a result of poly- 
merase mistakes during PCR. The remaining clones showed 
no similarity to a CDHC sequence. 

Northern blotting analysis of HeLa mRNA revealed a sin- 
gle band of, 'ol5-Kb (Fig. 2). Southern blot analysis of HeLa 
genomic DNA probed with Hp22 DNA at either high or low 
stringency (Fig. 2 and not shown) was consistent with pres- 
ence of a single hybridizing component in the human ge- 
nome, if at least two introns are present in the genomic frag- 
ment corresponding to Hp22 eDNA clone. 

Characterization o f  the Antibodies 

Like the 2.1-kb Dictyostelium CDHC fragment, the 438-bp 
human DNA fragment was expressed in bacteria. Both 
resulting polypeptides were purified and used as immuno- 
gens to elicit antibodies in rabbits. The antibodies to the hu- 
man peptide (Dhl) and to the Dictyostelium peptide (Ddl) 
were affinity purified on columns of their respective fusion 
proteins. 

The specificity of Ddl and Dhl antibodies was assessed by 
immunoblotting against extracts of HeLa and PtKI cells. 
Both antibodies react with a single polypeptide that comi- 
grates with sea urchin flagellar DHC (Fig. 3). This antigen 
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Figure 3. Immunoblot analysis with the Ddl and Dhl antibodies. 
(Lanes 1-4) Coomassie blue-stained SDS-polyacryamide gel; 
(lanes 5-8) immunoblotting with Ddl antibody and 9-12-Dhl anti- 
body. (Lanes 1, 5, and 9) PtK~ cell extract; (lanes 2, 6, and 10) 
HeLa cell extract; (lanes 3, 7 and H) HeLa microtubule pellet; 
(lanes 4, 8, and 12) ATP-extract of HeLa microtubule pellet. Posi- 
tions of molecular weight markers and sea urchin flagellar dynein 
(D) are indicated on the left. Kinesin heavy chain is represented as 
a major band of ,',,120 kD on lanes 3 and 4. 

binds to microtubules in the absence of ATP and is released 
by Mg-ATP, properties characteristic of dynein (Paschal et 
al., 1987; Lye et al., 1987). Minor bands of lower molecular 
weight were seen with both antibodies in ATP-extracted ma- 
terial (Fig. 3, lanes 8 and 12). These bands were not ob- 
served in whole cell extracts or microtubule pellets and were 
more evident after longer extraction of the microtubule 
pellets with ATP-eontaining buffer (not shown), suggesting 
that they resulted from partial hydrolysis of CDHC during 
extraction of microtubule pellets at 37°C. Interestingly, the 
pattern of these minor bands differed for the two antibodies, 
implying that they react with different epitopes on the human 
cytoplasmic dynein heavy chain molecule. 

Neither Ddl nor Dhl antibodies reacted with the kinesin 
present in the preparations (Fig. 3). Immunostaining of 
PIKt cells with Ddl and Dhl antibodies showed localization 
patterns similar to those previously described for other anti- 

dynein antibodies (Pfarr et al., 1990; Steuer et al., 1990). 
During interphase and early prophase, the antibodies re- 
vealed punctate staining all over the cytoplasm and bright 
staining of the centrosomal region. No association of dynein 
with microtubules was observed in interphase cells. During 
progression through prophase and prometaphase, increasing 
amounts of dynein were localized at the poles of the forming 
spindle and on the spindle microtubules. The kinetochores 
of condensed chromosomes were also clearly stained (not 
shown). 

We characterized the ability of affinity purified Ddl and 
Dhl antibodies to inhibit the motor activity of dynein 
purified from HeLa cells by assessing their effect on dynein- 
driven microtubule motility in vitro (Vale et al., 1985; Lye 
et al., 1987). At 1.2 mg/ml the Ddl antibody blocked such 
movements, while 0.6 mg/ml had little effect. Increasing con- 
centrations of Dhl antibody gradually decreased the rate of 
microtubule gliding, and almost complete inhibition was 
achieved at 8 mg/ml (Fig. 4). Thus both antibodies are capa- 
ble of inhibiting dynein's motor activity, with Ddl antibody 
displaying inhibition at a concentration significantly lower 
than that required for the Dhl antibody. 

