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SUMMARY

Increased TNF production and impaired lymphocyte function have been individually linked with
metabolic disturbance, endotoxaemia and mortality in humans. The inter-relationship between these
observations was investigated in humans with cancer. In 13 patients with metastatic colorectal cancer
and seven healthy volunteers, observations (n� 23) included peripheral blood mononuclear cell
(PBMC) TNF production, IL-2 production and phytohaemagglutinin (PHA) response; the acute-
phase protein response (APPR) (serum C-reactive protein (CRP), albumin, CRP/albumin ratio), and
survival. APPR correlated with survival (CRP,r � ÿ0:689, P� 0:006; CRP/albumin,r � ÿ0:758,
P� 0:002; albumin,r � 0:655,P� 0:011), but not with TNF production. TNF production in response
to in vitro endotoxin correlated with impaired lymphocyte function in patients (r � 0:567,P� 0:043)
and in the whole group (r � 0:65, P� 0:001). The ratio (basal PBMC TNF production)/(lymphocyte
function) correlated with CRP (r � 0:569,P� 0:042), CRP/albumin (r � 0:617,P� 0:025), endotoxin
sensitivity (r � 0:567, P� 0:043) and survival (r � ÿ0:545, P� 0:038) in patients, and the whole
group (P < 0:002). Impaired lymphocyte function may influence TNF production, endotoxin sensitivity
and metabolic disturbance in humans with cancer. (r � Spearman correlation coefficient.)
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INTRODUCTION

Many patients with cancer develop metabolic dysfunction consist-
ing of refractory weight loss, decreased appetite and altered
metabolism of body protein and fat (cachexia) [1]. They are also
relatively susceptible to sepsis [2,3]. These two phenomena
(cachexia and sepsis) account for a significant proportion of
cancer-related deaths [2,3], but their development appears to be
unrelated to tumour bulk [1,4], and is in fact linked to the
activity of monokines, e.g. IL-1 and IL-6, particularly TNF/
cachectin [4–7].

While there is significant evidence to implicate TNF and
endotoxin in the induction of these phenomena and the associated
acute-phase response [6–12], serum levels of TNF or endotoxin
have not been correlated directly with parameters reflecting
cachexia, the acute-phase response or sepsis [13,14]. This may
be related to the fact that sensitivity to TNF and endotoxins may
vary, particularly in the tumour state [15,16].

In many conditions associated with sepsis and metabolic
disturbance (e.g. cancer, burns, trauma, AIDS) in which TNF
is thought to be an important mediator [17–19] lymphocyte
function is frequently impaired [20–22]. Whether lymphocyte
function alters sensitivity to, or production of TNF is unknown,
but receptors for lymphocyte-derived substances, such as IL-2
and IL-4, are expressed on cells such as peripheral blood mono-
cytes, which are highly potent in terms of TNF secretion
[23,24]. Some of these cytokines, e.g. IL-4, may reduce mono-
cyte production of TNF and IL-1 in response toin vitro endotoxin
[24].

The present study was designed to investigate the relation-
ships between lymphocyte function, TNF production, survival,
and parameters reflecting cachexia and the acute-phase response
of patients with advanced metastatic colorectal cancer. A
further aim was to establish whether factors related to peripheral
blood cell type and concentration, or the ability of these cells
to produce TNF, might account for the expected differences
in metabolic status and acute-phase protein response between
older patients with metastatic cancer and healthy younger
volunteers.
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PATIENTS AND METHODS

Subjects and protocol
With the approval of the Hospital Ethics Committee and informed
patient consent, the study group consisted of 13 patients (11
males), median age 50 years (range 39–73 years), with biopsy-
proven liver metastases, each of whom had a primary resection for
colorectal cancer at least 6 months before the study. All had
received chemotherapy (5-fluorouracil via the hepatic artery) 1
week before the study, and metastases accounted for a significant
proportion of liver volume. All were out-patients with no evidence
of gastrointestinal obstruction or clinical infection, and all were
consuming a normal diet. Seven healthy male laboratory staff were
also studied (median age 31 years, range 24–41 years). Three of
these had experienced minor weight gain (< 3%) over the previous
6 months.

Blood samples were drawn in the early morning from fasted
patients and volunteers. For logistical reasons, the study was
performed over 2 study days separated by 9 weeks. One patient
and two volunteers were studied on both study days, and resulting
data therefore consisted of 23 observations for most of the para-
meters studied.

