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The rate of evolution in both natural populations and artificially selected lines is
dependent upon the amount of genetic variation present. Any form of selection
that helps to maintain genetic variation, rather than destroying it, is then of special
interest to the evolutionist and the breeder. A common form of selection that
would seem at first sight to favor the maintenance of variation is "optimizing"
selection, in which the probability of survival and reproduction of individuals is
smaller the greater their deviation from some intermediate optimum phenotype.
Some form or other of optimizing selection has been the object of theoretical

investigation for many years, with the purpose of finding the requirements that
such selection maintain genetic variation in stable equilibrium. Wright6 examined
a quadratic model in which fitness of genotypes falls off as the square of the devi-
ation of the genotype from an optimum. He showed that there could be no stable
equilibrium of gene frequencies if dominance was complete or if there was no
dominance. Robertson5 considered a variety of optimum models and also con-
cluded that for no dominance or complete dominance, no stable equilibrium of gene
frequency existed. Kojima,2 on the other hand, showed that at intermediate levels
of dominance, the quadratic deviation model could lead to stable gene frequency
equilibrium provided a certain relationship holds between the level of dominance
and the location of the optimum in the phenotypic scale. The range of values of
dominance and optimum phenotype for which stable gene frequency equilibrium
occurs was calculated and given graphically by Kojima2 on the assumption that the
gene loci involved are at perfect linkage equilibrium. This result was advanced
slightly farther by Lewontin,3 who showed that for a variety of numerical cases
predicted to be stable by Kojima, the presence of linkage was not a disturbing
factor. That is, stable equilibrium existed for the more realistic models that
allowed for the effect of linkage.

It was with some interest, then, that we encountered in these PROCEEDINGS an
article by Jain and Allard' reporting that the introduction of linkage even at a re-
combination level of 0.50 resulted in a smaller region of stability than that given
by Kojima2 and Lewontin,3 so that ignoring linkage disequilibrium leads to a sub-
stantial overestimation of the region of stability. In view of the fact that the region
of stability given by Jain and Allard was too small for the case of one locus for
which an exact solution is known, we thought it would be worthwhile to examine
their report in general, using a somewhat more exact numerical method.

This paper will show that for the quadratic deviations model, the introduction of
linkage increases the region of stability over that given by Lewontin3 and Kojima2
rather than decreasing it as more recently reported by Jain and Allard. I While this
increase is small for free recombination, it is quite marked for tight linkage. The
region of stability obtained with the assumption of linkage equilibrium is perhaps
at its minimum. Disregarding linkage disequilibrium may be considered as a case
of linkage with a very high recombination value, such that in every generation
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crossing-over occurs to such a large extent that the product of coupling gametes
equals the product of repulsion gametes. Tight linkage increases the region of
stability and results in greater linkage disequilibrium.

Wright's quadratic deviation model for two loci was considered, in which the fit-
ness of a phenotype falls off as the square of the deviation of that phenotype from
an optimum. We assume that each of the two loci has two alleles, that the con-
tribution from each locus is equal, that there is random mating among the selected
individuals, that they are linked with a recombination value of R, and that for the
jth locus, the phenotypes of the three zygotic types are:

BjBj Bjbj bjbj
2a (1+h)a 0

where a is the contribution of a favorable allele, and h is degree of dominance.
It should be clearly understood that the phenotype and the optimum referred to

in this paper are not absolute, but relative as determined by two loci. In other
words, we are assuming that all other loci are fixed and that their contribution to
the phenotype is zero.
The fitness, W, of an individual is determined by the expression:

W = 1 - K(P _ 0)2,

where K is a constant whose value for convenience is taken to be equal to the
reciprocal of maximum value of (P - 0)2, P is the phenotype of an individual, and
0 is optimum phenotype.
The equations for change of frequency of the four gametic types each generation

are given by Lewontin and Kojima.4 For each parameter set examined, we began
at linkage equilibrium and with gene frequencies equal to 0.37 and 0.79 at the two
loci. The gene frequencies and gametic frequencies in successive generations were
calculated using a Fortran program for the IBM 7094 until no change in gametic
frequency was observed in the seventh decimal place. This often required several
thousand generations. The point reached by the process was considered an equi-
librium value.

