Evidence for a selected humoral immune response encoded by V_H4 family genes in the synovial membrane of a patient with rheumatoid arthritis (RA)

J. VOSWINKEL, L. TRÜMPER, G. CARBON, T. HOPF*, M. PFREUNDSCHUH & A. GAUSE Internal Medicine I, Saarland Medical School, Homburg/Saar, and *Department of Orthopaedics, Krankenhaus der Barmherzigen Brüder, Trier, Germany

(Accepted for publication 3 June 1996)

SUMMARY

The analysis of rearranged antibody-encoding genes from B cell foci in rheumatoid synovial tissue has characterized these cells as highly mutated memory B cells with a high proportion of members of the V_{H4} family. In order to characterize further the V_{H4} response in one patient, B cell-rich areas from different sections of synovial membrane (SM) were identified by CD20 staining, isolated by microdissection and pooled, in order to analyse highly enriched B cells without selection by in vitro culture procedures. From DNA of about 5×10^3 B cells rearranged V_H genes were amplified by polymerase chain reaction (PCR) and cloned. Sequencing of 11 clones containing rearranged V_H4 gene products revealed that seven were potentially functional, and all were mutated with 84-96% homology to known germ-line (gl) genes and V_H4 gl genes amplified from the patient's genomic DNA. Analysis of the complementarity determining region (CDR) 3 revealed that two products represented members of one B cell clone which differed by five nucleotide changes. Three of the five mutations encoded amino acid replacements in CDRs indicating antigen-driven expansion of one specific clone. Additional analyses of 25 members of three B cell clones from isolated aggregates showing intraclonal diversity in one of three clones provided further evidence that antigen selection takes place in the SM. Overall, the pattern of mutations and the replacement to silent (R:S) ratios were diverse, with six products indicating antigen selection by their high R:S ratios in CDRs. Although DNA analysis does not allow a characterization of antibody specificities, we can conclude from our analysis of antibody-encoding genes that selection by antigen and expansion of specific clones occur in the SM against the background of polyclonal activation.

Keywords rheumatoid arthritis V_H repertoire somatic mutation synovial inflammation B lymphocytes

INTRODUCTION

RA is a chronic systemic disease mainly involving the joints. The local inflammation of the joints eventually results in their destruction [1,2]. This process is maintained by a pathological immune response triggered by an agent, which is still unknown. Recent investigations concerning the humoral immune response by analysis of immunoglobulin-encoding genes indicate an antigen-driven process in the synovial membrane (SM) [3–8]. A high frequency of somatic mutations and a diverse spectrum of V genes used by RA-derived rheumatoid factors (RF) distinguishes them from other RF induced by hyperimmunization [9] or RF from paraproteins [10].

In longstanding RA, the SM is chronically inflamed. Histologically, there appear infiltrates of mononuclear cells (MNC)

Correspondence: Angela Gause, Internal Medicine I, Saarland Medical School, D-66421 Homburg/Saar, Germany.

containing B and T lymphocytes, and follicular dendritic cells in a formation similar to secondary lymphatic organs [11]. The analysis of rearranged V_H and $V\kappa$ genes from B cell-rich mononuclear infiltrates characterized these cells as highly mutated memory B cells [12,13].

Antibodies are encoded by about 60 V_H gene segments rearranged to a D_H and a J_H segment. The V_H germ-line (gl) repertoire consists of 95 V_H genes on chromosome 14, of which about one third are non-functional [14]. By sequence homology of at least 80% the V_H gene segments are classified into seven families. The V_H1 family has 17 (12) members, V_H2 four (3), V_H3 51 (28), V_H4 13 (11), V_H5 three, V_H6 one and V_H7 three (2) members, respectively (numbers in parentheses indicate the number of genes with open reading frames). An over-representation of one V_H4 gene, the V_H4.21, in the autoimmune repertoire has been described [15]. A high representation of members of the V_H4 family was also found within hybridomas derived from synovial

^{© 1996} Blackwell Science

tissue of one patient with RA [16]. Recently, it was postulated that a negative selection of V_H4 takes place in the peripheral blood lymphocytes (PBL) of healthy individuals as a means to avoid autoimmunity [17].

As our preliminary investigations of V_H genes in B cell infiltrates in SM indicated a possible over-representation of V_H4 genes, we extended the V_H4 analysis to a larger B cell sample of one patient's SM and compared it with her own V_H4 gl repertoire as well as with other known gl genes.

MATERIALS AND METHODS

Material

The SM of the right knee was obtained from a 78-year-old woman with RA of 15 years duration undergoing total joint replacement. As therapy, the patient was recieving 100 mg azathioprine per day.

