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ABSTRACT In order to clarify whether or not the electronegative olfactory mu- 
eosal potentials (EOG) are generator potentials, the effects of changed ionic 
enviroment were studied. The EOG decreased in amplitude and in some cases 
nearly or completely disappeared, when Na + in the bathing Ringer solution was 
replaced .by sucrose, Li +, choline +, tetraethylammoninm + (TEA), or hydrazine. 
In the K+-free Ringer solution, the negative EOG's initially increased and then 
decreased in amplitude, In Ringer's solution with increased K +, the negative 
EOG's increased in amplitude. When K + was increased in exchange for Na + in 
Ringer's solution, the negative EOG's decreased, disappeared, and then reversed 
their polarity (Fig. 6). Next, when the K + was replaced by equimolar sucrose, 
Li +, choline +, TEA+, hydrazine, or Na +, the reversed potentials recovered com- 
pletely only in Na+-Ringer's solution, but never in the other solutions, Thus,  the 
essential role of Na + and K + in the negative EOG's was demonstrated. Ba ++ 
was found t ° depress selectively the electropositive EOG, but it hardly :decreased 
and never increased the negative EOG. Hence, it is concluded that Ba ++ inter- 
feres only with CI- influx, and that the negative EOG's are elicited by an 
increase in permeability of the olfactory receptive membrane to Na + and K +, 
but not to CA-. From the ionic mechanism it is inferred that the negative EOG's 
are in most eases composites of generator and positive potentials. 

Since the pioneer work by Hosoya and Yoshida (1937) in the dog, and by  
Ottoson (1954, 1956) in the rabbi t  and frog, the electrical phenomena elicited 
in the olfactory epithelium by  application of odors have been extensively 
studied and much new information has been obtained. Besides the electro- 
negative slow potentials of the " o n "  type found by  the above workers, and 
named "electro-olfactogram (EOG)"  by  Ottoson (1956), electronegative po- 
tentials of the "off"  type (Takagi and Shibuya, 1959, 1960 a, b, c; Takagi,  

55 ° 

The Journal of General Physiology



S. F. TaxAoI, G. A. Wvs~, H. Krr~v-m% AND K. ITO. Na + and K + in EOG 553 

Shibuya, Higashino, and Arai, 1960; Shibuya, 1960; Higashino, Takagi and 
Yajima, 1961; Ai and Takagi, 1963; Shibuya and Takagi, 1963 a, b; Geste- 
land, 1964; Gesteland, Lettvin, and Pitts, 1965; Higashino and Takagi, 1964; 
Takagi and Yajima, 1964, 1965; Takagi and Wyse, 1965) and electropositive 
ones of the on type (Takagi, Shibuya, Higashino, and Arai, 1960; Higashino 
and Takagi, 1964; Takagi, Wyse, and Yajima, 1966) and of the off type 
(Shibuya, 1960; Gesteland et al., 1965), and electropositive after potentials 
(Takagi et al., 1966) have been discovered. 

There is no doubt that all these potentials are generated in the olfactory 
epithelium which is composed of the olfactory cells, the sustentacular cells, 
the basal cells, and Bowman's glands. However, the origins of these potentials 
in the epithelium have not been determined as yet. Ottoson (1956, 1963 a), on 
the basis of his own experiments, concluded that the electronegative EOG is a 
generator potential which elicits afferent discharges in the olfactory nerve. 
However, when the olfactory mucosal potentials were recorded together with 
the induced wave in the olfactory bulb, some questions were raised regarding 
his hypothesis (Takagi et al., 1960; Takagi, 1967 a). A more important find- 
ing against the hypothesis was recently obtained by Shibuya (1964), who 
showed that the mucosal potential can be dissociated from the olfactory nerve 
twig discharges when the olfactory mucus is absorbed with soft absorbent 
paper. On the other hand, a finding which seemed favorable for the hypothesis 
was obtained when the mucosal potentials disappeared in the olfactory epithe- 
lium whose olfactory nerve had been sectioned previously (Takagi and Yajima 
1964, 1965). However, none of this research is considered to be conclusive at 
present (Takagi, 1967 a; Moulton and Beidler, 1967). Consequently, the 
origins and roles of the olfactory mucosal potentials are still topics for discus- 
sion. 

The present research treats the problem by studying the roles of sodium, 
potassium, chloride, and calcium ions in the electronegative mucosal poten- 
tials of on and off types. The effects of barium and other ions are also ex- 
amined. Thus, the ionic mechanisms underlying the electronegative EOG's 
are clarified. Finally, the ionic basis of these potentials is compared with that 
of other receptor potentials and a similarity of the negative EOG's with the 
end plate potential is suggested. A preliminary report has been published 
elsewhere (Takagi and Wyse, 1965), and the ionic mechanism of the electro- 
positive EOG has been described in previous papers (Takagi and Wyse, 1965; 
Takagi, Wyse, and Yajima, 1966; Takagi, 1967 b). 

M E T H O D S  

Preparation 

Bullfrogs, Rana catesbiana and swamp frogs, Rana grylio were used. The olfactory epi- 
thelium of the roof of the olfactory cavity was excised and used for experiments. 
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Solutions 

Normal Ringer's solutions used had the following compositions (mM): Na +, 116.0; K +, 
2.5; Ca ++, 2.2; CA-, 116.9; HCO3 +, 6.0. In later experiments, a solution containing 
Na +, 117.6; K +, 2.5; Ca ++, 2.0; CI-, 121.5; HPO4++, 1.1; H2PO4 +, 0.4 was used with 
no significant difference in results. In order to make sodium-deficient solutions, nor- 
mal Ringer's solution was mixed with isotonic (6% Overton, 1902) sucrose solution 
containing the same concentrations of potassium and calcium as above. Sodium-free 
Ringer's solutions contained the same concentrations of other ions as normal Ringer's 
solution. In place of sodium chloride, equimolar choline chloride, tetraethylam- 
monium chloride, or lithium chloride was used. Potassium was substituted for sodium 
in the bicarbonate or phosphate buffer. A sodiun~free hydrazine Ringer solution was 
prepared after Koketsu, Cerf, and Nishi (1959). K+-Ringer's solution was made by 
replacing Na + by K+ and K + by Na + in Ringer's solution. This solution contained 
117.6 mM K +, 2.5 m~l Na +, 2.0 rn~ Ca ++, 121.5 mM CA-, 1.1 mM HPO4 ++, and 0.4 mM 
H~PO4 +. 