Test for Stability.-The equilibrium frequencies of the three types of gametes
(AB, Ab, aB) were disrupted in the following eight ways. The disrupted frequency
of the fourth type (ab) was found by difference.

++± +-+ +-- --+
++- -++ -+-

Here plus indicates an addition and minus a subtraction of 10 per cent of the
equilibrium frequency to and from itself. In those cases where the equilibrium
frequency was too close to fixation to be perturbed by 10 per cent, perturbation was
1 per cent. In some cases perturbation could be done in only four of the above
eight ways because of the closeness of the frequencies to 0 or 1. The equilibrium
frequency was considered as stable if in all of the above eight (four) cases, optimizing
selection, starting with the disrupted frequencies, led to the same original equi-
librium values.
The other method used for the stability test was to disrupt the equilibrium gene

frequencies at both the loci in four ways: + +, + -, - +, - -. Equilibrium
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was considered stable if disrupted gene frequen-
4

cies in all four cases returned to the same equili- B
I

brium frequencies. 3 D

Recombination values of 0.50 and 0.01 were
considered. As optimizing selection continued, o 2
linkage disequilibrium was generated. In cases
where the equilibrium gene frequency was close
to fixation, linkage disequilibrium was very
small but never zero. 0

Combinations of values of optimum and de- 0 .1 .2 .3 A .A.6 7 .6 .9 1.0
gree of dominance at which equilibrium was
reached under the quadratic deviation model FIG. 1.-Region of stability. The
for two loci are given in Figure 1. Values of ordinate is the value of the optimum

scaled in units of gene effect, a. The
the optimum scaled in the units of gene effect, abscissa is the dominance, h. Region
a, are shown along the ordinate. Values of BCD is for 50 per cent recombination,
the levels of dominance are represented along and region ACD is for 1 per cent re-combination. At h = 1.0 there is no
the abscissa. The shaded region represents equilibrium.
the region of stability where both the loci are
segregating.
For recombination of 50 per cent, the points of stability lie in the region BCD.

This region lies within the band of width a formed by two dashed lines. At lower
levels of dominance, the region is narrower and becomes wider as the value of h
approaches but does not reach 1.0. For 0 < h < 0.20 and h = 1.0, there is no
value of the optimum which gives stable equilibrium. The upper bound of the
region coincides exactly with that found by Kojima2 and Lewontin,3 but is quite
different from that shown by Jain and Allard.' As regards the lower bound of the
region, Jain and Allard' agreed with Kojima2 and Lewontin.3 In our study the
lower bound is similar to that reported by these workers for 0.20 < h < 0.90, but
markedly differs for values of h between approximately 0.90 and 1.0. These work-
ers showed that as h increases beyond about 0.90 and approaches 1.0, the region of
stability disappears rapidly. In our study the region continued to exist even at
h = 0.99. Stable equilibrium was reached at 3.0 < optimum < 3.9 with h = 0.99.
The region BCD is slightly larger than that shown by Kojima2 and Lewontin,3 and
much larger than that reported by Jain and Allard.' Ignoring linkage disequi-
librium does not lead to substantial overestimation of the region of stability as
reported by Jain and Allard,' but would result in a slight underestimation. The
amount of underestimation increases as the recombination value decreases.
Recombination of 1 per cent greatly increases the region of stability, resulting in

the maintenance of greater genetic variation. In Figure 1, extension of the region
of stability toward the lower levels of dominance represents the additional region of
stability due to tight linkage. The lower limits of the degree of dominance at
which no stable equilibrium is reached now lie between 0.0 and 0.03, inclusive. At
R = 0.50, the optimum of 2.9a gave no stable equilibrium, whereas at R = 0.01 the
optimum of 2.5a had several stable points. The upper bound is the same as with
R = 0.50. The lower bound has changed considerably, and stretches even below
the dashed line which forms a lower boundary of the band of width a. The addi-
tional region of stability due to tight linkage lies near the lower boundary where the
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TABLE 1
LIMITS OF OPTIMUM VALUES IN THE REGION OF STABILITY WITH SOME PARAMETERS AT