Tissue preparation

The SM was snap frozen in liquid nitrogen immediately after surgery and stored at -70° C. Frozen sections of 10 μ m thickness were screened for mononuclear infiltrates by haemalaun staining (Mayer's Haemalaun; Merck, Darmstadt, Germany). When infiltrates were identified, three 10 μ m thick sections were prepared for B cell detection. Then, 30 consecutive sections of 30 μ m thickness were prepared for later B cell isolation. The same procedure was repeated to the end of the tissue block. Sections for B cell detection were stained with anti-CD20 MoAb (L26; Dako, Hamburg, Germany) and developed by the alkaline phosphatase anti-alkaline phosphatase (APAAP) method. Fifty sections of 30 μ m thickness adjacent to CD20-stained sections that contained B cell-rich mononuclear infiltrates were haemalaun-stained and mononuclear infiltrates were isolated with a micromanipulator (Eppendorf, Hamburg, Germany) and collected in 1 ml water in a microtube. Fibrous tissue of the same sections was isolated for amplification of gl genes.

DNA preparation

After the addition of 10 μ l Tris (1 M, pH 8·0), 200 μ l EDTA (0·5 M, pH 8·0), 25 μ l SDS 20% and 3 μ l RNAse (10 mg/ml), the tissue was incubated for 1 h at 37°C. Subsequently, 17·5 μ l of Proteinase K (100 μ g/ml; Merck) were added and the sample was incubated overnight at 55°C. After total digestion of proteins, DNA was prepared by repeated phenol and chloroform-isoamyl-alcohol extractions. After precipitation, the DNA was dissolved in 100 μ l TE (Tris–EDTA, pH 7·6).

Polymerase chain reaction

Three hundred and fifty nanograms of DNA each were subjected to six different polymerase chain reactions (PCR) of 35 cycles with individual V_{H} -specific and a mix of all J_{H} -specific oligonucleotides. Germ-line genes were amplified with the V_{H} 4-specific oligonucleotide and an oligonucleotide (V_{H} 4-IS) complementary to the 3' heptamer nonamer region of known V_{H} 4 gl genes. The following oligonucleotides were used:

```
J_{\rm H}1 - 5^{\prime} CGTCGTCGACCAGGGTGCCCTGGCCCCAGTGC \ (101-109)
```

```
J<sub>H</sub>2 5'CGTCGTCGACCAGGGTGCCCTGGCCCCAGTGC (101–109)
```

```
J<sub>H</sub>3 5'CGTCGTCGACATTGTCCCTTGGCCCCAGACATCA (100–108)
```

```
J<sub>H</sub>4 5<sup>'</sup>CGTCGTCGACCACGGTTCCTTGGCCCCAGTAG (101–109)
J<sub>25</sub> 5<sup>'</sup>CGTCGTCGACGTGACCAGGGTTCCTTGGCCCCAGG(102–110)
```

```
J<sub>H</sub>5 5'CGTCGTCGACGTGACCAGGGTTCCTTGGCCCCAGG(102–110)
J<sub>H</sub>6 5'CGTCGTCGACGTGGTCCCTT GCCCCCAGACGTCC (100–108)
```

```
V_{\rm H}1 5'CTACGTCGACCCTCAGTGAAGGTYTCCTGCAAGGC (16–24)
```

```
 \begin{array}{lll} V_{H2} & 5'GCACGTCGACGTCCTGCGCTGGTGAAASCCACACA (16-24) \\ V_{H3} & 5'GTACGTCGACGGGGGTCCCTGAGCTCTCCTGTGCAG (15-24) \\ V_{H4} & 5' CGTCGTCGACCCTGTCCCTCACCTGCCTGTC (16-24) \\ V_{H5} & 5'CGACGTCGACAAAAAGCCCCGGGGAGTCTCTGARGA (12-20) \\ V_{H6} & 5'CGTCGTCGACCTGTGCCATCTCCGGGGACAGTG (21-29) \\ V_{H4}-IS & 5'GTCTGGGGCTCACACTCACCTCCCCT \\ \end{array}
```

All oligonucleotides with the exception of the V_H4-IS contain a 5' SalI-restriction site (G/TCGAC). The corresponding amino acid positions are given in parentheses. The V_H1 oligonucleotide also matches perfectly to V_H7.

Oligonucleotides were used at a final concentration of 0·125 μ M each and nucleotides (Pharmacia, Freiburg, Germany) at 200 μ M in the Taq polymerase manufacturer's reaction buffer (Eurogentec, Seraing, Belgium) with 1·5 mmol MgCl₂. GoldStar Taq polymerase (1 U) was added after the first denaturation step. The following conditions were used for the PCR: first cycle, 5 min denaturation at 95°C, 3 min annealing—for V_H1, V_H2, V_H5, V_H6 at 64°C, for V_H3 and V_H4 at 68°C—and 90 s extension at 72°C. Cycles 2–35: 80 s denaturation, 30 s annealing, 90 s extension, with a final extension of 5 min.

Electrophoresis and Southern blot analysis

PCR products were analysed first by electrophoresis in a 1.5% agarose gel and ethidium bromide staining. Then, products were separated in a 30 cm long 6.6% polyacrylamide gel and analysed by Southern blotting: DNA was transferred electrophoretically from the gel to a nylon membrane (Hybond-N +; Amersham, Aylesbury, UK) in a transblot cell (BioRad, München, Germany). The membrane was hybridized with a ³²P-ATP end-labelled FR3-specific oligonucleotide and autoradiography was performed on Kodak-X OMAT (Eastman-Kodak, Rochester, NY).

