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Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system
(CNS). In the recent years, accumulating evidence has supported an immunosuppressive role for
regulatory T cells (Tregs). Most studies in the context of autoimmunity have focused on the defects
of the CD4+CD25high Tregs. However, we recently demonstrated an altered function of Tr1 Treg
cells in MS, characterized by a lack of IL-10 secretion. Therefore, several major regulatory T cell
defects are involved in human autoimmune disease. Hence, the induction of Tregs or the stimulation
of Treg activity may be beneficial for the treatment of such diseases.
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1- Introduction
Despite advances in the understanding of the mechanisms regulating T cell activation, T cell-
mediated autoimmune diseases are still not well understood. Among them, multiple sclerosis
(MS) is a complex genetic disease with inflammation in the central nervous system (CNS)
white matter mediated by activated autoreactive lymphocytes (Feldmann and Steinman,
2005; Hafler and De Jager, 2005; Hafler et al., 2005; Hohlfeld and Wekerle, 2004). Once in
the CNS, these autoreactive T cells target the myelin basic protein on the myelin sheath, and
recruit more inflammatory immune cells to the site of attack (Bruck, 2005; Liu et al., 2006;
McQualter and Bernard, 2007). The pathology of the inflammatory reaction is consistent with
a T-cell mediated immune response, leading to tissue damage through activated macrophages
and microglia. This repeated inflammation and subsequent demyelination will then instigate
nerve impulses to be slowed or stopped, causing the symptoms of MS. Therefore, the
understanding of the factors controlling T cell activation, inflammation and migration within
the brain is of crucial importance (Adorini, 2004; Hohlfeld and Wekerle, 2004). Worldwide,
MS may affect 2.5 million individuals including 400,000 subjects in the US, and 80,000
individuals in the UK and it is the most common disease affecting young adults. Hence, new
approaches need to be developed in treating this disease.

In the recent years, the characterization of regulatory T cells and of their role in controlling the
immune response has been highlighted. Indeed, the loss of Treg function seems to be a critical
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factor in the pathogenesis of human autoimmune diseases (Kretschmer et al., 2006; Paust and
Cantor, 2005; Wraith et al., 2004). Several classes of Tregs have now been identified, including
the naturally occurring CD4+CD25high Tregs, as well as induced Tregs such as Tr1 and Th3
cells. Most studies of these cells in the context of autoimmunity have focused on the defects
of the CD4+CD25high Tregs. However, we also recently demonstrated an altered function of
Tr1 regulatory T cells in MS, characterized by a lack of IL-10 secretion. Therefore, several
major regulatory T cell defects that encompass the various sorts of Tregs are involved in human
autoimmune diseases. This suggests that therapies aiming at enhancing or inducing Treg
responses might be beneficial for such diseases.

2- Regulatory T cells and Multiple Sclerosis (MS)
In the past years, a resurgence of interest in regulatory T cells (Tregs) has emerged. Such T
cells have been shown to regulate the immune response by turning off the signals initiated
during the immune response. A variety of lymphocyte populations with suppressive
capabilities have been reported in both animals and humans. Shimon Sakaguchi first described
Tregs as the major contributors in controlling autoreactive T cells and maintaining a state of
peripheral tolerance to a range of self-antigens (Sakaguchi et al., 1985; Sakaguchi et al.,
1995). An early observation on suppressive activity that was lessened in patients with MS was
published in 1986 (Antel et al., 1986). The absence or depletion of Tregs cells leads to
autoimmune destruction of a wide range of target organs (Fontenot et al., 2003; Hori et al.,
2003; Khattri et al., 2003).