Stimulants 

Menthone and/or  amyl acetate vapors were used to elicit the eleclxonegative EOG of 
the on type. Saturated vapors of these odorants were mixed with purified air and were 
diluted to one-sixth or to one-thirty sixth. The negative-on EOG's  became smaller 
when the concentrations of the vapors were lowered. Consequently, saturated vapors 
were applied to elicit bigger EOG's in most cases. Ethyl ether vapor was used to 
elicit the electronegative EOG of the"on-off' '  type. Nonanesthetic and anesthetic effects 
of ethyl ether have been studied and discussed previously (Takagi et al., 1960; Ai and 
Takagi, 1963; Higashino and Takagi, 1964). When the vapor was applied at the low 
concentrations (one-sixth or one-thirty-sixth), the negative-off EOG disappeared, 
leaving only the negative-on EOG. Consequently, the saturated vapor was applied to 
generate the on-off EOG. As long as the duration of application was short (4 see in the 
present ease) and the interval between applications was a minute or more, this on-off 
EOG could be elicited repeatedly and without decrease. In addition, chloroform 
vapor was applied to elicit the "electropositive EOG" and changes of the EOG in the 
above solutions were studied for comparison with the negative EOG's. 

Recording Apparatus 

Olfactory mucosal potentials were recorded by means of a pair of nonpolarizable 
(Ringer-gelatin-zinc sulfate-zinc metal) electrodes. The potential changes between 
these electrodes were amplified with a De amplifier and recorded with a Sanborn 150 
recorder and later with a Nihon-Kohden ink-writing recorder (Tokyo). 

Experimental Procedure 

The excised olfactory epithelium was spread flat, receptor side upwards, on filter paper 
overlying a perforated Lucite platform which was suspended across a groove made in 
paraffin wax inside a Petri dish. An exploring electrode was put on the center of the 
epithelium and an indifferent electrode on the peripheral part of the filter paper. After 
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a few immersions in Ringer's solution and a few stimulations, the receptor potentials 
attained fairly constant amplitudes (Fig. 2). Odorous vapors were applied at intervals 
of a minute or more so that potentials of the same order of magnitude might be 
obtained consistently. 

At the beginning of each series of experiments the olfactory epithelium was im- 
mersed in Ringer's solution for 5 rain. Then,  the fluid level was brought down to the 
level of the filter paper, and the EOG's  were recorded as controls for subsequent 
trials. Ringer's solution was next replaced with a test solution by means of a syringe 
and a pipette. The  test solution was changed two or three times during 5 rain immer- 
sion. After the fluid level had been lowered to the level of the filter paper, EOG's were 

4 ~ ~  

7 ~  

500~v I 

FIOURE 1. Effect of Na+-free, sucrose- 
Ringer's solution. The negative-on po- 
tentials elicited by menthone vapor are 
shown in the left column, and the on- 
off potentials elicited by ethyl ether vapor 
in the right one. 1 indicates the negative 
EOG's in normal Ringer's solution. 2 to 
9 indicate changes in magnitude of the 
negative on and off EOG's in Na+-free 
Ringer's solution. The records were taken 
at intervals of 20 rain. Note the tempo- 
rary increase in magnitude of the on and 
off EOG's in 2, and the later decreases 
below 2. Short horizontal lines below 
columns of records indicate the time and 
duration (4 sec) of stimulation. 

recorded to study the effect of the solution. Three recordings were made for each of 
the negative-on and -off and positive-on and-after potentials, with the positive poten- 
tials being used for comparison and for separate analysis. Then, the remaining test 
solution was removed and the epithelium was immersed in a fresh test solution for 5 
rain. By repeating these procedures, temporal changes of the EOG's were recorded. 
In order to study the recovery process of the potentials, the test solution was replaced 
by Ringer's solution, and the same procedure was repeated. Replacement of test or 
Ringer's solution and recording of nine EOG's took about 20 rain, including 5 rain 
for immersion. The average amplitude of the EOG's of the same kind was plotted at 
intervals of 20 min with or without standard deviation (Figs. 2, 4, 5, 7-10, 12, 13). 
Changes in amplitude of the negative-on and -off potentials have been described in a 
preliminary report (Takagi and Wyse, 1965). Since the similarity between the two 
negative EOG's has been shown (Higashino and Takagi, 1964), and since the changes 
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of the negative-off potentials in test solutions generally resemble those of the negative- 
on potentials, only the behavior of the latter is shown in many figures to save space. 
Experiments were not performed in midsummer or midwinter. 

R E S U L T S  

Effect of Sodium Ions 

(a) REPLACEMENT BY SUCROSE 

When the olfactory epithelium was immersed in sodium-free sucrose solution, 
the negative-on and -off EOG's  initially increased in magni tude by  as much as 
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FIGURE 2. Temporal changes in amplitude of the negative-on EOG's in Na+-free 
(shown in Fig. 1) and low Na + solutions. Ordinate, amplitude of EOG's is expressed as 
percentage of the initial EOG's. Abscissa, minutes after first immersion in the Na+-free 
or low Na + solutions. Control means changes in amplitude of EOG's in normal (100% 
NaC1) Ringer's solution. Full explanation in the text. 