Cloning and sequencing

 V_H4 PCR product (1 μ l) was cloned with a TA cloning kit (Invitrogen, Leek, The Netherlands) according to the manufacturer's instructions. Cloning, plasmid isolation and sequencing were done as previously described [8]. Sequences were analysed by homology search with DNASIS and the EMBL database on CD-ROM (Hitachi Europe, Olivet, France).

Analysis of isolated B cell foci

Individual B cell aggregates (foci) of about 50–300 cells were isolated by microdissection as previously described [12]. Half of the DNA was amplified by 35 cycles of PCR with a mixture of all V_H -specific and J_H -specific oligonucleotides. One microlitre of this reaction was amplified in different PCR reactions combining each V_H and each J_H oligonucleotide (36 reactions). Individual bands of the expected length were isolated and cloned as described above. Several bacterial clones were sequenced from each aggregate.

RESULTS

 V_H gene amplification and family distribution

B lymphocytes in the SM were identified by CD20 staining [12]. About 50% of mononuclear infiltrates in frozen sections of this SM consisted of B lymphocytes (data not shown). In order to enrich B lymphocytes without selection by tissue culture, MNC were

Fig. 1. Southern blot of V_H polymerase chain reaction (PCR) products from synovial membrane mononuclear cell DNA, separated on a 6.6% PAA gel, hybridized with a FR3 oligonucleotide probe. Film exposure V_H5 , V_H6 , 12 h; all others, 5 h.

collected from adjacent sections by microdissection. DNA was isolated from an estimated number of 10^5 B cells. Of the total DNA, 350 ng (6·5 μ g) were subjected to 35 cycles of PCR with V_H family-specific oligonucleotides and a mixture of J_H-specific oligonucleotides in six different reactions. Products of the expected length of \approx 350 bp were identified for the V_H1-, V_H3-, V_H4-family by electrophoresis in an ethidium bromide-stained 1·5% agarose gel. On a 6·6% acrylamide gel a pattern of 10–15 bands each separated by few bp length difference appeared in each family after transfer to nylon membrane and hybridization with a ³²P end-labelled FR3-specific oligonucleotide (Fig. 1). V_H2, V_H5 and V_H6 products were not detected on the agarose gel, but on the FR3-hybridized Southern blot a restricted pattern of bands (5) for V_H5 and a single band for V_H6 were detectable.

Of the 50 μ l volume of PCR product for V_H4 rearrangements, 1 μ l was cloned by TA ligation and transformation of *Escherichia coli*. DNA was extracted from 44 bacterial clones and analysed for the appropriate inserts: 11 clones contained products of 350 bp and were sequenced.

V_H4 gl gene analysis

From the 11 known V_H4 gl genes with open reading frames (ORF) on chromosome 14 [14], nine were identified in 15 different gl clones (total number 21) from the patient's genomic DNA (Table 1). Eight of the 15 clones were identical to known gl genes, the remaining seven had a homology of 98.7-99.6% to

© 1996 Blackwell Science Ltd, Clinical and Experimental Immunology, 106:5-12

known gl genes. Six of the latter represent polymorphic alleles, because they were also found as identical copies of known gl genes.

Analysis of $V_H 4$ rearrangements

Ten of the 14 V_H4 rearrangements (11 from collected DNA, three from foci) were potentially functional, while four were nonproductive (Table 2). Twelve of the 14 V_H4 products were > 90%, one 88% and one only 85% homologous to previously described gl genes (Table 2).

Of the 14 rearranged V_H4 genes, four were most homologous to $V_H4.34$ (V_H4 -GL2/8), three to $V_H4.22/DP67$ (V_H4 -GL9), two each to $V_H4.33/DP65$ (V_H4 -GL6) and $V_H4.11/DP71$ (V_H4 -GL7) and one each to V71-2/DP66 (V_H4 -GL1), V12G-1/DP68 (V_H4 -GL5), and $V_H4.21/DP63$ (V_H4 -GL4) (Tables 1 and 2).

Analysis of mutations

The rearranged V_H4 genes had a minimal number of four mutations (S8VH47) and a maximal number of 28 mutations (8F2B01). Within the CDR1 and 2, mutations ranged from zero (S8VH47) to eight (S8VH410), within the FR1–3 they ranged from four (S8VH45 + 47) to 12 (S8VH49) (Table 2, Fig. 2).

Ratios of replacement (R) to silent (S) mutations varied in their level as well as in their location in CDR and FR (Table 2, Fig. 2). For S8VH410 the R:S ratio was 7 in the CDR and 0.8 in the FR. Comparable R:S ratios were found in 8F1B02 and 8F1C01 with R:S ratios of infinity for the CDR, and 1.5, respectively, 3.5 for the FR. A similar pattern was obvious in S8VH48 and S8VH411. For S8VH412 the R:S ratio was 6 in the CDR as well as in the FR. Three products showed a strikingly lower R:S ratio in the CDR and a R:S ratio of 3 within the FR. S8VH45 and S8VH46 had similar R:S ratios of 2 and 1.3 in the CDRs, and 3 and 5 in the FRs, respectively. S8VH414 and 8F2B01 harboured a high number of nucleotide exchanges (15/28) with relatively low R:S ratios in both the CDR (0.5/3.5) and FR (0.8/1.3).