Neither antibody appeared to affect microtubule binding 
to dynein-coated glass, suggesting that they do not interfere 
with dynein's binding to microtubules (not shown). Neither 
set of preimmune antibodies had an effect on microtubule 
binding or motility, even when they were purified on protein 
A columns and concentrated in the same way and to the same 
extent as Ddl and Dhl antibodies. 

Injection of  the Antibodies Blocks Bipolar 
Spindle Formation 

PtKt cells at different stages of mitosis were injected with 
the IgG fraction of affinity purified anti-dynein antibodies 
and incubated at 37°C for different periods of time (usually 
3 to 5 h) before fixation and immunostaining. Comparable 
cells were prepared as controls by injection with buffer, or 
with the IgG fraction of preimmune antisera purified and 
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Figure 4. Effect of the anti- 
bodies on microtubule motil- 
ity in vitro. The graphs repre- 
sent the rate distribution of 
microtubule movement along 
dynein-coatod coverslips pre- 
treated with IMI, Dhl, or pre- 
immune antibodies. Antibody 
concentration is indicated on 
each graph. Motility assays 
with cytoplasmic dynein puri- 
fied from HeLa cells were 
performed as described in 
Materials and Methods. Anti- 
bodies were applied to dynein- 
coated coverslips for 15 rain 
before application of microtu- 
bules and ATE and the rate of 
an individual microtubule's 
gliding was measured. 
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Figure 5. Effect of anti-dynein antibodies on mitotic progression in PtK1 cells. The two cells shown were injected during prophase with 
12 mg/ml of Ddl antibody, incubated at 37°C for 3 h after injection, then fixed and indirectly stained with a mouse anti-tubulin antibody 
and directly stained with a Texas red-labeled goat antibody against rabbit immunoglobulins (to reveal distribution of injected antibody); 
(A and A') phase-contrast images; (B and B') anti-tubulin staining; (C and C') anti-rabbit IgGs staining. Bar, 2.5/zm. 



concentrated in the same way as the immune antibodies (see 
Materials and Methods). During that period all cells that 
were injected with buffer or preimmune antibody completed 
mitosis. 

Mitotic progression was blocked in 73 % of the prophase 
PtKI cells injected with Ddl at 12 mg/ml (n --- 59). Simi- 
larly 30% of the prophase cells injected with Dhl at 20 
mg/ml failed to continue mitosis (n = 10). Injection of 
preimmune antibodies at the same concentrations had no 
effect on spindle morphology or mitotic progression. Lower 
concentrations of antibodies (6 mg/ml of Ddl or 10 mg/ml 
of Dhl) also had no obvious effect on mitotic progression (not 
shown). 

All the arrested ceils displayed a similar morphology: a 
radial array of microtubules emanated from a single focus, 
surrounded by a ring of condensed chromosomes (Fig. 5). 
In many but not all of the arrested cells, some of the microtu- 
bules formed bundles resembling kinetochore fibers (com- 
pare the two cells on Fig. 5). These bundles seemed to con- 
nect the unseparated centrosomes with the chromosomes, 
indicating that injected cells retained, at least to some extent, 
the ability to establish centrosome-chromosome connec- 
tions. The arrested cells maintained condensed chromo- 
somes for at least 16 h; not once did these cells recover and 
divide or reenter interphase. Injected antibody was evenly 
distributed throughout most of the cytoplasm but showed 
some concentration at the centrosomal region. There was no 
visible association of the injected antibody with the microtu- 
bules of monopolar spindle (Fig. 5, c and c'). The anticen- 
trosomai serum 5051 (Calarco-Gillam et al., 1983) stained 
one or two small spots at the center of the single aster (not 
shown). The diameter of the area stained was invariably 
<2.5 #m. 