Serum albumin, serum C-reactive protein (CRP) and CRP/
albumin ratios were used as indices of the acute-phase protein
response [25]. Routine haematology tests were performed. Weight
change over the previous 6 months was assessed by questionnaire
and patient records, and survival from day of study was noted for
all patients.

Assessment of lymphocyte function
Two assays ofin vitro lymphocyte function were used in the study,
IL-2 production and phytohaemagglutinin (PHA)-induced blasto-
genesis.

Generation of IL-2 supernatants
Heparinized peripheral blood (20 ml) was separated over Ficoll as
previously described [26]. Unless otherwise stated, reagents for
cell washing and culture were obtained from Sigma Chemical Co.
(Poole, UK). Cells were counted and concentrations adjusted to
1� 106 cells/ml in medium with added fetal calf serum (FCS; 5%).
Cells (100�l) were then plated in microtitre plates and 20�l of
PHA (62.5�g/ml) were added to triplicate wells and the final
concentration in stimulus and control wells made up to 250�l
volumes with media. Following a 24-h incubation under standard
conditions [26], supernatants were withdrawn and frozen at
ÿ208C.

IL-2 assay
IL-2 concentration was determined using the CTLL-2 cell bioassay
[27]. Cell viability was determined using a colorimetric method
[28]. An IL-2 standard of 2.5 U/ml was incorporated in the assay
for determination of sample IL-2 concentration. All samples were
assayed on the same day.

Lymphocyte blastogenesis
Mononuclear cells were isolated by Ficoll density centrifugation
[26] as above and concentrations adjusted to 1� 106 cells/ml in
medium with added FCS (5%). Cells (100�l) were then dispensed
in microtitre plates. PHA (20�l of 125�g/ml) was added to each
well at a final concentration of 10�g/ml. Media were added to
attain equal well volumes of 250�l/well. Each assay was

performed in triplicate and background wells, without PHA,
were also used for each sample. Cultures were incubated under
standard conditions [26]. Tritiated thymidine (3H-TdR), 1�Ci/well
in 20�l media, was added after 72 h and the plates removed after a
further 16 h and frozen atÿ208C. Cells were later harvested and
uptake of3H-TdR determined on a beta-counter (LKB Instruments,
Gaithersburg, MD). The mean response in ct/min for triplicate
samples without PHA was subtracted from the mean of samples
with PHA to yield the PHA response.

To eliminate interassay variation between both study days,
percentage PHA response of each subject with respect to the mean
of the five healthy volunteers studied on that day, was used as an
index, rather than PHA response in ct/min, which may be subject to
daily variation.

Percentage volunteer PHA response for each subject was
calculated by the formula: % volunteer PHA response� ((PHA
response in ct/min for each subject)/(mean PHA response in ct/
min for volunteers studied on the day))�100.

Peripheral blood mononuclear cell TNF production
Peripheral blood mononuclear cells (PBMC) were separated as
above and plated in microtitre plates at 1� 106 cells/well
in 200�l medium (as above).Escherichia coliendotoxin 055-
B5 (or saline) (Difco Labs, Detroit, MI), 20�l to yield a final
concentration of 1.25�g/ml was added to each of triplicate wells
to generate TNF-containing supernatants. Samples were incu-
bated under the same conditions as above for 24 h, at which time
cell-free supernatants were collected and frozen atÿ208C.

In seven of the subjects (four patients and three volunteers)
TNF production in response to a higher concentration of endotoxin
(5�g/ml) was also measured.

TNF bioassay
Supernatant cytotoxicity was titrated against the TNF-sensitive cell
line WEHI 164 clone 13 [29] using a recombinant human TNF
preparation as a standard. PBMC TNF production was then
calculated in relation to the standard TNF preparation. The
stimulation index (SI) for TNF production was calculated by the
formula: SI for TNF (S/U)� amount of TNF generated in endo-
toxin-stimulated cultures/amount of TNF generated in cultures
with saline (basal TNF production).

Statistical analysis
Dose–response curves from the IL-2 and TNF bioassays were
analysed using the curve fitting program ‘ALLFIT’ [30]. All
parameters are expressed as medians with range of values and
were compared between patients and volunteers using the Mann–
Whitney test. Spearman tests were used to evaluate correlation
coefficients. Significance was implied forP < 0:05.