The CDR3

The CDR3 was determined according to Kabat from amino acid position 95–102 [18]. CDR3 lengths of $V_{\rm H}4$ rearrangements ranged from 30 bp to 54 bp with a mean of 37·2 (Table 2). All products contained at least one D segment homologous to a known gl D segment [19] and N additions between V and D as well as between D and J (Table 3). In S8VH46 two D segments were aligned, interspersed by N-nucleotides; this product was potentially functional. Three products (S8VH44, -48 and -411) had rearranged the DLR2. The gl segment D21-9 as well as DIR1 appeared twice (DIR1 in one case inverted). DN1, DA1, DA5, DK4, DXP'1, DLR3, DLR4, and D21-10 were used once each.

Five of 14 products were rearranged to the J_H4 segment, three to J_H5 , two each to J_H1 and J_H6 , and one each to J_H2 and J_H3 (Table 3).

V_H4 genes from B cell foci

Three V_H4 rearrangements were derived from isolated B cell aggregates of the same SM by independent PCR reactions (Table 2, 8F1B02, 8F1C01, 8F2B01). Twenty-five bacterial clones were sequenced, in order to look for intraclonal diversity. Fourteen independent isolates from 8F1C revealed 21 identical nucleotide

J. Voswinkel et al.

S8	Tomlinson/Cook	Sanz ^a ,Matsuda ^b Lee ^c , Weng ^d	v.d. Maarel	Homologous S8		
V _H 4–GL20	100% DP63/3-34	100% V _H 4.21 ^a	100% 4d76			
V _H 4–GL4	99.5% DP63/4-34	99.5% $V_{\rm H}4.21^{\rm a}$	99.6% 4d76			
$V_{H}4$ –GL12	100% DP64/4-30.2	94·9% V4–31X ^b	100% 3d216d	100% V _H 4–GL13		
$V_{H}^{H}4-GL17$	98.6% DP64/4-30.2	95·7% V4-31X ^b	98.7% 3d216d	11		
V _H 4–GL6	100% DP65/4-31	100% V _H 4.33 ^d	100% 3d75d			
V _H 4–GL8	97.7% DP65/4-31	99.6% V _H 4.34 ^d	99.6% 3d230d	99.6% V ₁₁ 4–GL2.		
11		<u></u> <u>n</u>		100% V _H 4–GL14		
V _H 4–GL2	97·3% DP65/4-31	99.6% V _H 4.34 ^d	99.6% 3d230d	11		
$V_{\mu}^{''}$ 4–GL1	100% DP66/4-61	100% V71–2 ^c		100% V _H 4–GL11		
$V_{H}^{H}4-GL10$	99·1% DP66/4-61	99·1% V71–2 ^c		11		
V _H 4–GL19	93·7% DP66/4-61	100% V _н 4.18 ^a	100% 4d154			
$V_{\rm H}4$ –GL9	99·1% DP67	$99.1\% V_{H}4.22^{a}$				
V _H 4–GL5	100% DP68/4-28	100% V12G-1 ^c	100% 3d28d	100% V _H 4–GL16,		
				100% V _H 4–GL18,		
				100% V _H 4–GL21		
V _H 4–GL3	98·2% DP69	98·7% V79 ^c	99·1% 4d68	11		
V _H 4–GL15	100% DP70/4-4		100% 4d68			
V _H 4–GL7	100% DP71/4-59	100% V _H 4.11 ^a	100% 3d197d			

Table 1. List of V_H4 germ-line (gl) genes

Homologies between gl genes derived from our RA patient (S8) to other published V_H4 segments. The order of rank is following the numeric order of DP segments published by Tomlinson *et al.* [39], second column. The last column shows identical isolates from the same experiment. Most homologous segments to a respective S8VH4-gl gene are underlined. References to the other gl genes are Cook [14], Sanz [24], Matsuda [40], Weng [23], Lee [25], Van der Maarel [27].

Table 2. List of rearranged $V_H 4$ genes analysed, their most homologous germ-line (gl) gene and percentage of nucleotide homology to their respective gene, absolute number of mutations and R : S ratio in CDR and FR, nucleotide length of the CDR3, D_H and J_H gl segments used, functionality of the rearrangement