While the injected dynein antibodies appeared to block 
early events in spindle formation, they did not prevent a cell's 
entry into mitosis. When interphase cells were injected with 
12 mg/ml Ddl antibodies, 3 out of 10 cells entered mitosis 
during the subsequent 24 h, whereupon they arrested with 
the morphology characteristic of cells injected during pro- 
phase (not shown). During the same time 3 out of 10 cells 
injected with preimmune antibodies entered and successfully 
completed mitosis. 

To address the possibility that the defects in spindle pole 
separation and spindle formation were a result of dynein's 
crosslinking or precipitation by bivalent antibodies, we pre- 
pared Fabt fragments of the Ddl antibody. When these 
were injected into prophase PtK1 cells at 8.1 mgtml, they 
too caused the formation of monopolar spindles and mitotic 
arrest (6 out of 15 injected cells). 

Injection of the Antibodies Does Not Affect 
Chromosome Motility during Pmmetaphase 
and Anaphase 
Cells injected with either Ddl or Dhl antibody during 
prometaphase, metaphase, or anaphase completed mitosis 
with no detectable delay. To look for subtle effects of dynein 
antibody on chromosome motility, ten cells were injected 
with Ddl antibody during prometaphase and imaged con- 
tinuously until the completion of mitosis. Recorded video 
images were later analyzed for perturbation of the timing and 
rates of the various mitotic stages. We could detect no 
changes in chromosome motility in these cells, as compared 

to nonlnjected cells or cells injected with buffer. Prometa- 
phase was normal; while the timing of anaphase onset was 
variable, it was similar for injected and control cells; and 
anaphase A and B were normal in both their rates and extent 
(data not shown). 

Antibodies Prevent Normal Spindle Formation during 
Recovery from Microtubule Depolymerization 
The experiments described above suggest that dynein plays 
an essential role in producing a bipolar spindle. To inves- 
tigate whether dynein might also contribute to spindle refor- 
mation during later mitotic stages, we treated cells with 
nocodazole (10 #g/ml) and cold (0°C) for 1 h to disassemble 
the cell's microtubules, then we microinjected affinity 
purified Ddl antibody (12 mg/mi) into cells whose chromo- 
some arrangement identified them as prophase, prometa- 
phase, and metaphase. After injection, cells were placed in 
fresh medium lacking the drug and returned to 37°C for 
3-5 h. During that time all noted mitotic cells that were not 
injected or were injected with preimmune antibodies (n = 73) 
restored their spindle and completed mitosis. 

59 % of the drug and cold-treated cells injected during 
prophase (n = 44) became arrested with a morphology al- 
most indistinguishable from untreated cells injected with 
Ddl antibody during prophase. Surprisingly, however, 57% 
of the drug and cold treated cells injected during prometa- 
phase and metaphase (n = 103) arrested with the morphol- 
ogy seen after prophase injection (Fig. 6). The only detect- 
able difference from cells injected during prophase was a 
slightly more rounded cell shape. As with cells arrested after 
prophase injection, staining with anticentrosomal serum re- 
vealed a spot (or sometimes two closely spaced spots) at the 
center of the microtubule array (Fig. 6 c). This result shows 
that dynein plays an important role in the initial stages of 
spindle morphogenesis, whether it occurs during a normal 
prophase or during recovery from microtubule disruption. 