2a- CD4+CD25high regulatory T cells
Characterization—CD4+CD25high regulatory T cells contribute to the maintenance of
peripheral tolerance by active suppression and require cell contact in vitro to exert their negative
regulation. These cells were initially characterized in mice by expression of CD25 on CD4+
T cells (Sakaguchi et al., 1995), and the expression of FoxP3 transcription factor is crucial to
their development and function (Hori et al., 2003; Khattri et al., 2003). Several groups
demonstrated that Tregs also exist in humans and that they are very similar in phenotype and
function to their murine counterparts (Baecher-Allan et al., 2001; Dieckmann et al., 2001;
Jonuleit et al., 2001; Stephens et al., 2001; Taams et al., 2001; Taylor et al., 2001). However,
while CD25 is a useful marker to identify murine Tregs, only high CD25 expression should
be considered as Tregs in human, as intermediate CD25 expressing T cells do not exhibit
suppressive activity (Baecher-Allan et al., 2001; Baecher-Allan et al., 2003; Roncador et al.,
2005). They also expressed FoxP3, although again activated human T cells also express low
amounts of FoxP3 albeit in lower amounts than Tregs (Roncador et al., 2005; Walker et al.,
2003). They are anergic when stimulated by T cell receptor (TCR) cross-linking in vitro, and
suppress T cell activation in a non-HLA-restricted, contact-dependent manner. IL-2 signaling
is required for maintaining the homeostasis of Treg cells in vivo (Fontenot et al., 2005; Maloy
and Powrie, 2005). Additional phenotypic characterizations include CD62L expression that is
downregulated on effector T cells, no expression of CCR7 (Hoffmann et al., 2004; Noma et
al., 2005), the exclusion of cells expressing the early activation marker CD69 (Gray et al.,
2003; McNeill et al., 2007), and high-level expression of glucocorticoid-induced TNFR family-
related gene/protein (GITR) (Ono et al., 2006). Finally, the expression of E3 ubiquitin ligase,
GRAIL, is upregulated in CD4+CD25+ Tregs, and its forced expression induces a regulatory
phenotype (Mackenzie et al., 2007).

CD4+CD25+ T cells in MS—A role of these CD4+CD25high regulatory T cells has first
been shown in regulating autoimmune diseases in animal models, including EAE (Kohm et
al., 2002; Nishibori et al., 2004). In MS patients, the levels of circulating CD4+CD25+ T cells
and CD4+CD25high Treg cells are not altered (Putheti et al., 2004). However, we and others
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have reported a decrease of CD4+CD25high regulatory T cell function in patients with MS
(Haas et al., 2005; Huan et al., 2005; Viglietta et al., 2004). Indeed, a significant decrease in
the suppressive activity of CD4+CD25high regulatory T cells from peripheral blood of patients
with MS as compared with healthy donors was observed (Viglietta et al., 2004). Interestingly,
only patients in the relapsing-remitting phase exhibit impaired Treg function, characterized by
a reduction in proliferation and interferon-gamma production of CD4+CD25− responder T
cells (Venken et al., 2006). Secondary progressive patients have normal CD4+CD25+ Tregs.
Furthermore, consistently with their suppressive capacity, CD4+CD25+ Tregs from secondary
progressive MS patients have normal levels of FoxP3 expression while FoxP3 expression was
decreased in relapsing remitting MS patients.

2b. Tr1 regulatory T cells and IL-10 production
Characterization and induction—Two other populations of regulatory T cells have been
described. Type 1 regulatory (Tr1) T cells mainly exert their suppressive activity through the
secretion of IL-10 (Roncarolo et al., 2001), a potent immunosuppressive cytokine (Moore et
al., 2001), while Th3 cells suppress cell activation through TGFβ release (Bach, 2001; Chen
et al., 1994). Both in vitro and in vivo studies with recombinant IL-10 and neutralizing
antibodies revealed pleiotropic activities of IL-10 on B, T, and mast cells (Moore et al.,
2001). The anti-inflammatory role of IL-10 was demonstrated by the development of
inflammatory responses in IL-10 deficient (IL-10−/−) mice (Berg et al., 1995; Kuhn et al.,
1993). Indeed, IL-10-deficient mice spontaneously develop inflammatory bowel disease (Kuhn
et al., 1993) due to a defect in Tr1 cells that attenuates sensitivity to intestinal flora (Asseman
et al., 1999). Hence, IL-10 and IL-10 secreting cells appear to play a role in peripheral tolerance
and in protection against autoimmunity.

Tr1 cells were first identified by Roncarolo and colleagues (Groux et al., 1997). Unlike CD4
+CD25+ Tregs, no cell surface marker uniquely identifies Tr1 cells. They are not characterized
by CD25 expression, although they may express low levels following activation. They don’t
express FoxP3 (Vieira et al., 2004) and are functionally defined by their secretion of large
amounts of IL-10, modest amounts of IFN-γ, and no IL-2 or IL-4 (Bacchetta et al., 1994; Groux
et al., 1997). In vitro induction of Tr1 might be achieved by stimulation of naïve human
CD4+ T cells with anti-CD3 mAb in the presence of exogenous IL-10 and IFNα (Levings et
al., 2001). Similarly, the combination of the two immunosuppressive drugs, vitamin D3 and
dexamethasone, induces human and mouse naive CD4+ T cells to differentiate in vitro into
regulatory T cells secreting large amounts of IL-10 (Barrat et al., 2002; Cantorna et al.,
1996). Finally, CD46 activation of T cells in the presence of IL-2 leads to Tr1 differentiation
characterized by a massive secretion of IL-10 and bystander CD4+ T cell suppression (Kemper
et al., 2003), and will be further discussed in the following section. On the other hand, activation
of OX40L pathway will inhibit Tr1 differentiation (Ito et al., 2006).