RESULTS

Survival
Median patient survival was 144 days (range 5–679 days). Survival
duration was significantly associated with increased serum albu-
min, decreased serum CRP, decreased CRP/albumin, and
decreased leucocyte count (Table 1, Fig. 1). Survival did not
correlate with weight loss (Table 1).
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Weight loss, serum albumin and CRP values
Though all patients had similar tumours, large variations were
noted in terms of weight loss (3–25%), serum CRP (8–180 mg/l) and
albumin values (18–42 g/l). Median serum albumin levels for
patients (31 g/l) were significantly reduced, and serum CRP con-
centrations (54 mg/l) and CRP/albumin ratios (2.1) were increased,
compared with normal reference ranges for this population (albu-
min (39–46 g/l), CRP (< 10 mg/l), CRP/albumin (< 0:28)) and
with volunteers.

Although weight loss correlated with decreased serum albumin
levels (r � ÿ0:62, P < 0:018), significant correlations were not
observed between weight loss and CRP (P� 0:549) or CRP/
albumin ratios (P� 0:399) in patients.

Haematology
Peripheral blood percentages of neutrophils, lymphocytes, mono-
cytes, leucocytes or monocyte/lymphocyte ratios were not signifi-
cantly different between patients and volunteers.

Cell culture concentrations
Percentages of monocytes and lymphocytes in Ficoll-prepared
mononuclear cell populations were calculated from peripheral
blood indices, and values are given as for those of peripheral
blood, less neutrophil percentage, as the percentage of polymorphs
after Ficoll preparation was found to amount to< 5% of the total
cell number. No significant differences were observed between
patients and volunteers.

IL-2 production
IL-2 production varied in patients (0.34 (0.6–1.2 U/ml)) and
volunteers (0.9 (0.1–6 U/ml)) but was significantly less in patients

(P� 0.03). In patients, IL-2 production failed to correlate with
leucocyte count (P� 0.871), percentage of lymphocytes
(P� 0.19), survival (P� 0.288), serum albumin (P� 0.254),
CRP (r � ÿ0.477,P� 0.08) or CRP/albumin ratio (r � ÿ0.534,
P� 0.06).

Lymphocyte blastogenesis
PHA responses correlated with IL-2 production for the whole
group (r � 0.589, P < 0.004) and for patients (r � 0.683,
P < 0.01), and was significantly less in patients (38 (9–80%))
compared with volunteers (100 (60–154)) (P < 0.0005). No cor-
relations were observed in patients between PHA responses and
CRP (P� 0.396), CRP/albumin ratio (P� 0.323), albumin
(P� 0.766), basal TNF production (P� 0.52), percent lympho-
cytes (P� 0.169), leucocyte count (P� 0.199), or
survival (P� 0.499).

TNF production
In both patients and volunteers, basal PBMC TNF production was
variable and was not significantly different between patients and
volunteers (Table 2). For the group as a whole (patients and
volunteers), basal PBMC TNF production failed to correlate with
the proportion of monocytes (P� 0.358) or lymphocytes
(P� 0.355) in the culture pool, nor did it correlate with these
indices in either group alone.

In patients, basal TNF production correlated weakly with
survival (r � ÿ0.534, P� 0.049) and leucocyte count
(r � 0.676, P� 0.011), but not with CRP (P� 0.276), CRP/
albumin (P� 0.125), weight loss (P� 0.964), serum albumin
(P� 0.111), percentage circulating lymphocytes (P� 0.237) or
neutrophils (P� 0.319).

TNF production in response toin vitro endotoxin
There was no significant difference in TNF production in response
to in vitro endotoxin (1.25�g/ml) (endotoxin sensitivity) between
patients and volunteers (Table 2), nor was endotoxin sensitivity
related to the proportion of monocytes in blood (P� 0.75) or
culture (P� 0.318) in the whole group. In a significant number of
patients (n� 5) and controls (n� 6), no increase in TNF produc-
tion was noted in response to endotoxin challenge.

In the four patients and three controls in whom enough cells
were present to examine responses to higher concentrations of
endotoxin (5�g/ml), SIs in patients (1.15 (0.92–1.98 pg/ml)) were
similar to those of volunteers (0.93 (0.28–2.02 pg/ml)).

For all subjects, depressed lymphocyte function was associated
with increased sensitivity toin vitro endotoxin, reflected in
correlations between both the change in TNF production in
response to endotoxin and the SI for TNF, and decreased IL-2
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Fig. 1.Association between survival and ratio C-reactive protein (CRP)/albumin (a), CRP (b) and albumin (c) in the patient group.r � Spearman correlation
coefficient between absolute values. Survival is indicated in log form for illustration purposes.