Injection of Anti-Dynein Antibodies 
Early in Spindle Formation Leads to a Collapse 
of the lnterpolar Distance 
There are two major pathways that might plausibly lead to 
the formation of a monopolar spindle after anti-dynein's in- 
jection. One possibility is that dynein is involved in the earli- 
est stages of spindle pole separation and is not necessary af- 
ter this separation has been accomplished. Another is that 
dynein activity is necessary not only at the onset of pole 
separation, but at later stages as well, probably until the cen- 
tral spindle forms during prometaphase. The first scenario 
predicts that bipolar spindle formation will be prevented 
only if antibody injection occurs before centrosome separa- 
tion. In the second case, the antibody should cause a collapse 
of the distance between previously separated centrosomes. 
To distinguish between these possibilities we have measured 
the intercentrosomal distance in uninjected PtKt cells dur- 
ing prophase or in prometaphase and metaphase cells treated 
with 10/~g/ml nocodazole at 0°C for 1 h, as well as in un- 
injected cells during recovery from nocodazole treatment 
(Fig. 7). 

In 82% of the untreated and unlnjected prophase PtK~ 
cells, centrosomes were separated by a distance >2.5 /zm 
(n = 73; Fig. 7 A). In prophase cells arrested by dynein anti- 
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Figure 6. Effect of antibody injection on spindle formation in cells 
pretreated with a microtubule depolymerizing regimen. The cell 
was incubated for 60 rain in 10 #g/ml nocodazole at 0°C, injected 
during middle-late prometaphase with 12 mg/ml of Ddl antibody 
in the presence of nocodazole, and incubated at 37°C ' in 
nocodazole-free medium for 3 h before fixation. (A) phase-contrast 
image; (B) antitubulin staining; (C) staining with antieentrosomal 
serum (5051). (A, inset) DNA, revealed by DAPI staining. Bar, 
2.5 t~m. 

bodies, on the other hand, centrosomal staining was con- 
fined to a region with a diameter <2.5 #m (n = 20). If the 
anti-dynein antibody was able only to prevent centrosome 
separation but not to reverse it, the maximal number of cells 
with a monopolar spindle should have been <18 %, while the 
observed number of cells arrested after injection of Ddl anti- 
body during prophase was >70% (see above). These results 

imply that the antibody injection causes a collapse of the in- 
tercentrosomal distance. 

This interpretation is corroborated by results obtained 
from cells treated with nocodazole before anti-dynein injec- 
tion. In a majority of these uninjected prometaphase and 
metaphase cells, the distance between centrosomes immedi- 
ately after incubation with the drug (Fig. 7 B) and during 
the recovery from drug treatment (Fig. 7 C) is significantly 
greater than the maximal diameter of the region stained with 
anticentrosomal antibody in cells arrested upon anti-dynein 
injection. Thus, injection of anti-dynein prior to recovery 
from microtubule depolymerization leads to a decrease of 
the distance between centrosomes, just like that seen for 
cells injected during prophase. 

Discussion 

We have used DNA sequences that encode portions of the 
heavy chains from two cytoplasmic dyneins to express poly- 
peptides likely to be part of this enzyme's hydrolytic site. An- 
tibodies to these protein fragments block dynein's motility in 
vitro, and thus may serve as experimental tools with which 
to probe aspects of dynein's function in cells. Injection of 
these antibodies into cultured PtK~ cells causes the two 
centrosomes of a forming spindle to collapse toward one an- 
other. These results are surprising because the maintenance 
of centrosome separation might have been thought to depend 
on a plus end-directed, microtubule cross-linking motor en- 
zyme, not a minus end directed motor like dynein. Further- 
more, the injections failed to perturb chromosome attach- 
ment to the spindle, prometaphase congression to the 
spindle equator, and the motions of anaphase A and B. Since 
dynein has been localized to kinetochores as well as to the 
centrosomes, our results pose as many questions as they an- 
swer. In the discussion that follows we address several points 
relevant to the data. 