Tr1, IL-10 and MS—Numerous data have revealed the importance of IL-10 in regulating
EAE (Anderson et al., 2004; Bettelli et al., 1998; Burkhart et al., 1999; Cua et al., 1999; Rott
et al., 1994; Zhang et al., 2004). The neutralization of endogenous IL-10 increased the severity
and incidence of SEB- or TNF-induced EAE relapse (Crisi et al., 1995) and the severity of the
disease is more severe in IL-10 deficient mice than in wild-type (Bettelli et al., 1998; Samoilova
et al., 1998). Mice transgenic for human IL-10 expressed under the control of the MHC class-
II promoter were completely protected from induced EAE (Cua et al., 1999). In humans, while
a preferential up-modulation of TNFα and lymphotoxin α is observed in active MS, an
increased IL-10 production is associated with stable disease (Navikas et al., 1995), and by
IFNβ treatment (Chabot and Yong, 2000). Alternatively, a decreased production of IL-10
associated with a significant increased production of IL-12p40 is detected in patients with
secondary progressive MS (Balashov et al., 2000; Soldan et al., 2004; van Boxel-Dezaire et
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al., 1999). Dendritic cells from patients with MS produce more IL-23 than healthy controls,
which affects IL-10 production (Vaknin-Dembinsky et al., 2006). Low amounts of IL-10
production are associated with higher disability and MRI lesion load in secondary progressive
multiple sclerosis (Petereit et al., 2003). Patients with MS have also diminished frequencies of
IL-10 secreting innate TCR-reactive T cells (Vandenbark et al., 2001). Altogether, these data
suggest a likely defect in T cell activation leading to generation of regulatory T cells and
regulatory cytokines such as IL-10 in MS (Beebe et al., 2002). As mentioned above, vitamin
D3 induces Tr1 cells secreting IL-10, and inhibits Th1-mediated autoimmune diseases
including EAE (Cantorna et al., 1996). A definitive proof of the role of IL-10 in controlling
EAE was recently shown by Spach and colleagues (Spach et al., 2006). The authors
demonstrated that the strong inhibition of myelin oligodendrocyte peptide (MOG(35–55))-
induced EAE development by vitamin D3 and 1,25-(OH)(2)D(3) was dependent on the
functional expression of both IL-10 and IL-10R (Spach et al., 2006). These data also suggest
that 1,25-(OH)(2)D(3) may be enhancing an anti-inflammatory loop involving IL-10 secreting
Tr1 cells This is further supported by a study in severe asthma patients that describes the in
vitro inhibitory potential of human Tr1 cells induced by vitamin D3 and dexamethasone, to
inhibit cytokine production by allergen-specific Th2 cells (Xystrakis et al., 2006).
Dexamethasone is ineffective in the induction of IL-10 in CD4+ T cells from glucocorticoid
resistant asthma patients as compared with their glucocorticoid-sensitive counterparts. The
authors now show that the addition of vitamin D3 with dexamethasone could potentially
increase the therapeutic response to glucocorticoids in glucocorticoid resistant asthma patients,
via the induction of IL-10 producing cells. Hence, a definitive role of IL-10 and IL-10 secreting
cells has been demonstrated in human pathologies.