Table 1. Relationship between immune and metabolic function, and
survival in patients (n� 13) with metastatic colorectal cancer

r value P

CRP/albumin (ratio) ÿ0.758 0.002*
CRP (mg/l ) ÿ0.689 0.006*
Albumin (g/l ) 0.655 0.011*
Leucocyte count (�109/l ) ÿ0.67 0.012*
Basal PBMC TNF (pg/ml per million PBMC) ÿ0.534 0.049*
Weight loss (%) 0.15 0.608

r � Spearman correlation coefficient.
* Implies statistical significance.
CRP, C-reactive protein; PBMC, peripheral blood mononuclear

cells.



production and reduced PHA response (Table 3, Fig. 2). In patients
alone the SI for TNF also correlated with impaired PHA response
(r � ÿ0.567,P� 0.043).

When higher concentrations of endotoxin (5�g/ml) were used,
SIs also correlated significantly with impaired lymphocyte func-
tion, i.e. IL-2 production (r � ÿ0.821,P < 0.023,n� 7).

TNF production/lymphocyte function
Since increased sensitivity to endotoxinin vitro was related to
impaired lymphocyte function (Table 3, Fig. 2), and since sensi-
tivity to endotoxin often parallels sensitivity to TNF [15,16],
indices were derived incorporating basal TNF production/
lymphocyte function, to determine whether increased TNF activity
in vivo might relate to impairment ofin vitro lymphocyte
function. In patients, one or both of these indices (TNF/IL-2 or
TNF/PHA) correlated significantly with increased CRP, increased
CRP/albumin, endotoxin sensitivity, and survival (Table 4, Figs 3
and 4).

For all subjects, these indices correlated with parameters
which had been associated with impaired survival, i.e. increased
CRP, CRP/albumin, and leucocyte count, and decreased albumin
(Table 4, Fig. 5).

IL-2 production failed to correlate with any of these parameters
in patients, while TNF only correlated with leucocyte count
(r � 0.676, P < 0.011) and survival (r � 0.534, P� 0.049).
Indices (TNF/PHA and IL-2/PHA) were significantly higher in
patients than in volunteers (Table 2).

DISCUSSION

The magnitude of the acute-phase protein response in patients with
metastatic colorectal cancer correlated with reduced survival in the
present study and in previous studies of patients with other tumours
[31]. Patients and volunteers showed similar TNF production and
cell concentrations, and neither variable correlated with the pre-
sence or magnitude of the acute-phase protein response, and failed
to separate the diverse groups in terms of outcome.

These results do not necessarily exclude a role for TNF in the
acute-phase protein response, sincein vivoTNF production in the
subjects may have been affected by levels of circulating endo-
toxin [7,8,12,26] andin vivo sensitivity to TNF may increase in
the cancer state [15]. Sensitivity to endotoxin may also vary, and
in cancer appears to parallel sensitivity to TNF [15]. In the
present study, variations in endotoxin sensitivity (in vitro TNF
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Table 2. Peripheral blood mononuclear cell (PBMC) TNF production

Patients (n� 14) Volunteers (n� 9) P

In vitro TNF production (basal)
pg/ml per million PBMC 119 (16–2100) 49 (19–402) 0.16
pg/ml per million monos 774 (112–10 500) 320 (9–1158) 0.10

In vitro TNF production (endotoxin-stimulated)
Change in TNF production

(pg/ml per million PBMC) �23 (ÿ77 to�770) ÿ7 (ÿ3 to�15) 0.18
(pg/ml per million monos) �76 (ÿ98 to�3850) ÿ22 (ÿ192 to 47) 0.08

Stimulation index for TNF 1.1 (0.6–1.9) 0.9 (0.3–1.4) 0.23

Comparison of (basal TNF/lymphocyte function)
TNF/IL-2 ratio 426 (17–7211) 114 (8–231) 0.001*
TNF/PHA ratio 5.3 (0.2–38.7) 0.5 (0.2–6.8) 0.001*

n, Observations; stimulation index for TNF� PBMC TNF production in response toin vitro endotoxin (1.25�g/ml)
divided by PBMC TNF production without endotoxin; (pg/ml per million)� pg of TNF per ml of supernatant per million cells
in culture;�, an increase in production;ÿ, a decrease in production.

* Implies statistical significance by Mann–Whitney test.