Cloning of a Human Cytoplasmic Dynein Heavy 
Chain Fragment 
Comparisons between the primary structure of flagellar 
dynein and cytoplasmic isotypes of the enzyme revealed 
regions of substantial similarity over the carboxy-terminal 
two thirds of the coding sequence, suggesting that this region 
comprises the mechanochemical domains of the protein. We 
have used such sequence information to identify a region in 
the Dictyostelium CDHC with a particularly high degree of 
identity to a flagellar DHC. It surrounds the first P-loop in 
the cytoplasmic sequence, which is likely to represent an im- 
portant functional domain for ATP hydrolysis in this protein 
(Gibbons et al., 1991; Ogawa, 1991). 

Degenerate PCR, using highly conserved primer sites in 
this region, has led to the identification of a fragment of a 
DHC expressed in HeLa cells. HeLa cells lack axonemes, 
save those that might be found in primary cilia, which lack 
dynein arms (reviewed in Sorokin, 1982). As expected, the 
HeLa sequence is more similar to CDHCs than to DHCs 
from flagellar. 

Degenerate PCR with conserved primers has revealed an 
increasingly large family of kinesin-like proteins in a number 
of diverse organisms (for example see Endow and Titus, 
1992). One might imagine that this approach would identify 
different isotypes of cytoplasmic dynein if they were ex- 
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Figure 7. Distance between 
centrosomes in uninjected 
PtK1 ceils. Ceils were fixed 
with cold methanol and 
stained with 5051 antiserum 
(Calarco-Gillam et al., 1983). 
Ceils at different stages of mi- 
tosis were identified using 
phase-contrast microscopy, 
and the distance between cen- 
trosomes in these cells was 
measured. (A) Untreated pro- 
phase ceils; (B) prometa- 
phase and metaphase cells af- 

ter treatment with 10/zg/ml nocodazole for 1 h on ice; (C) prometaphase and metaphase cells after 15 rain recovery from nocodazole 
treatment (when the distribution of microtubules in both mitotic and interphase cells is mostly restored). Shaded areas represent the maxi- 
mum diameter of the anticentrosome-reactive area in cells arrested upon antibody injection. 

pressed in HeLa cells. However, sequence analysis of multi- 
ple independent clones derived from several PCR reactions 
revealed only one dynein heavy chain isotype in HeLa cells. 
The most likely interpretation of this result is that only one 
CDHC is expressed in HeLa cells. There are, however, alter- 
native explanations for our results. It is possible, for exam- 
ple, that the sequence conservation in the region used for 
primer design is not preserved among different dynein iso- 
types. Alternatively, the level of isotype expression may 
differ significantly, and the less abundant isotypes may have 
escaped screening. Further study using different molecular 
biological, genetical and/or biochemical approaches may 
clarify the question of whether there are different isotypes 
of cytoplasmic dynein in a single cell type. 

Effect of Dynein Inhibition on Centrosome Separation 
and Spindle Formation 
The ability of two independently raised, affinity-purified an- 
tibodies to cause a seemingly identical defect in spindle for- 
marion strongly suggests that their effect is due to their inter- 
action with dynein. The effect of injection was stronger with 
Ddl antibody at 12 mg/ml than with Dhl at 20 mg/ml, sug- 
gesting that Ddl is more active in preventing spindle forma- 
tion. This correlates with its greater potency in inhibiting 
dynein-driven motility in vitro (Fig. 4). Moreover, if we as- 
sume that the volume of solution injected was 10% of the cell 
volume (Zavortnik et al., 1983), the Ddl antibody inhibited 
bipolar spindle formation at concentrations similar to those 
which inhibited dynein-driven microtubule motility in vitro. 
Furthermore, the same result was obtained with Fab frag- 
ments, suggesting that the effect is due to a specific inhibi- 
tion, rather than to a precipitation or crosslinking of dynein. 

The spindle morphology in cells affected by anti-dynein 
antibody suggests that the antibody interferes with the 
processes that cause centrosome separation at initial stages 
of spindle formation. However, our analysis of intercen- 
trosomal distances, which shows that anti-dynein injections 
cause a decrease in intercentrosomal distances, suggests that 
dynein is also involved in the maintenance of centrosome 
separation at these early stages. 