Rearranged gene	Germ-line gene	Homology (%)	Mutations CDR	FR	R : S CDR	FR	CDR3 length (bp)	D _H	J_{H}
S8VH44	GL8	91.0	7	5	5:2	3:2	44	DLR2	4 nf
S8VH45	GL7	94.1	3	4	2:1	3:1	47	DA5	4 nf
S8VH46	GL1	92.5	7	6	4:3	5:1	42	D21–10,	2 pf
								DIR1	
S8VH47	GL5	96.5	0	4	0:0	3:1	33	DN1	4 pf
S8VH48	GL2	94.7	3	8	3:0	5:3	33	DLR2	5 pf
S8VH49	GL6	93	2	12	1:1	8:4	30	DK4	4 pf
S8VH410	V _H 4.22	90.1	8	11	7:1	5:6	35	DIR1	4 nf
S8VH411	GL2	93.8	4	8	4:0	5:3	33	DLR2	5 pf
S8VH412	GL6	93.4	6	7	6:0	6:1	42	DXP 1	5 pf
S8VH414	GL9	90.2	6	9	2:4	4:5	30	D21–9	1 pf
S8VH413	GL4	93.8	5	9	4:1	5:4	41	DA1	1 nf
8F1B02	GL2	92.6	8	5	8:0	3:2	45	D21–9	6 pf
8F1C01	GL7	92.3	7	9	7:0	7:2	54	DLR3	3 pf
8F2B01	GL9	85.3	9	19	7:2	11:8	42	DLR4	6 pf

S8VH44–414: Sequences from individual bacterial colonies derived from 5×10^3 B cells amplified by 35 cycles of polymerase chain reaction (PCR); 8F1B02, 8F1C01, 8F2B01: individual sequences from three different B cell clones derived from individual aggregates (8F1B=3, 8F1C=14, and 8F2B=8 bacterial colonies, respectively). pf, Potentially functional; nf, non-functional rearrangement. Homology is compared within the V_H segments from amino acid position 25 (FR1) up to 94 (end of FR3), length of CDR3 is measured between amino acid position 95 and 102 according to Kabat *et al.* [18]. J_H segment numbers are according to reference segments published by Ravetch *et al.* [38].

Fig. 2. Numbers of mutations and R:S ratios of 14 synovial membranederived rearranged V_H genes in comparison, separated between CDR and FR. \Box , Mutations CDR; \boxtimes , R:S ratio CDR; \boxtimes , R:S ratio FR; \blacksquare , mutations FR. The R:S ratio is the quotient of replacement mutations and silent mutations. In all cases where R:S is > 8 the denominator (S) is 0 so the quotient is of infinity.

changes compared with the corresponding gl gene. In addition there were 17 single point mutations in the 3579 base pairs sequenced, resulting in a frequency of 0.47%. This frequency is 3.4-fold the frequency expected from the error rate of the Taq polymerase (0.14% for 70 cycles, data not shown) (Fig. 3).

DISCUSSION

Analysis of V_H gene rearrangements by amplifying DNA allows a characterization of B cell infiltrates for clonality and mutations irrespective of different mRNA levels in resting cells compared with activated cells and plasma cells. A relatively high quantity of DNA (350 ng representing a minimal number of 5×10^3 cells, since 1×10^5 B cells were collected in 6500 ng DNA) was used for each PCR reaction and amplified in only 35 cycles, in order to analyse a representative sample of synovial B cells.

The intensity and number of bands of the V_H4 and V_H3 family on the autoradiography of amplified V_H genes was similar and revealed a relative over-representation of V_H4 genes compared with their representation on chromosome 14 (18%) [14]. This indicated a relative predominance of V_H4 genes in rheumatic SM, as has previously been shown for hybridomas from rheumatoid synovial tissue [16] and the autoimmune repertoire in general [15]. Also in transcripts from PBL of two healthy donors an overrepresentation of $V_H 4$ genes has been described [20], while other studies reported a representation according to the gl complexity for transcripts [21] as well as for genomic DNA [17] from PBL of a healthy donor. Fifteen percent of $V_H 4$ genes in $c\gamma$ transcripts from synovial membrane and 20% in $c\gamma$ transcripts from PBL of RA patients as described by Bridges *et al.* [22] were in contrast to our results. However, differences in composition of the cDNA libraries may be explained by cell selection and contamination with plasma cells in synovial tissue.

As the gl sequences were derived from cloned PCR products, sequences with 99.5% homology corresponding to one nucleotide difference per sequence may be due to infidelity of the Taq polymerase. The collection of gl genes may not be complete, because highly mutated genes may be missed by our approach of PCR cloning (oligonucleotides complementary to known gl sequences). For example, product 8F2B01 (85.3% homologous to GL9) had a high number of mutations leading to amino acid replacements within the FR and may be derived from a different gl gene. S8VH410 showed higher homology to $V_H4.22$ (90.1%) than to the most homologous gl gene derived from the same SM (V_H4 -GL9: 88.3%). The fact that eight V_H4 gl genes were identical to reported gl genes demonstrates a conservation of gl genes within the established polymorphism of V_H4 genes [23–27].