3- CD46, T cell activation and IL-10 production
3a. CD46

CD46 (previously called Membrane Cofactor Protein, MCP) is a ubiquitously expressed
protein, first identified as a member of the regulators of complement activation family (Seya
et al., 1999). It is a type I membrane protein which is a regulatory part of the complement
system. It has cofactor activity for inactivation of complement components C3b and C4b by
serum factor I, which protects the host cell from autolysis by complement (Kemper and
Atkinson, 2007). In addition, CD46 can act as a receptor for many pathogens (Cattaneo,
2004; Riley-Vargas et al., 2004), including the Edmonston strain of measles virus, human
herpesvirus-6, adenoviruses A and B, type IV pili of Neisseria gonorrhoeae and Neisseria
meningitidis as well as group A streptococcus, and has been called a “pathogens’
magnet” (Cattaneo, 2004). The basic structure of CD46 is composed of four “short consensus
repeats” and a region rich in serine, threonine and proline (STP region) followed by a
transmembrane segment, an intracytoplasmic anchor of 12 amino acids and a short cytoplasmic
tail. So far, eighteen isoforms are produced due to the alternative splicing of various exons
(Dhiman et al., 2004). In particular, four major isoforms are produced (BC1, BC2, C1, and
C2), depending on the alternative splicing of an exon in the STP region (B) and of the exon 13
that results in two distinct intracytoplasmic tails of 16 (Cyt-1) or 23 (Cyt-2) amino acids
(Russell et al., 1992). These isoforms are usually co-expressed in any given tissue, except for
brain and kidney where a preferential expression of Cyt-2 is observed (Johnstone et al.,
1993).

3b. CD46 and the CNS
The blood-brain barrier (BBB) is composed of tight junctions, which prevent the entry of large
proteins into the CNS, and crossing this barrier is precisely regulated and crucial for the immune
surveillance of the brain. Interestingly, CD46 is highly expressed at the BBB (Shusta et al.,
2002). This has been shown by a subtractive expression cloning methodology, identifying
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proteins with enriched expression at the BBB in comparison to liver and kidney tissues.
Johansson et al. analyzed the infection of human CD46-expressing transgenic mice by
Neisseria meningitides, the causative agent of meningococcal meningitis (Johansson et al.,
2003), which binds to CD46 (Kallstrom et al., 2001). They show that transgenic mice
expressing human CD46 were susceptible to meningococcal disease, because bacteria crossed
their BBB. Therefore, CD46 mediates access to the meninges by promoting passage of the
BBB. As Cyt-2 is predominantly expressed in the human brain, it might enhance inflammatory
responses, and explain the lethal effect of Neisserial infection in CD46 transgenic mice.
Therefore, one can hypothesize that CD46 plays a role in the activation and/or migration of T
cells in the brain of patients with MS.

3c. CD46 is a costimulatory molecule for human T cells
T cell activation occurs upon TCR engagement. However, efficient T cell activation needs a
concomitant stimulation with a costimulatory molecule. The major costimulatory molecule
described so far is CD28, a member of the B7 family (Sharpe and Freeman, 2002). However,
CD3/CD46 costimulation promotes T cell proliferation with a potency comparable to CD28
(Astier et al., 2000). Enhanced proliferation was accompanied by drastic morphological
changes of primary human T cells and actin relocalization (Zaffran et al., 2001), along with
activation of Vav, critical for TCR activation and T cell activation-induced actin cytoskeleton
rearrangements, as well as Rac activation, a GTPase of the Rho family. Such findings were
reinforced by a recent report showing that CD46 modifies T cell and NK cell polarization
(Oliaro et al., 2006). Of note, the functional orthologue of CD46 (that is not expressed in
rodents) in rat or in mice (Crry) is also a costimulatory molecule for murine T cells (Fernandez-
Centeno et al., 2000; Jimenez-Perianez et al., 2005), suggesting a new biological function for
these complement regulatory molecules (Morgan et al., 2005).

3d. CD46 is an inductor of human Tr1 cells
The role of CD46 in human T cell activation has been strongly supported by the fact that CD46/
CD3 costimulation of human primary T cells in the presence of IL-2 induced a T regulatory
(Tr1) phenotype, characterized by a massive production of IL-10 and granzyme B, and the
ability to suppress the proliferation of bystander CD4+ T cells (Grossman et al., 2004; Kemper
et al., 2003). Low strength of TCR stimulation leads to a lack of sustained proliferation of CD3/
CD46-generated Tr1-like cells that is due, at least partially, to a G0/G1 blockage in their cell
cycle progression, with the inability to degrade p27/kip1, and to an increased sensitivity to cell
death (Meiffren et al., 2006). However, depending on the costimulatory signals, CD46
activated T cells can also differentiate towards a Th1 response with increased IL-10, IL-2 and
IFNγ secretion, but decreased IL-5 production (Sanchez et al., 2004). As CD46 acts as a
receptor for many pathogens, Kemper’s group has investigated if such pathogens could directly
induce Tr1-like cells through their interaction with CD46 (Price et al., 2005). They showed
that interaction of the streptococcal ligand for CD46 indeed led to Tr1 differentiation. These
data highlight the importance of CD46 in the regulation of the immune response through the
induction of Tr1 cells and IL-10 production.