When injected into prometaphase or metaphase cells, an- 
tibodies had no obvious effect on spindle structure or chro- 
mosome behavior. Probably, the forming spindle, which by 
this time consists of bundles of kinetochore microtubules 

and overlapping nonkinetochore microtubules originating 
from opposite poles, stabilizes the spacing between centro- 
somes. Thereafter, dynein activity may no longer be re- 
quired to maintain the separation of the spindle poles. Ex- 
periments in which anti-dynein antibody was injected into 
cells with disassembled microtubules demonstrate, however, 
that the formation of a monopolar spindle can occur at 
prometaphase and metaphase as well as at prophase if ex- 
perimental conditions require the spindle to form at these 
stages. Thus, dynein might contribute to the early stages of 
spindle formation whenever they occur. 

Role of Dynein in Chromosome Motility 

Antibody injection during prometaphase, metaphase or 
anaphase did not seem to affect chromosome motility. Nei- 
ther immunofluorescent analysis, nor observation of live 
cells revealed any detectable abnormality. The lack of an 
effect of injected antibodies on prometaphase or anaphase 
chromosome movements can be interpreted to suggest that 
dynein plays no role in these mitotic events. However, the lo- 
calization of dynein at the kinetochores of mammalian cells 
(Pfarr et al., 1990; Steuer et al., 1990) and the minus 
end-directed motility of chromosomes on microtubules, 
both in vivo (Rieder and Alexander, 1990) and in vitro (Hy- 
man and Mitchison, 1991) has nurtured the idea that dynein 
is a motor for chromosome-pole movements. An alternative 
interpretation of our results is that cytoplasmic dynein is not 
the only motor involved in this kind of movement. Minus 
end-directed kinesin-like proteins have been found (Walker 
et al., 1990; McDonald et al., 1990), and Hyman et al. 
(1992) have failed to identify either dynein or kinesin-like 
proteins in preparations possessing minus end directed 
microtubule-translocator activity in association with centro- 
meric DNA of S. cerevisiae. Thus, proteins other than dy- 
nein may contribute to minus end-directed chromosome 
motility during prophase and anaphase. Even if dynein nor- 
mally plays a role in chromosome movement, other enzymes 
may complement its functions. An alternative possibility is 
that while dynein is essential for chromosome movements, 
the accessibility of dynein epitopes to antibodies is impeded 
in an assembled spindle. At present, we can not state that 
dynein does not play a role in chromosome movement, and 
we are currently working on other approaches to study possi- 
ble roles of cytoplasmic dynein in chromosome motility. 
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Possible Roles of Cytoplasmic Dynein 
in Spindle Formation 
The results from the microinjection experiments suggest that 
cytoplasmic dynein does play an essential role in the early 
stages of mammalian spindle formation. Presumably, inacti- 
vation of dynein by antibody leads to the collapse of sepa- 
rated spindle poles and therefore to a failure in the formation 
of a normal bipolar spindle. The collapse of centrosomes 
caused by dynein inhibition supports the idea that proper 
spindle pole separation is a result of a balanced action of in- 
ward and outward directed forces, perhaps generated by 
microtubular motors with opposite polarity (Sannders and 
Hoyt, 1992; Fuller and Wilson, 1992). 