STABLE EQUILIBRIUM
-1 Per Cent Recombination 50 Per Cent Recombination

h 0 D W p = p2 h 0 D W pI = p2
0.05 3.0 -0.0544 0.9750 0.7545 0.22 3.5 -0.0001 0.9881 0.9635

3.5 -0.0002 0.9875 0.9883 3.6 * 0.9920 0.9965
(.1( 2.6 -0.1577 0.9812 0.5785 0.30 3.3 -0.0011 0.9812 0.8869

3.5 -0.0005 0.9877 0.9773 3.6 * 0.9921 0.9843
0.20 2.5 -0.1862 0.9852 0.5376 0.35 3.2 -0.0018 0.9777 0.8484

3.5 -0.0015 0.9881 0.9576
0.30 2.5 -0.1919 0.9848 0.5260 0.40 3.1 -0.0026 0.9739 0.8102

3.6 -0.0003 0.9921 0.9810
0.40 2.6 -0.1856 0.9815 0.5321 0.45 3.1 -0.0025 0.9736 0.8064

3.6 -0.0009 0.9924 0.9660 3.7 * 0.9955 0.9932
0.50 2.6 -0.1885 0.9785 0.5213 0.50 3.0 -0.0033 0.9689 0.7682

3.7 -0.0001 0.9956 0.9859
0.60 2.7 -0.1785 0.9733 0.5302 0.60 3.0 -0.0029 0.9668 0.7636

3.7 - 0.0003 0.9957 0.9766 3.7 * 0.9957 0.9781
0.70 2.8 -0.1609 0.9674 0.5479 0.70 3.0 -0.0025 0.9638 0.7631

3.8 * 0.9980 0.9915 3.8 * 0.9980 0.9918
0.80 2.9 -0.1254 0.9612 0.5804 0.85 3.0

3.8 * 0.9980 0.9883 3.9 * 0.9995 0.9980
0.90 3.0 -0.0532 0.9566 0.7095 0.90 3.0 -0.0006 0.9550 0.5965

3.9 * 0.9995 0.9973 3.9 * 0.9995 0.9973
0.98 3.0 -0.0032 0.9510 0.5417 0.99 3.0 * 0.9510 0.5156

3.9 * 0.9995 0.9990 3.9 * 0.9995 0.9995
Blank cells indicate that the given combinations of h and 0 were not tried.
* Indicates very small negative values.

equilibrium gene frequencies are near 0.5. This leads to fewer chances for the
equilibrium frequencies to go to fixation by drift, and thus results in the maintenance
of greater genetic variation for a longer time.
Table 1 gives the values of optimum (0) and levels of dominance (h) which repre-

sent some stable equilibrium points near the boundary of the region of stability,
together with the gene frequencies at equilibrium (p1 and p2), the linkage disequi-
librium (D), and mean fitness (W). It is to be understood that the upper and lower
values of the optimum resulting in stable equilibrium at a given level of dominance
are not the exact limits. They represent the limits tried closest to the boundary.
For example, at R = 0.50 and h = 0.30, the upper and lower values of the optimum
are given as 3.6a and 3.3a, respectively. These are not the exact limits. From
Figure 1 it is clear that the exact limits are between 3.6a and 3.7a for upper limit
and between 3.2a and 3.3a for lower limit.
Summary.-The conditions for stability of gene frequency equilibrium have been

investigated for natural selection favoring an intermediate optimum phenotype
with the so-called "quadratic deviations" model. We find, contrary to the report
of Jain and Allard, that tightening the linkage between the genes controlling the
character increases the region of stability of equilibrium over that given by Lewontin
and Kojima, on the assumption of no linkage. When recombination is about 1 per
cent, almost any value of dominance can lead to stable gene frequency equilibrium.
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