4- Tr1 induction is dysregulated in patients with MS
The importance of regulatory T cells in the pathology of autoimmune diseases has been
demonstrated by various groups, who demonstrated a defect in the CD4+CD25high regulatory
T cells in patients with MS (Balandina et al., 2005; Haas et al., 2005; Huan et al., 2005; Viglietta
et al., 2004) as well as in other human autoimmune diseases (Bluestone and Tang, 2005;
Christen and von Herrath, 2004; Feldmann and Steinman, 2005). Considering the central role
of Tr1 cells and IL-10 in regulating immune responses, we postulated that patients with MS
would have multiple defects in immunoregulatory T cells, including Tr1 cells. As mentioned
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above, CD46-activated T cells acquire a Tr1 phenotype. We therefore determined whether
CD46 activation was impaired in patients with MS. A striking difference was observed between
healthy donors and patients (Astier et al., 2006). While no significant difference was observed
in the proliferation of the cells, little to no IL-10 was secreted by CD46-activated T cells from
patients with MS as compared to healthy donors. The lack of IL-10 production was specific to
CD46 as it was not affected upon CD28 stimulation. Increasing strength of stimulation by
stronger TCR stimulation or enhanced IL-2 concentrations did not restore IL-10 production.
The deficit in IL-10 secretion was also specific to this cytokine as the concentrations of
IFNγ secreted by CD46-activated T cells were not affected. These data demonstrate that human
autoimmune diseases can be associated with multiple defects in regulatory T cell populations.

As mentioned above, an increased IL-10 production is often associated with remissions (Clerici
et al., 2001; Correale et al., 1995; Navikas et al., 1995), and induced by IFNβ treatment (Chabot
and Yong, 2000; Ozenci et al., 1999). However, when IL-10 secretion by T cells from untreated
and IFNβ treated patients was examined, no difference was observed between these two groups
of patients. This suggests that while IFNβ has a therapeutic effect, it does not appear to target
Tr1 cells, but likely acts on the other cells producing Il-10 such as Th2 cells, B cells or
monocytes. It would be interesting to determine what affects IL-10 production by Tr1 cells.
Nevertheless, our results suggest that pharmacologic interventions that induce IL-10 secretion
by CD4 cells are viable interventions in patients with MS.

5. Divergent roles of the two intracytoplasmic isoforms in a murine model of
inflammation

The two intracellular tails of CD46 produced by alternative splicing, Cyt1 and Cyt2, are co-
expressed in human cells, although the proportion of Cyt1 to Cyt2 isoforms can slightly vary
(Russell et al., 1992), with a predominant expression of Cyt2 in the brain. As suggested by
Russell, it is possible that a selective recruitment of each isoform to determined specific
signaling complexes might result in a different signaling outcome, and therefore in a different
biological response (Russell, 2004). The specific role of each cytoplasmic isoform has been
evaluated using a model of transgenic mice expressing either one of the intracytoplasmic
isoforms. Mice do not express CD46, except in testes. Furthermore, there is no homology
between the sequences of the mouse and human cytoplasmic domains. The two cytoplasmic
tails exhibited antagonist effect on T cell-dependent contact hypersensitivity reaction. Cyt1
inhibited the inflammatory reaction, whereas Cyt2 augmented the inflammation (Marie et al.,
2002). The two isoforms exerted opposite effects on CD4+ T cell proliferation, as Cyt1
expression enhanced proliferation while Cyt2 inhibited it. Of note, the morphological changes
observed in human T cells after CD46 stimulation were only reproduced when CD46-Cyt1
was expressed. In contrast, only the Cyt2 isoform promoted CD8+ T cell cytotoxicity. Finally
Cyt1 engagement was shown to inhibit IL-2 secretion, while the Cyt2 isoform inhibited IL-10
secretion (Marie et al., 2002). Thus, CD46 differentially regulates T cell–mediated
inflammatory responses and contact hypersensitivity reactions depending on its cytoplasmic
tail. This suggests that depending on which cytoplasmic tail is expressed or activated, CD46
stimulated T cells might acquire or not a regulatory phenotype.