188% (the average of eight experiments was 137%) and then a decrease in 
ampli tude set in as indicated in Figs. 1 and 2. The  decrease of the negat ive  
EGG's  was initially very slow and became much slower in the later stages. 
The  negative-on potentials decreased from 30 to 58% of the original va lues  
after three immersions (1 hr) (eight experiments, mean 45.2%),  from 7 to 14% 
after six immersions (2 hr) (four experiments, mean 11.5%), and to about  2 %  
or disappeared after seven and more immersions (over 150 rain) (two experi- 
ments). The  rates of decrease were similar even when the olfactory epithelium 
was immersed in the sucrose solution for 18 instead of 5 rain (usual method) 
in each immersion. When  the sodium-free solution was replaced by Ringer 's  
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solution after several immersions, the negative-on and -off EOG's decreased 
further, and began to increase only after two or three more immersions in 
Ringer's solution. However, the recovery was slight and far from complete. 
The  recovery was far less after longer immersion in the sucrose solution. 

In 10% Na+-Ringer's solution (one part  of Ringer's solution mixed with 
nine parts of sucrose-Ringer's solution), the negative-on and -off EOG's 
showed similar changes in most cases, namely an initial increase followed by 
decrease (Figs. 2 and 10). The initial increase of the negative-on EOG reached 
179% in one experiment. Then,  the amplitudes of the potentials in this solu- 
tion began to decrease and became 42-67% of the original one after three 
immersions and 40-60% after six immersions. 

In the 25 and 50% Na+-Ringer solutions, the decreases in amplitude of the 
potentials were much more moderate and were often not preceded by an 
initial increase (Fig. 2). The  negative-on potentials were found to be 60-95% 
of the original ones after three immersions and 30-75% after six immersions. 
The  rate of decrease of the negative-on EOG's in these latter solutions de- 
pended upon the olfactory epithelium employed rather than upon the con- 
centrations of Na +. Thus, it was difficult to relate the amplitudes exactly to 
the concentrations o fNa  + aswas done inmuscle (Nastuk and Hodgkin, 1950), 
in nerve (Huxley and Sttimpfli, 1950, 1951), in the Pacinian corpuscle (Dia- 
mond,  Gray, and Inman,  1958), and in the retina (Hamasaki, 1963). 

Changes in the negative-off EOG were in general similar to those in the 
negative-on EOG (Fig. I). This similarity was also found in the succeeding 
experiments (Fig. 4). Consequently, the two types of negative EOG's may 
have the same or similar ionic mechanisms. The  recovery of the negative 
EOG's after immersion in these low Na + solutions was incomplete in all cases, 
even after 3 hr  immersion in normal Ringer's solution. 

In  these Na+-free and low Na + Ringer's solutions, the positive EOG's also 
increased initially and such increases often persisted for several immersions 
before they began to decrease in amplitude. In Na+-free and 10°-/o Na+-solu - 
tions, the maximal amplitudes were found after one immersion, but in the 
other solutions only after further immersion. The greatest increase thus far 
obtained was 427% in Na+-free solution. 

(b )  RELATION BETWEEN AMPLITUDE AND RATE OF RISE 

The  rate of rise and the amplitude of the negative EOG's were studied in 10% 
Na+-Ringer's solution. The  changes with time in rate and in amplitude were 
closely parallel (Fig. 3). Such a result is expected if Na + movement generates 
the potential: both amplitude and rate of rise (rate of Na + entry) would be 
proportional to external Na + concentration. If the potential were not due to 
the ion movement  across the olfactory membrane, the parallel changes would 
be less likely. The  gradual changes in rate and amplitude with time may be 
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due to the gradual decrease of Na + in the immediate vicinity of the olfactory 
receptive membrane (part  3 of the Discussion, see below). 

(C) REPLACEMENT BY Li + 

It  is well-known that  Li + can substitute for Na + in maintaining the normal 
activity of the frog muscle and nerve (Overton, 1902; Huxley and St~impfli, 
1950, 1951). When Na + in Ringer's solution was replaced by Li +, the ampli- 
tudes of the negative-on and -off EGG's  decreased without initial increases 
(Fig. 4). The decrease was relatively rapid, the amplitude of the negative-on 
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FIGtrRE 3. Rate of rise and amplitude of the negative-on EGG's. A, the ordinate at 
the extreme left shows the amplitude of the EGG in miltivolts and the one next to it 
shows the rate of rise in millivolts per second. The abscissa indicates time in minutes 
after the first immersion in 10% Na + Ringer's solution. The inset at the upper right shows 
the same relation in percentage. The amplitude of the EGG decreased with time, but it 
coincided well with the rate of rise in these figures. Further explanation in the text. 

E G G  falling to 17-22% of the original amplitude after three immersions and 
nearly disappearing after six immersions. This rapid decrease may  occur be- 
cause Li+ has a depolarizing action (Gallego and Lorente de N6, 1947; 
Hamasaki,  1963). When the Li+ solution was replaced by normal Ringer 's 
solution, the negative EGG's  further decreased for some time but  then began 
to increase. I t  is worthy of note that  within 2-3 hr the amplitudes of the 
negative EGG's  always recovered completely or nearly completely (Fig. 4.) 

The  positive E G G  also decreased in amplitude without an initial increase, 
and also nearly completely recovered after replacement of the solution with 
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normal Ringer's solution. This was the only solution with which complete re- 
covery of the EOG's was obtained. 

(d) REPLACEMENT BY CHOLINE 

In choline-Ringer's solution the negative-on and -off EOG's decreased in 
amplitude (Fig. 5), but  were often preceded by an initial increase. The  rates 
of decrease were very gradual;  in one case the on potential decreased only to 
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FmURE 4. Negative EOG's in Li + solution. In  Ringer's solution in which Na + was 
replaced by Li + the negative-on and -off EOG's decreased without initial increase. After 
three immersions (60 min) the solution was replaced by Ringer's solution. The potentials 
recovered completely or nearly completdy after 3 hr. The vertical bars give standard 
deviations of the amplitudes of the EOG's. 