Only a limited number of V_H gl segments contributed disproportionately to the B cell repertoire of this SM, because seven of the 14 V_H4 rearrangements were encoded by two of the eight different gl segments (four $V_H4.34$, three $V_H4.22$). This finding corresponds to results from PBL analyses of healthy donors [28,29] as well as to analyses of the autoimmune repertoire [3,15]. In accordance with the findings of Brezinschek *et al.* [17] we did not find a dominance of $V_H4.21$ /DP63 which was demonstrated for the autoimmune repertoire by Pascual *et al.* [15,30] as well as for the normal repertoire by Kraj *et al.* [20]. Instead, there was an obvious over-representation of $V_H4.34/3d230d$, a gene that has so far rarely been identified in rearranged as well as in gl gene analyses [29].

All rearranged genes analysed here were highly mutated except S8VH47, confirming the results of other studies on antibodyencoding genes in RA [12,13,22,31].

The amino acid composition of immunoglobulin V genes is such that random mutations of CDRs result in higher R:S ratios than in FRs [32]. Instead of the R:S ratio 2·9 for a random composition of amino acids, the expected R:S ratios for V_H4 genes are between 4·5 and 5·1 for CDRs and about 2·6 for FRs. Following these criteria six of the V_H4 rearrangements from this investigation showed a pattern of mutations that signifies antigenic selection by R:S ratios higher than 5 in CDRs. However, our collection of rearranged V_H4 genes is too small and too diverse to discriminate between intrinsic and antigen-selected mutational hotspots in these V_H4 genes [33].

Two rearranged genes showed low R:S ratios in the CDRs as well as in the FRs and a high number of mutations. This pattern almost fits into the model of selection against replacement mutations which has been described for rearrangements encoding RF [34] and cold agglutinins [35]. This mechanism is thought to prevent the generation of high-affinity autoantibodies in healthy individuals.

Eight of the 14 genes did not show evidence of antigen-specific selection, so that antigen-independent expansion and polyclonal activation must have made a significant contribution to the synovial B cell repertoire.

J. Voswinkel et al.

Table 3. List of CDR3 regions of 14 rearranged V_H4 genes compared with their most homologous published germ-line (gl) D segment

Gene	95	Ν	D	Ν	JH	101	102		
DLR2	2 AGGATATTGTAGTGGTGGTAGCTGCTACTCC								
S8VH44 4)	GCA	GTGAGACTGC	GAT	GCC	TTT	GAC	TAC	(J-	
S8VH48	AGA	GGTATGGA			CCCAC	TTC	GAC	CCC	
(J _H 5) S8VH411 (J _H 5)	AGA	GGTATGGA			CCCTC	CTC	GAC	CCC	
D21-10		(15) TTTGGG (2	2)						
D1R1 S8VH46 _H 2)	AGA	AA	(117)CCCAGCCC CCGGC	CCCACC(130) GTGG	TACTTC	GAT	GTC	(J-	
DIR1 (inv.)		(101	l) CTTCAGGGGCTCTTGA(8	1)					
S8VH410 _H 4)	AGA	GATCG	GGC	CTCCT	TTA	GAC	TAC	(J-	
DN1		GGGTA							
S8VH47 _H 4)	AGC	Т		GGAACGGGGACTA	TTT	GAC	TAC	(J-	
DA1			TGACTACAGTAACTAC						
S8VH413 _H 1)	AGA	CCTTACGGCGA	A	GGCCGA	TACTTC	CAG	AAC	(J-	
DA5 TGACTATGGTGCTAACTAC									
S8VH45 _H 4)	AGA	GCGCGGGNGTT	C-	CGGCCCTACCTAC	TACTTT	GAA	TTC	(J-	
DK4	DK4 GTGGATACAGCTATGGTTAC								
S8VH49 _H 4)	AGA	GTG	-CA-	CTA		GAC	TAC	(J-	
DXP'1		GTATT	ACTATGGTTCGGGGAGTTAT	TATAAC					
S8VH412 _H 5)	AGA	GATGGGTG -	TAAC	CGTCG	ATC	GAC	CCC	(J-	
D21-9	GTATTACTATGATAGTAGTGGTTATTACTAC								
S8VH414	AGA	CAGC	T	TACTAC		TAC	CTC	(J-	

+2(65, 82B) -3(82A, 103, 109) C03 C13 C06 C05 C14 +1(89) 1(60) C12 C10 +1(82B) +1(85) +2(92, 103) +1(101) C17 204 C11 C15 C16

Fig. 3. Hypothetical development of the rearranged clone 8F1C01. Fourteen individual bacterial clones, which were sequenced, are designated C01 to C06 and C10 to C17 and outlined as a cell. C02, C03, C05 and C14 have 17 identical nucleotide exchanges compared with GL7. The other products aquired additional mutations. Numbers of point mutations and mutated codon are given in parentheses above or beside the arrow.

While the CDR3 of V_H genes in general vary extensively in length and structure [36], the gene products described in our study had almost homogeneous CDR3 lengths of intermediate size and conserved D segments. These findings correspond well to studies by Borretzen *et al.*, who had similar results for RF from RA patients as well as for RF from immunized donors [37]. In contrast, an extraordinary diversity in length and composition of the CDR3 was described for a set of RA-derived polyreactive antibodies and RF [30] and rearranged V_H genes from PBL of a healthy donor [17]. For the J_H segments we can confirm a predominant use of J_H4 [17,19].