There are several ways in which a minus end-directed, 
microtubule-dependent motor enzyme might contribute to 
the process of spindle pole separation. One, which probably 
has the strongest support from the cytological data, involves 
a pulling on the poles by minus end-directed motors via as- 
tral microtubules (for example see Waters, 1993) (Fig. 8 A). 
Though initially proposed as a mechanism for pole separa- 
tion during anaphase B, it is equally plausible as a mecha- 
nism for earlier mitotic events. The astral forces model is 
strongly supported by the observations that asters can sepa- 
rate when there is no array of overlapping microtubules be- 
tween them and that asters can move independently of each 
other (Aist et al., 1991; Bajer, 1982; Hamaguchi and Hira- 
moto, 1986; Hiramoto and Nakano, 1988; Waters et al., 
1993). The movement of microtubule asters could be 
achieved i fa  minus end-directed motor, such as dynein, was 
anchored either to the cell cortex or to some distributed cyto- 
plasmic structure that could provide the mechanical support 
to allow a pulling on microtubules due to dynein's motor ac- 
tivity (Fig. 8 A). Direct cytological evidence for this associa- 
tion is yet to be obtained. However, it is known that dynein 
is distributed throughout the cytoplasm in interphase cells, 
and that it localizes to spindle microtubules during very 
early prophase (Pfarr et al., 1990; Steurer et al., 1990). It 
has also been shown that dynein is capable of generating slid- 
ing movements of free microtubules over each other in ex- 
tracts ofXenopus laevis eggs (Verde et al., 1991). This slid- 
ing might occur due to dynamic association of dynein 
molecules with microtubules (Fig. 8 B). Such activity of 
dynein occurs in mitotic but not in interphase extracts, sug- 
gesting that it is probably needed for building and/or sup- 
porting some mitosis-related structure. The mechanism 
discussed below presents an additional way in which the 
properties of dynein can contribute to the formation of a cen- 
tral spindle and to the separation of spindle poles. 

Our model posits that a microtubule sliding similar to one 
outlined on Fig. 8 B occurs between microtubules that are 
already attached to adjacent centrosomes. Such sliding 
would lead to a gathering of these microtubules into the 
space between the centrosomes, forming a central spindle, 
as shown in Fig. 8 C. I f  we make an additional assumption 
that each dynein molecule is (temporarily) attached to a 
fixed point on one microtubule while it slides along a 
microtubule growing from the other pole, a net outward- 
directed force is applied to the centrosomes, pushing them 
apart (Fig. 8 D). It is important to notice, however, that this 
force can be generated only when the angle between inter- 
secting microtubules (/__ LKM on Fig. 8 D) is <90 ° (which 
is true for most microtubules at early stages of pole separa- 
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Figure 8. Models for spindle pole separation. (A) "Astral forces" 
model. Dynein anchored to cellular objects interacts with and at- 
tempts to move upon astral microtubules, generating a net outward 
force on the centrosome; (B) dynein-dependent aster formation in 
mitotic Xenopus extracts (adopted from Verde et al., 1991). Note, 
that for the sliding described here and below to occur, interaction 
between microtubules and dynein molecules should be dynamic, 
i.e., different populations of dynein molecules will be involved in 
sliding microtubules over each other at different times. For simplic- 
ity this feature is not reflected on the figure; (C) Sliding of microtu- 
bules originating from different spindle poles, analogous to that de- 
scribed in B, could lead to the formation of antiparallel microtubule 
arrays characteristic of central spindles; subsequent addition of plus 
end motors and changes of microtubule dynamics could contribute 
to spindle formation; (D) if a dynein molecule is temporarily at- 
tached to a fixed point on one microtubule (distance KL does not 
change for some time) while it slides along a microtubule from the 
other pole, the two closely spaced centrosomes will be forced apart 
(NB, diagram assumes that/_LKM is less then 90 °, which is true 
for most microtubules at early stages of pole separation). 

tion). This arrangement resembles to some extent the situa- 
tion in axonems, where flagellar dynein acts between parallel 
doublet microtubules. 

Such a mechanism might act early in mitosis to help set 
up the interdigitating arrangement of microtubules. It also 
might work in conjunction with an "astral forces" mecha- 
nism. Other proteins, e.g., kinesin-like, plus end-directed 
motors, might then bind to the interdigitating microtubules, 
stabilizing the spindle and further separating the poles. We 
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are currently working on several approaches to confirm (or 
exclude) the involvement of sliding microtubules in the for- 
mation of the mitotic spindle. 
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