7 0 ~  of the original value after 2 hr immersion in this solution. The  positive 
EOG always increased in amplitude (in one case up to 220~o) and then began 
to decrease. 

(e) REPLACEMENT BY TETRAETHYLAMMONIUM (TEA) 

In  the tetraethylammonium chloride-Ringer solution, the negative-on and 
-off EOG's decreased relatively rapidly in amplitude (24-40% of the original 
amplitude after the third immersion) without initial increases (Fig. 5). The  
positive EOG increased initially (one to three immersions) and then began to 
decrease. Recoveries of the negative-on and -off EOG's in normal Ringer's 
solution were prompt  and striking. This was very different from the findings 
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with  the  o ther  solutions. In  mos t  cases, however ,  r ecovery  ended  af ter  several  
immersions  in Ringer ' s  solut ion and  the  potent ia ls  aga in  began  to  decrease.  
T h e  posit ive E G G  showed lit t le recovery  in no rma l  Ringer ' s  solution. 

(f) R E P L A C E M E N T  B Y  H Y D R A Z I N E  

W h e n  Ringer ' s  solut ion was rep laced  by  Na+-free hydraz ine -Ringer ' s  solu- 
t ion,  bo th  the  negat ive  a n d  posit ive E O G ' s  decreased  in amp l i t ude  and  nea r ly  
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Fxou~ 5. The gradual changes of negative EGG's in various sodium-free media in 
contrast to the abrupt decrease of positive EGG. Temporal decrease in amplitude of 
the negative EGG's in sucrose-, Li +- , choline +- , TEA +- , and hydrazine-Ringer's solu- 
tions. In some cases, the decrease was preceded by an initial rise, but in other eases it 
was not. For comparison, the changes of the negative (above the abscissa) and positive 
(below the abscissa) EGG's in C1--free solution were added (indicated by 1). Note that 
the changes in the negative EGG's are very slow, as compared with the abrupt decrease 
of the positive EGG in C1--free solution (see also Fig. 13). Ordinate, EGG amplitude 
as per cent of control level. Abscissa, duration of immersion in various Na+-free solutions. 

d i sappeared  after  th ree  or  four  immersions  (Fig.  5). Recover ies  of bo th  po-  
tentials  in no rma l  Ringer ' s  solut ion were  always par t i a l  and  incomplete .  

T h u s  far,  no  subst i tute  ion for sod ium has been  found  a m o n g  the  above  
ions and  chemicals  which  have  been  found  to subst i tute for  N a  + in var ious  
exci table  tissues. T h e  search for such a subst i tute  ion has been  con t i nued  
a m o n g  m a n y  o the r  m o n o -  and  d iva len t  cat ions,  b u t  w i thou t  success as will be  
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shown in a paper to be published (Takagi, Ki tamura,  Imai,  and Takeuchi,  
unpublished data). Consequently, it appears that  sodium is the only cation 
which can maintain the negative EOG's  in the olfactory epithelium, al though 
other ions may  contribute to the potentials (see below). 
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Fxotm~ 6. Reversal and recovery of EOG's. When Na + in Ringer's solution was re- 
placed in steps by K + keeping the total quantity of both ions constant, the negative 
EOG's decreased in amplitude, disappeared, and then appeared with reversed polarity. 
With subsequent stepwise replacement of K + by Na +, the negative EOG's recovered 
(shown from top to bottom). Negative-on EOG's were elicited by menthone (M), and 
negative on-off EOG's by ethyl ether (E) Composition of the bathing solution is given at 
the right as the ratios of normal Ringer's to K+-Ringer's solution (in which Na + and K + 
concentrations are reversed). Thus, R is normal Ringer's solution and 8: 2 is a mixture of 
eight parts Ringer's solution and two parts K+-Ringer's solution. Short horizontal lines 
below columns of records indicate the time and duration (4 see) of stimulation. 

Effect of Potassium Ion 

( a )  REVERSAL OF EOG'S 

When Na + in the normal Ringer solution was decreased and K + was increased 
in steps, by mixing normal Ringer's solution with the K+-Ringer's solution 
(see Methods), gradual changes occurred in the amplitudes of the EOG's.  
The  negative-on and -off EOG's  decreased in amplitude, reversed their 
polarity, and then increased in amplitude with reversed polarity (Fig. 6). 
Conversely, when K + in K+-Ringer's solution was replaced in steps by Na +, 
the EOG's  changed in the opposite direction and recovered to a considerable 
extent, although the recovery was usually not complete. With  shorter immer- 
sion in K+-Ringer's solution, recoveries were greater and after one immersion 
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the  recoveries  were  comple t e  or  nea r ly  comple t e  in m a n y  cases (one such case 
is shown in Fig. 8). Thus ,  the  nega t ive  E G G ' s  change  r e m a r k a b l y  wi th  changes  
in the  concen t ra t ion  of  ex te rna l  K +. 