The detection of two clonally related products within 11 independently isolated $V_H 4$ rearrangements indicated the expansion of a common progenitor clone. The five nucleotides that differ between the products excluded an amplification of DNA from the same cell and exceeded the frequency of mismatches caused by infidelity of the Taq polymerase (< 0.07% for 35 cycles, 0.14% for 70 cycles, data not shown). S8VH48 and S8VH411 differed from their hypothetical progenitor by five point mutations, of which three resulted in amino acid replacements in the CDR and probably represented somatically mutated subclones generated during affinity maturation of B cells in SM, as previously suggested by

analyses of SM-derived hybridomas [4,7]. Their infinitesimal R:S ratios within the CDR (3:0 and 4:0, respectively) and a low R:S ratio within the FR (1·7 both) were consistent with these conclusions. Somatic mutation in one clone was also demonstrated by the analysis of the three individual B cell aggregates, supporting the hypothesis that in the synovial membrane some B lymphocyte clones expanded and probably differentiated by affinity maturation [12,13].

Taken together, our results illustrate the important role of $V_H 4$ family genes besides the DP63/ $V_H 4.21$ gene in RA and the role of the synovial membrane as micro-environment for B cell expansion in one patient. Further investigations concerning B cell repertoires in different compartments of patients with RA in comparison with healthy individuals may help to identify the agents and conditions contributing to the immune process in the joints.

Note added in proof

The nucleotide sequence data reported in this paper will appear in the EMBL, Genbank and DDBJ Nucleotide Sequence databases under the accession numbers X97779 to X97787 and Z75333 to Z75361.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft through Ga 320,2-1 and Ga 320,3-1.

REFERENCES

- McCulloch J, Lydyard PM, Rook GA. Rheumatoid arthritis: how well do the theories fit the evidence? Clin Exp Immunol 1993; 92:1–6.
- 2 Harris ED. Rheumatoid arthritis. Pathophysiology and implications for therapy [published erratum appears in N Engl J Med 1990; October; 4:323:996]. N Engl J Med 1990; 322:1277–89.
- 3 Sasso EH. Immunoglobulin V genes in rheumatoid arthritis. Rheum Dis Clin North Am 1992; 18:809–36.
- 4 Ermel RW, Kenny TP, Chen PP, Robbins DL. Molecular analysis of rheumatoid factors derived from rheumatoid synovium suggests an antigen-driven response in inflamed joints. Arthritis Rheum 1993; 36:380–8.
- 5 Lee SK, Bridges SL Jr, Kirkham PM, Koopman WJ, Schroeder HW. Evidence of antigen receptor-influenced oligoclonal B lymphocyte expansion in the synovium of a patient with longstanding rheumatoid arthritis. J Clin Invest 1994; **93**:361–70.
- 6 Martin T, Crouzier R, Blaison G, Levallois H, Pasquali JL. A minor group of rheumatoid factors isolated from a patient with rheumatoid arthritis is derived from somatically mutated V κ 1 genes; further evidence that rheumatoid factors during autoimmune diseases undergo an antigen driven maturation. Autoimmunity 1993; **15**:163–70.
- 7 Randen I, Brown D, Thompson KM *et al.* Clonally related IgM rheumatoid factors undergo affinity maturation in the rheumatoid synovial tissue. J Immunol 1992; **148**:3296–301.
- 8 Gause A, Kuppers R, Mierau R. A somatically mutated V kappa IV gene encoding a human rheumatoid factor light chain. Clin Exp Immunol 1992; 88:430–4.
- 9 Thompson KM, Randen I, Borretzen M, Forre O, Natvig JB. Variable region gene usage of human monoclonal rheumatoid factors derived from healthy donors following immunization. Eur J Immunol 1994; 24:1771–8.
- 10 Chen PP, Fong S, Carson DA. Rheumatoid factor. Rheum Dis Clin North Am 1987; 13:545–68.
- 11 Randen I, Mellbye OJ, Forre O, Natvig JB. The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand J Immunol 1995; **41**:481–6.