Table 3. Association between response toin vitro endotoxin and impairedin vitro lymphocyte
function

IL-2 production PHA response

All subjects (n� 23) r value P r value P

Change in TNF production
TNF (pg/ml per million PBMC) ÿ0.458 0.032* ÿ0.45 0.036*
TNF (pg/ml per million monos) ÿ0.556 0.011* ÿ0.505 0.023*

n, Observations; (pg/ml per million)�pg of TNF per ml of supernatant per million cells in
culture;r, Spearman correlation coefficient.

* Implies statistical significance by Spearman test.
PBMC, Peripheral blood mononuclear cells.



production in response to endotoxin) were related to lymphocyte
function rather than the presence of tumour, or variability in
monocyte concentrations in blood or culture. Increased sensitiv-
ity to endotoxin, and TNF, may therefore be related to impaired
lymphocyte function.

Increased ratios of TNF/lymphocyte function correlated with
clinical disturbances normally attributed to TNF activity [7–12],
with reduced survival, and within vitro sensitivity to endotoxin.
Improvement of lymphocyte function can prolong survival in
animal models of conditions associated with endotoxaemia and
increased TNF activity, e.g. Gram-negative sepsis, in whom
mortality is related to impaired lymphocyte function [32–34].
Addition of IL-2 reducesin vitro PBMC TNF production in
response to endotoxin [26]. These reports suggest a role for
lymphocyte function in determining sensitivity to endotoxins
and/or TNF.

This hypothesis may explain the variations in metabolic status
in patients with similar tumours [1–3,26,31]; why patients with
certain cancers, e.g. breast cancer, who are seldom immunosup-
pressed [35], rarely develop cachexia [1]; the lack of an acute-
phase response in healthy subjects with endotoxaemia; and the
poor correlation between serum endotoxin and TNF levels with
outcome in immuno- suppressed patients [13,14], in whom
impaired lympho-cyte function may predict those at risk of death
from sepsis [20,21].

While it is possible that tumour circulation may influence TNF
production, tumour homogenates have not been shown to incite
significant in vitro TNF production. Moreover, serum levels of
TNF in humans rarely correlate with clinical abnormalities. Alter-
natively, other cytokines (IL-1 [5], IL-6 [6] and IL-8 [36]) known
to influence inflammatory and metabolic processes [8,9] may be
important mediators of the acute-phase response in cancer. How-
ever, since TNF stimulates IL-1, TNF, IL-6 and IL-8 production
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Table 4.Associations betweenin vitro basal peripheral blood mononuclear cell (PBMC) TNF production/lymphocyte
function to parameters of cachexia and the acute-phase protein response

TNF/IL-2 TNF/PHA

r value P r value P

Patients (n� 13)
CRP (mg/l) 0.569 0.042* 0.526 0.065
CRP/albumin (ratio) 0.617 0.025* 0.579 0.038*

All subjects (n� 22)
CRP/albumin (ratio) 0.711 0.0005* 0.795 0.0005*
Albumin (g/l) ÿ0.689 0.0005* ÿ0.693 0.0005*
CRP (mg/l) 0.659 0.002* 0.738 0.0005*
Weight change (%) 0.588 0.004* 0.491 0.020*

In vitro TNF production in response to endotoxin
Stimulation index 0.630 0.002* 0.491 0.020*
Change in production:

pg/ml per million PBMC 0.473 0.026* 0.397 0.067
pg/ml per million monos 0.605 0.005* 0.485 0.030*

n, Observations; basal TNF production, unstimulated PBMC TNF production; PHA, phytohaemagglutinin
response expressed as a percentage of the mean for volunteers; TNF/IL-2, basal PBMC TNF production divided by
IL-2 production; TNF/PHA, basal PBMC TNF production divided by PHA response;r, Spearman correlation
coefficient.

* Implies statistical significance.
CRP, C-reactive protein.

Fig. 3.Association between the ratio TNF/lymphocyte function and patient
C-reactive protein (CRP) (n� 14) (a), and CRP/albumin ratio (n� 13) (b).
TNF/IL-2 � basal peripheral blood mononuclear cell (PBMC) TNF pro-
duction (pg/ml) divided by IL-2 production (U/ml),r � Spearman correla-
tion coefficient between absolute values. (IL-2 is expressed in log form for
illustration purposes.)

Fig. 2. Associations betweenin vitro peripheral blood mononuclear cell
(PBMC) IL-2 production (a) and phytohaemagglutinin (PHA) response
(expressed as percentage volunteer response) (b) and the stimulation index
(SI) for TNF production in response toin vitro endotoxin (1.25�g/ml).
r � Spearman correlation coefficient between absolute values. (IL-2 pro-
duction is indicated in log form for illustration purposes.)