In  the  above  cases the  effect of  c o n c u r r e n t  Na  + var ia t ion  is shown by  the  
fol lowing expe r imen t  to be  minor .  In  K+-Ringer ' s  solution, the  concen t r a t i on  
of  N a  + was increased f rom zero  up  to 20 mM, bu t  the  reversed (originally 
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FxGtrm~ 7. Effects of K + and Na +. When the olfactory epithelium was immersed in 
K+-Ringer's solution, the negative-on EGG's shown by a thick line with filled circles 
(amyl acetate) and by a thin line with open circles (menthone) became positive. Con- 
centrafions of Na + and K + and osmotic pressure are shown at the bottom of the figure. 
Then, with [K +] kept at 117.6 mM the concentration of Na + was increased from 2.5 to 
117.6 rr~ (from left to right). Full explanation in text. 

negat ive)  potent ia ls  showed little change.  Even  when  the concen t r a t i on  o f N a  + 
was increased up  to 117.5 mM in the  solution, the  reversed potent ia ls  showed 
only  a slight recovery  (Fig. 7). Howeve r ,  when  the  concen t ra t ion  of  K + was 
again  decreased to 2.5 mM (i.e., r e tu rned  to no rma l  Ringer ' s  solution),  the  
reversed potent ia l  suddenly  and  r e m a r k a b l y  recovered  (Fig. 7). Since the 
effect of  increasing the  osmotic  pressure to twice no rma l  (p roduced  b y  N a  + 
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or sucrose) does not have any significant influence upon the EOG's  (unpub- 
lished data) ;  and since the membrane  potential of the receptor cell pre- 
sumably depends mainly upon the concentration ratio of the external and 
internal K+; it may  be concluded from the above experiments (Figs. 6 and 7) 
that  the amplitudes of the negative EOG's  depend largely upon themagnitudes 
of the membrane  potentials. Thus, a possible contribution of K + to the genera- 
tion of the negative EOG's  was indicated. 

T \  1 Sucrose 
2 Ringer 

150 3 TEA CI 
4 Hydr~e 
5 Choline CI 
6 LiC1 
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FIGURE 8. Comparison of recoveries of the reversed EOG's in various Na+-free solutions 
After the negative EOG's were reversed in K+-Ringer's solution recoveries were com- 
pared in various Na+-free solutions in which Na + was replaced by Li +, choline +, TEA +, 
sucrose, or hydrazine. Three hollow arrows at the bottom center indicate three immer- 
sions (during 60 rain) in all these Na+-free solutions except in sucrose solution. Vertical 
arrows at the bottom indicate from left to right one immersion in Ringer's solution 
(control), one immersion in K+-Ringer's solution, and after the three hollow arrows two 
immersions in Ringer's solution. In the case of sucrose-Ringer's solution (indicated by 1), 
immersions in this solution were repeated five times. Further explanation in text. 

0D) RECOVERIES OF THE REVERSED EOG~S 

Recoveries of the reversed (originally negative) potentials were studied in 
various modified Ringer 's  solutions in which Na + was replaced by  other ions. 
When K + in K+-Ringer 's  solution was replaced by Li +, the reversed potentials 
recovered to some extent and became negative. When, however, immersion in 
the same Li+-Ringer solution was repeated, recovery of the potentials stopped 
and the potentials that  had recovered again decreased in ampli tude (Fig. 8). 
Similar phenomena were observed in other solutions in which Na + was re- 
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placed by sucrose, TEA +, hydrazine, or choline + (indicated by 1, 3, 4, or 5 
in Fig. 8). In  these solutions, the negative EGG's recovered once and to vari- 
ous degrees, but then they began to decrease in amplitude. Thus, no further 
recovery was found in these solutions. In  sucrose-Ringer's solution, the initial 
recovery was remarkable (up to 150%), but the negative EGG's soon de- 
creased and disappeared after several immersions (Fig. 8). 

In  these experiments, only replacement of K + in K+-Ringer's solution by 
Na + led to complete or nearly complete recovery of the reversed potential 
and to maintenance of the recovered potential (2 in Fig. 8). These experi- 
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FIGURE 9. Effects of high K +. A, the negative EGG's of the on type (indicated by M, 
menthone) and the off type (indicated by EE, ethyl ether) increased in amplitude when 
the concentration of K + in Ringer's solution was increased two or four times normal. At 
higher concentrations than four times normal (I0 raM), the amplitude of the EGG de- 
creased in this case. B, a similar phenomenon was observed in Na+-free Ringer's solution 
(with substitution of choline chloride). The negative EGG's of the on type are indicated 
by M (mcnthone) and ALl (amyl acetate) and the off type by BE (ethyl ether). Interval 
between trials, 20 rain. Full explanation in text. 

ments, therefore, provide further evidence for the essential and irreplaceable 
role of Na + in the negative EOG's. 

(C) EOG~S IN K+-FREE OR EXCESS SOLUTIONS 

When the olfactory epithelium was immersed in the K+-free Ringer solution, 
both the positive and negative EGG's initially increased in amplitude and 
then began to decrease (Fig. 6 in Takagi et al., 1966; Fig. 13). The changes in 
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the positive EOG in this solution were discussed in this paper. Since depen- 
dence of the negative EOG's  upon the membrane potential was shown in 
Figs. 6 and 7, the initial increase of the negative potentials could be explained 
by the initial increase of the membrane potential which occurs temporarily in 
the K+-free Ringer solution. The subsequent decrease of the EOG's  could be 
explained again by the subsequent decrease of the membrane potential in the 
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FXGURE 10. Comparison of the ini- 
tial increases of negative and positive 
EOG's in 10% Na+-Ringer's solution. 
Negative EOG's are shown above the 
horizontal line indicating 0% and pos- 
itive EOG's are shown below the line. 
Increase of the negative EOG is in- 
dicated by an upward deflection of 
the lines (2 and 3), and that of the 
positive EOG by a downward deflec- 
tion of the lines (1, 2, and 3). (Ex- 
amples of increase or decrease in am- 
plitude of the positive EOG are found 
in Fig. 11.) 1, 2, and 3 represent differ- 
ent preparations. 1, initial decrease in 
the negative EOG, with marked initial 
increase in positive EOG; 2, moderate 
initial increases in both negative and 
positive EOG's; 3, marked initial in- 
crease in negative EOG, with only 
slight initial increase in positive EOG. 
Full explanation in text. 