6. Altered cytoplasmic isoforms expression in T cells from patients with MS
As discussed above, the analysis of CD46 transgenic mice showed that the two distinct
cytoplasmic isoforms of CD46 have distinct functions in terms of T cell activation and cytokine
production, and differentially control inflammation. As these two isoforms are co-expressed
in any given tissue, except for brain and kidney where a preferential expression of Cyt2 is
observed (Johnstone et al., 1993), their role in IL-10 secretion hadn’t been elucidated in
humans. Expression of both CD46 cytoplasmic isoforms was studied in healthy donors and
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patients with MS (Astier et al., 2006). Their relative expression was determined by qRT-PCR
using primers specific for each cytoplasmic tail. When patients with MS were compared to
healthy donors, no difference was observed in freshly isolated T cells. However, upon
activation, an increase in Cyt2 isoform was detected in patients with MS, but not in healthy
donors. Hence, the reduced secretion of IL-10 by Tr1 cells from patients with MS was
associated with an increased expression of the Cyt2 isoform of CD46. Of note, these data
correlated with the results found in the mouse, where Cyt1 inhibited inflammation while Cyt2
augmented it (Marie et al., 2002). These data suggest that CD46 Cyt2 might be the most
important isoform in the regulation of inflammation in human, although more data should be
collected, and it should be assessed in different autoimmune diseases.

7. CD46 and HHV6 in MS
As mentioned above CD46 is also the receptor for HHV6 (Santoro et al., 1999). This is of
much interest in the case of MS, as links between viral infection such as HHV6 infection and
development of MS have been demonstrated. HHV-6 is present in active MS plaques
(Challoner et al., 1995), and the patients have increased IgM response towards HHV6 antigens
during the RR phase of the disease (Soldan et al., 1997). Moreover, a recent study followed
the HHV6 viral load and clinical data in a one-year follow-up of a cohort of 63 patients and
healthy donors (Alvarez-Lafuente et al., 2006). They show that RR patients in relapse have
active HHV6 replication and increased EDSS, suggesting that exacerbations are associated
with active HHV6 replication. Hence, one may hypothesize that the increasing viral load will
activate the T cell population in the brain through CD46. As CD46 is deficient in patients with
MS, this will lead to further damage and inflammation.

8- Future pathways
MS is a complex disease with genetic predisposition and environmental influences, as well as
immunological defects. It has proven heritability, and the association of selective allelic
variants likely leads to a higher risk of developing disease (Hafler and De Jager, 2005; Hafler
et al., 2005). Ultimately, several immunologic alterations will lead to the profound loss of
tolerance associated with CNS white matter inflammation. Hence, future investigations can
examine defects in IL-10 secretion and whole genome association scans to determine whether
it is related to genetic or environmental influences. Similarly, the use of whole genome RNAi
libraries will be of use to determine new genes involved in the regulation of IL-10 (Astier et
al, manuscript in preparation). Future studies will then focus on the role of the newly discovered
genes in IL-10 production in patients with MS. Ultimately, the precise dissection of the cascade
leading to IL-10 production and Tr1 differentiation will be understood. It will open new means
to manipulate the immune system in humans, with an impact in autoimmune diseases such as
MS in which a deficit in IL-10 production likely participates in the neuroinflammation observed
in these patients.

Conclusion
CD46 has been only recently identified as a regulator of T cell activation. However, our recent
data as well as others’ have demonstrated its crucial role in the fine regulation of the immune
response. According to the results found in the CD46 transgenic mouse model, CD46
cytoplasmic isoforms could induce either an anti-inflammatory response through Tr1
differentiation or a pro-inflammatory response. This is further supported by our findings in
MS. CD46 is dysregulated in patients with impaired IL-10 production, and an increased Cyt2
isoform expression, as summarized in Figure 1. Hence, the interference with the signal
transduction cascade initiated by CD46 on human T cells may be targets of novel strategies to
treat autoimmune diseases, such as MS.
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Figure 1. Altered Tr1 differentiation in patients with MS.
CD46 activation of human T cells induces Tr1 differentiation and IL-10 secretion with an
equivalent level of both CD46 cytoplasmic isoforms Cyt1 (C1) and Cyt2 (C2). This pathway
is dysfunctional in patients with MS, as upon CD46 stimulation, T cells do not produce IL-10.
This is also associated with an increased expression of CD46 –Cyt2 (C2) isoform. This likely
contributes to the neuro-inflammation observed in these patients.
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