- 12 Gause A, Gundlach K, Zdichavsky M *et al.* The B lymphocyte in rheumatoid arthritis: analysis of rearranged V κ genes from B cells infiltrating the synovial membrane. Eur J Immunol 1995; **25**:2775–82.
- 13 Schröder AE, Greiner A, Seyfert C, Berek C. Differentiation of B cells in the non-lymphoid tisssue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 1996; 93:221–5.
- 14 Cook GP, Tomlinson IM. The human immunoglobulin $\rm V_{H}$ repertoire. Immunol Today 1995; 16:237–42.
- 15 Pascual V, Capra JD. V_H 4-21, a human V_H gene segment overrepresented in the autoimmune repertoire. Arthritis Rheum 1992; 35:11–18.
- 16 Brown CM, Longhurst C, Haynes G, Plater Zyberk C, Malcolm A, Maini RN. Immunoglobulin heavy chain variable region gene utilization by B cell hybridomas derived from rheumatoid synovial tissue. Clin Exp Immunol 1992; 89:230–8.
- 17 Brezinschek HP, Brezinschek RI, Lipsky PE. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol 1995; 155:190–202.
- 18 Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest, 5th edn. Bethesda: NIH Publication, 1991.
- 19 Yamada M, Wasserman R, Reichard BA, Shane S, Caton AJ, Rovera G. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J Exp Med 1991; **173**:395–407.
- 20 Kraj P, Friedman DF, Stevenson F, Silberstein LE. Evidence for the overexpression of the V_H4-34 (V_H4.21) Ig gene segment in the normal adult human peripheral blood B cell repertoire. J Immunol 1995; **154**:6406–20.
- 21 Demaison C, David D, Letourneur F, Theze J, Saragosti S, Zouali M. Analysis of human V_H gene repertoire expression in peripheral CD19⁺ B cells. Immunogenetics 1995; **42**:342–52.
- 22 Bridges SL Jr, Lee SK, Koopman WJ, Schroeder HW. Analysis of immunoglobulin gamma heavy chain expression in synovial tissue of a patient with rheumatoid arthritis. Arthritis Rheum 1993; 36:631–41.
- 23 Weng NP, Snyder JG, Yu Lee LY, Marcus DM. Polymorphism of human immunoglobulin V_{H4} germ-line genes. Eur J Immunol 1992; 22:1075–82.
- 24 Sanz I, Kelly P, Williams C, Scholl S, Tucker P, Capra JD. The smaller human V_H gene families display remarkably little polymorphism. EMBO J 1989; 8:3741–8.
- 25 Lee KH, Matsuda F, Kinashi T, Kodaira M, Honjo T. A novel family of variable region genes of the human immunoglobulin heavy chain. J Mol Biol 1987; 195:761–8.
- 26 Van Es JH, Heutink M, Aanstoot H, Logtenberg T. Sequence analysis of members of the human Ig V_H4 gene family derived from a single V_H locus. Identification of novel germ-line members. J Immunol 1992; **149**:492–7.
- 27 Van der Maarel S, van Dijk KW, Alexander CM, Sasso EH, Bull A, Milner EC. Chromosomal organization of the human V_H4 gene family. Location of individual gene segments. J Immunol 1993; **150**:2858–68.
- 28 Suzuki I, Pfister L, Glas A, Nottenburg C, Milner EC. Representation of rearranged V_H gene segments in the human adult antibody repertoire. J Immunol 1995; 154:3902–11.
- 29 Klein U, Kuppers R, Rajewsky K. Variable region gene analysis of B cell subsets derived from a 4-year-old child: somatically mutated memory B cells accumulate in the peripheral blood already at young age. J Exp Med 1994; 180:1383–93.
- 30 Pascual V, Victor K, Randen I *et al.* Nucleotide sequence analysis of rheumatoid factors and polyreactive antibodies derived from patients with rheumatoid arthritis reveals diverse use of V_H and V_L gene segments and extensive variability in CDR-3. Scand J Immunol 1992; **36**:349–62.
- 31 Deftos M, Olee T, Carson DA, Chen PP. Defining the genetic origins of three rheumatoid synovium-derived IgG rheumatoid factors. J Clin Invest 1994; 93:2545–53.
- 32 Chang B, Casali P. The CDR1 sequences of a major proportion of
- © 1996 Blackwell Science Ltd, Clinical and Experimental Immunology, 106:5-12

human germline Ig V_H genes are inherently susceptible to amino acid replacement. Immunol Today 1994; **15**:367–73.

- 33 Betz AG, Neuberger MS, Milstein C. Discriminating intrinsic and antigen-selected mutational hotspots in immunoglobulin V genes. Immunol Today 1993; 14:405–11.
- 34 Borretzen M, Randen I, Zdarsky E, Forre O, Natvig JB, Thompson KM. Control of autoantibody affinity by selection against amino acid replacements in the complementarity-determining regions. Proc Natl Acad Sci USA 1994; 91:12917–21.
- 35 Borretzen M, Chapman C, Stevenson FK, Natvig JB, Thompson KM. Structural analysis of V_H4-21 encoded human IgM allo- and autoantibodies against red blood cells. Scand J Immunol 1995; 42:90–97.
- 36 Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in antigenspecific immune receptors. J Exp Med 1994; 179:323–8.

- 37 Borretzen M, Randen I, Natvig JB, Thompson KM. Structural restriction in the heavy chain CDR3 of human rheumatoid factors. J Immunol 1995; 155:3630–7.
- 38 Ravetch JV, Siebenlist U, Korsmeyer S, Waldmann T, Leder P. Structure of the human immunoglobulin mu locus: character- ization of embryonic and rearranged J and D genes. Cell 1981; 27:583–91.
- 39 Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. The repertoire of human germline V_H sequences reveals about fifty groups of V_H segments with different hypervariable loops. J Mol Biol 1992; 227:776–98.
- 40 Matsuda F, Shin EK, Nagaoka H *et al.* Structure and physical map of 64 variable segments in the 3'0-8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet 1993; 3:88–94.