K+-free solution (Desmedt, 1953). Conversely, when K + was increased in 
Ringer 's  solution, the negative EOG's  increased in amplitude but beyond a 
certain limit (10 rnM in Fig. 9 A) they began to decrease (compare Fig. 6). 
A similar phenomenon was found when K + was increased in a Na+-free 
choline+-Ringer's solution. In  Fig. 9 B, it is shown that  the negative EOG's  
began to decrease in ampli tude in the Na+-free choline+-Ringer solution but  
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recovered their amplitudes, when K + in the solution was increased to 10 m~. 
This experiment also indicates a contribution of K + to the generation of the 
negative EOG's. 

(d)  INTERACTION BETWEEN THE NEGATIVE AND THE POSITIVE EOG'S 

It  was very frequently observed that the amplitudes of the negative and the 
positive EOG's were inversely related: when the negative potential is rela- 
tively large, the positive potential is relatively small and vice versa. A similar 
relation was found in a 10% Na+-Ringer solution: the increase in ampli tude 
was very striking in the negative potential, but it was not so striking in the 
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B a  

FmtmE 11. Effect of Ba ++ on positive and negative EOG's. The positiveEOG (1 in 
the left column) decreased in amplitude strikingly when l r r~  Ba ++ was added to Ringer's 
solution (2 and 3), while the negative EOG's (right column) were hardly affected. Thus, 
Ba ++ specifically affects the positive EOG. The positive EOG recovered to some extent 
with repeated immersion in normal Ringer's solution (4 and 5). Further explanation in 
text. 

positive potential (3 in Fig. 10) and vice versa (1 in Fig. 10). But when both 
potentials increased simultaneously, the increases in both potentials were only 
moderate  (2 in Fig. 10). These findings also indicate a contribution of K + to 
the negative EGG's  that  will be discussed later. 

Effect of Barium Ion 

Previous work has shown that  the positive E O G  depends mainly upon the 
entry of the external chloride and the exit of the internal potassium ions 
(Takagi et al., 1966). Similar ionic mechanisms have been demonstrated in 
various positive or hyperpolarizing potentials (Takagi et al., 1966). In  the 
spinal motoneuron of the cat (Eccles, 1964) drugs were found to affect one 
such positive potential (inhibitory postsynaptic potential or IPSP). Strychnine, 
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tetanus toxin, and other antiinhibitory drugs are known to depress the IPSP. 
However,  an ion which affects the positive potential has not yet been dis- 
covered. 

Ba +÷ has such an action and depresses nearly selectively the positive E O G  
at a concentration of 1 mM or so (Figs. 11 and 12). Hence,  it is probable  that  
either C1- or K+ movement  or both  are blocked by this ion. O n  the other 
hand, the negative EOG's  were at most only slightly depressed (Figs. 11 and 
12). This indicates that the entry of Na + may  be affected by  Ba ++, but  the 
exit of K + is not. The  effect of Ba ÷+ on K ÷ movement  was further examined by  
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FmtmE 12. Effect of Ba ++ and K +. 
As in Fig. 11, Ba ++ (in this case 4 
n ~ )  decreased the positive EOG elic- 
ited by chloroform vapor (Chl), while 
it slightly decreased the negative on 
and off EOG's elicited by amyl acetate 
(AA) and ethyl ether (EE) vapors re- 
spectively. When 10 mM K + was added 
to this Ringer's solution with Ba ++, 
the negative on and off EOG's in- 
creased in amplitude, although the 
decreased positive EOG did not show 
a striking change. Addition of Ba -~+ 
and K + to Ringer's solution is indi- 
cated at the bottom of the figure. 

increasing K + up to 10 mM in the Ringer solution containing Ba ++. When K + 
was so increased, the negative EOG's  increased in ampli tude beyond the 
original level (Fig. 2). If  K + movement  were blocked by Ba ++ and if the 
decrease of the concentration gradient of K + across the receptive membrane  
were not related to the generation of the negative EOG's ,  such increases in 
high K+-Ringer 's  solution could not be expected. Thus, it is clear that K + 
movement  is not blocked by Ba ++ in the negative EOG's .  Consequently, it 
appears that  Ba ++ selectively blocks the entry of the C1- but  not  the exit of K + 
in the positive EOG.  Now, if the entry of CI-  contr ibuted to the generation of 
the negative EOG's ,  and if such entry of the ion were blocked b y  Ba ++, 



568 THE JOURNAL OF GENERAL PHYSIOLOGY • VOLUME 51 • *968 

augmen ta t ion  of the negat ive  E O G ' s  would be expected. As stated above, the 
negat ive  E O G ' s  were never  augmen ted  by  this ion. Consequent ly,  it is un-  
likely tha t  C1- contr ibutes  to the genera t ion of the negat ive EOG's .  
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FIOUI~ 13. Effects of Ca++-free Ringer's solution. When Ca ++ was removed from the 

Ringer solution, the negative EOG's (shown above the abscissa) decreased in amplitude 
without initial increase. The rates of decrease are shown with standard deviation (indi- 
cated by 1). For comparison, the changes of the EOG's in Na+-free (sucrose) (3), K +- 
free (2), and C1--free (4) Ringer's solution are added. It is worthy of note that the nega- 
tive EOG's in all these solutions decreased nearly uniformly after the first immersion, 
and that they decreased very slowly when compared with the positive EOG (shown 
below the abscissa) in C1--free solution (4). Further explanation in the text. Ordinate, 
amplitude of the EOG's shown in per cent. Abscissa, duration of immersion shown at 
20 rain intervals. 

Effect of Calcium Ion 

W h e n  the olfactory epi the l ium was immersed in Ca- - - f ree  Ringer ' s  solution, 
the negat ive (and positive) E G G ' s  gradua l ly  decreased in ampl i tude  wi thout  
initial increase (Fig. 13). 