[37], lymphocyte function may also indirectly regulate production
of these other metabolically active monokines.

The index TNF/lymphocyte function was chosen for the
following reasons. TNF has been implicated in the induction of
cancer cachexia, the acute-phase response and sepsis [8–12].
Impaired lymphocyte function is related to death from Gram-
negative sepsis [20,21,33], a phenomenon related to increased
TNF activity [7,10,12,16] and in this study was related to endo-
toxin sensitivity. In a large proportion of patients who suffer
metabolic disturbance and in whom TNF activity is increased,
depressed lymphocyte function is common [17–22,38]. Lympho-
cyte function may be impaired by age, diet, medication and the
levels of circulating endotoxins [39], variables which were not
strictly controlled in this study, but which might, in the light of our
findings, have indirectly influenced monokine activity and meta-
bolism.

Ficoll density centrifugation may not be optimal in separating
pure mononuclear cells [40], and methods other than bioassays
are available for cytokine assay. However, the methods employed
in this study approximate those used in studies quoted, dis-
cussing links between impaired lymphocyte function, metabolic

disturbance, TNF, and impaired survival in various conditions [7–
9,13,14,20,21,33–35,39]. Correlations derived using TNF/lympho-
cyte activity involved different assessments of lymphocyte func-
tion, using different concentrations of stimulant (PHA) and assays
of function (thymidine incorporation and bioassay). TNF produc-
tion by PBMC was chosen, rather than serum levels or secretion by
pure monocyte/macrophage cells, as the latter would have
neglected the potential influence of lymphocytes on TNF produc-
tion, while the former fails to consider the short half-life of, and
variable sensitivity to, TNF [7,15,16].

Endotoxin is known to stimulate TNF productionin vivoandin
vitro [29,39]. In a further study, the index TNF/lymphocyte
function was multiplied by the levels of circulating endotoxins.
Highly significant correlations were observed between this new
index (endotoxin�TNF/lymphocyte function) and factors which
reflect altered metabolic state, i.e. CRP, albumin, CRP/albumin,
weight loss, body mass index and lean body mass in nine of 12
subjects in this study in whom plasma endotoxin values were
significant (unpublished data).

Tolerance to TNF and endotoxins in animals with tumour
[15,41,42] renders them less sensitive to cachexia and sepsis, and
allows them to survive far longer than those who exhibit normal
sensitivity patterns to TNF and endotoxins. The induction of
tolerance to TNF or endotoxins in humans might also result in a
reduction of cachexia and inflammatory processes. Anti-endotoxin
and anti-TNF antibodies have so far been relatively unsuccessful in
dealing with endotoxin and TNF [43,44], perhaps because this
technology disregards individual differences in sensitivity to
endotoxins and TNF, and the fact that healthy subjects secrete
TNF [26], and may occasionally have transient endotoxaemias.

Perhaps a study administering low concentrations of IL-2 to
improve lymphocyte function might be appropriate. Such an
approach improves lymphocyte function in patients with hepatitis
B and AIDS [45,46], and in addition, a single dose of 36 000 units
of IL-2 reduces TNF mRNA, IL-6 mRNA, and serum CRP in
hepatitis B patients for 72 h [45]. Low dose IL-2 (< 250 U/mouse)
reduces sensitivity to endotoxins in models of thermal injury,
cancer cachexia and endotoxin hypersensitivity [34,35,47], and
improves lymphocyte function in animals with burns in whom
mortality following septic challenge is related to depressed lym-
phocyte function [32]. In contrast, high dose IL-2, which is usually
toxic [48], is administered in tumour-targeted protocols in con-
centrations based on surface area, not immune function, with little
regard for potential differences in pharmacological and physiolo-
gical effects of cytokines.

In conclusion, these data suggest that a combination of factors,
which include lymphocyte function and PBMC TNF production,
may account for increased sensitivity to sepsis and metabolic
disturbance in humans with cancer. Administration of physiologi-
cal concentrations of IL-2 to immunosuppressed patients, in an
attempt to improve lymphocyte function and reduce abnormalities
associated with TNF and endotoxins, may be worthwhile. Current
strategies seem unrewarding in these patients who are subject to an
ongoing acute-phase protein response, a phenomenon which was
associated with the ultimate demise of the patient group in this
study.
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