Once  the E G G ' s  decreased in this solution, they  never  recovered even after 
immersion in Ringer ' s  solution for 3 hr. Occasionally,  a slight t ransient  re- 
covery was found,  bu t  it  was always followed by  a fur ther  decrease. In  the 
l ight  of this lack of recovery we feel tha t  the Ca++-free solution has an  irrever- 
sible deter iorat ive act ion on the olfactory receptive membrane ,  as has been 
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found in the other excitable tissues and that Ca ++ is essential to the normal 
activity of the olfactory receptive membrane. 

D I S C U S S I O N  

1. The Role of Na + 

Ionic mechanisms of the receptive membranes which produce electronegative 
potentials have been studied in several receptors. In  the Pacinian corpuscle, 
the receptor potential decreased in amplitude in Na+-free media, and the 
decreases in amplitude and rate of rise of the receptor potential were found to 
be related to the Na + concentration in the bathing solution (Diamond et al., 
1957, 1958). Although the decrease was slow and no direct result was shown, 
it was concluded that  Na + plays an important  role in the generation of the 
negative receptor potential. The  basis for this conclusion was that either 
internal anions must leave or external cations must enter the receptive mem- 
brane, that Na + is the principal cation in the external fluid, and the inward 
electrochemical gradient of this ion is large, while there are no anions inside 
the cell which seem likely to effuse. The  slow decrease was assumed to be due 
to the lamellae which surround the receptive membrane and slow down the 
change in concentration of Na + in the immediate vicinity of the receptive 
membrane. 

Similar findings were obtained in the retinas of the toad, frog, and hermit 
crab (Furukawa and Hanawa, 1955; Hamasaki, 1963; Stieve, 1965), in the 
lateral eye of the horseshow crab (Kikuchi, Naito, and Tanaka, 1962), in the 
retinula cell of the crayfish (Eguchi, 1965), in the muscle spindle of the frog 
(Ottoson, 1963 b, 1964; Calma, 1965), in the stretch receptor cell of the 
crayfish (Edwards et al., 1963), and in the sugar receptor of the fleshfly 
(Morita, Hidaka, and Shiraishi, 1966; Morita, 1967). Although in some cases 
residual receptor potentials remained in sodium-free solutions (10% in the 
Paeinian corpuscle, about 30% in the lateral eye, and 20-30o-/0 in the muscle 
spindle), and the ionic mechanisms of these remaining potentials have not 
been the subject of research, it is concluded that the sodium ion does play an 
important  role in these negative receptor potentials just as it does in the nerve 
action potential (Hodgkin, 1951). The  above data derived from these experi- 
ments, however, are still rather indirect, and do not conclusively demonstrate 
the essential role of the ion. Furthermore, the role of the sodium ion in many 
nervous tissues has been questioned in recent years and action potentials in 
the absence of Na + have been demonstrated (Koketsu, 1961; Tasaki, Singer, 
and Takenaka, 1965). 

When the olfactory epithelium was immersed in Na+-free Ringer's solutions 
in which Na + was replaced by sucrose, Li +, choline +, TEA +, or hydrazine, the 
EOG's slowly decreased in amplitude and in some eases nearly disappeared. 
In order to clarify the ionic mechanism of the negative EOG's, the arguments 
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used by Diamond et al. (1958) may  be applied to our experiments. In  addition 
to this logical approach, some positive evidence for a Na + hypothesis was ob- 
tained. First of all, none of the cations tested has been able to substitute for 
Na +, which seems to be the only cation which can maintain the negative 
EOG's. Second, in the course of recovery after the negative EOG's  were 
reversed in K+-Ringer's solution, several cations, sucrose, and hydrazine were 
substituted for Na +. Many  other mono- and divalent cations were used in a 
similar manner  (Takagi et al., unpublished data). None of them could restore 
the negative EOG's;  only with Na + was there complete or nearly complete 
recovery and subsequent maintenance of the negative EOG. In  the present 
stage of experiments, this may  be the most powerful evidence for the essential 
role of Na + in the negative EOG's. A third line of evidence for the role of 
Na + is the finding that the amplitude and rate of rise of the negative EOG's  
may  be related to the concentration of Na + around the receptive membrane.  
Similar experimental results and interpretations led Diamond et al. (1958) to 
conclude that  the generator potential in the Pacinian corpuscle is principally 
a result of Na + entry. Although the result in the present experiments is in- 
direct, it lends support to a supposition that the Na + plays an essential role 
in the negative EOG's. From the three results mentioned above, it is concluded 
that the sodium ion plays an important  role in the generation of the negative 
EOG's. 

Tucker  and Shibuya (1965) studied the "underwater"  negative E O G  in 
the olfactory epithelium of the box turtle, Terrapene carolina. The  odorous 
molecules were introduced into flowing isotonic saline solution containing 
1.4 mM CaC12 and then the odorous solution was flowed over the olfactory 
area. When Na + was replaced by equimolar sucrose, the underwater  EOG, 
which was usually less than 5 my, became extraordinarily large (over 60 my).  
Unfortunately,  Tucker  and Shibuya recorded EOG's  in sucrose-Ringer's 
solution for only 15-20 min (personal communication).  It  is likely that  the 
augmented potentials they recorded correspond to the initial increases re- 
corded in sucrose-Ringer's in the frog electroretinogram (Hamasaki, 1963) 
and in the present study. We feel that with longer exposure to the Na+-free 
solution the underwater  EOG would decrease as the EOG's  in our study did. 
The  extreme augmentat ion of the underwater  E O G  (about 1200%, as op- 
posed to 133% in the frog electroretinogram and a max imum of 188% for the 
negative and 427% for the positive EOG in our experiments) remains to be 
explained. 

2. Initial Increase in the Negative EOG' s in Na+-Free Solutions 

As was mentioned in part  1 of the Discussion, see above, the negative-on and 
-off EOG's  initially increased in ampli tude when Ringer's solution was re- 
placed by Na+-free or Na+-deficient solutions. The  resistance between a pair of 
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recording electrodes the usual distance apart was measured in normal and in 
Na+-deficient Ringer's solutions. The resistance in 10% Na+-solution was 1.7 
times that in Ringer's solution, and the resistance in Na+-free solution was 2.1 
times that in Ringer's solution. These increases in resistance of the bathing 
solutions naturally decrease the electric current flowing through intercellular 
spaces from the inner resting part of the cell membrane (source) to the outer 
depolarized site (sink), and conversely increase the electric current passing 
through the cytoplasm of the neighboring inactive cells. The membranes and 
cytoplasm of these cells have greater electric resistances than the intercellular 
spaces, and the EOG's recorded by means of such large electrodes as in the 
present experiment are composed of the potentials produced by the electric 
current flowing through the neighboring cells. Consequently, most or at least 
a greater part of the initial increase of the negative EOG's can be explained 
by this increase of the current flowing through the neighboring inactive cells. 
The same explanation can be applied to explain why the rates of decrease in 
amplitude of the negative EOG's are so slight and so slow. Without the in- 
crease in the resistance of the solution, the negative EOG's should have 
decreased much faster. 

It is well-known that the resting membrane potential of a neuron depends 
mainly upon the potassium equilibrium potential, but it is maintained at a 
lower level than the potassium potential, due to the presence of the sodium and 
chloride equilibrium potentials. When Na + in Ringer's solution is replaced by 
sucrose, and the influence of the sodium equilibrium potential is removed, it is 
possible that the resting membrane potential increases, although it did not in 
the case of the muscle experiments of Mullins and Noda (1964). If the sodium 
ion is retained in the immediate vicinity of the receptive membrane by a 
mechanism suggested in part 3 of the Discussion, see below and enters it in this 
hyperpolarized state, increase in amplitude of the negative EOG's results. In 
this unnatural condition, such hyperpolarization continues only temporarily, 
and then depolarization sets in and developes due to the movement of other 
ions. Although these changes in the membrane potential are conjectural they 
may be used to explain some of the initial increase followed by the decrease of 
the negative EOG's, if they do in fact occur. 

Movement  of N a  + across the Receptive Membrane 

The negative EOG's decrease in amplitude very slowly in various sodium-free 
solutions (Figs 2 to 5). The rates of decrease in five Na+-free Ringer's solutions 
are all comparable and are considerably slower than the rate of decrease of the 
positive EOG in Cl--free solution (Fig. 5). There are similar slow rates of 
decrease for the negative EOG in K+-free, Ca++-free, and C1--free Ringer's 
solutions (Fig. 13). Recovery of the negative EOG is also very slow after a 
decrease in Na+-free solutions. Recovery often commences only after two or 
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three immersions in Ringer's solution (except following TEA + solutions), in 
contrast to the rapid recovery of the positive EOG after exposure to C1--free 
solutions (Fig. 3 in Takagi et al., 1966). Although the rates of decrease are not 
as slow as in the negative EOG's, similar slow decreases in amplitude in Na +- 
free solutions have been found in all other receptor potentials previously men- 
tioned. In the Pacinian corpuscle, the receptor potentials took 11 to 30 min to 
decrease 10~o of the initial amplitude (Diamond et al., 1958). In the lateral 
eye, the ommatidial action potential required 47 min to decrease to about 300"/0 
(Kikuchi et al., 1962). Somewhat greater rates of decrease were found in the 
muscle spindle (10 min for the potential to decrease to 20-30~o; Ottoson, 
1964) and in the retina (disappearance of the electroretinogram in 9-15 min; 
Hamasaki, 1963). Thus, slow decreases in amplitude of the receptor potentials 
in Na+-free media seem common in most receptive membranes. 

The rate of decrease of the negative EOG in Na+-free solutions is still slower 
than in the above cases, requiring 60 min to fall to 20-50~ of the initial 
amplitude. It is also much slower than the rate of decrease of the positive EOG 
in C1--free media, recorded under the same conditions. These facts indicate 
either that the negative EOG does not result from increased Na + permeability, 
or that the Na + immediately overlying the receptive membrane is impeded by 
an ion barrier from exchanging with the surrounding fluid. The existence of 
such an extracellular ion barrier is indicated by the demonstration of EOG's in 
various animals that live in freshwater (Shibuya, 1960; Shibuya and Takagi, 
1963 a, b). The olfactory epithelia of these animals are presumably exposed to 
freshwater and to the resultant leaching of ions from around the olfactory cells. 
Since apparently normal EOG's are generated, an ion barrier is likely. 

The olfactory epithelium is covered by a layer of mucus about 100 ~ thick, 
secreted by Bowman's glands and sustentacular cells. This mucus layer may 
be the postulated barrier to ion loss to the outside solutions. Imamura, Takeda, 
and Sasaki (1965) have found a layer of frog skin, apparently of mucoprotein, 
that accumulates Na + and Ca ++. Thus mucus apparently can serve as an ion 
trap or barrier. Shibuya's (1964) finding that the EOG disappears when the 
olfactory mucus layer is removed further demonstrates the close relation be- 
tween the mucus and the potentials. 

An impediment to free exchange of ions with the bathing solutions, pre- 
sumably by the mucus layer, would explain the relatively slow decrease of the 
negative EOG in Na+-free media. The relatively rapid decrease of the positive 
EOG in C1--free medium is not necessarily inconsistent with such a barrier. 
The hydrated sodium ion is 1.55 times the diameter of the hydrated chloride 
ion, and of course has the opposite polarity. This size and charge difference 
may radically affect the ability of the ions to penetrate the mucus layer. Other 
factors such as differential effects of Na+-free and Cl--free media on the resting 
potential may also affect the different rates of decrease. 
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Role of Cl -  

If the entry of CI- contributes to the generation of the negative EOG's, re- 
moval of CI- from the bathing Ringer solution should result in increase in 
amplitude of the negative EOG's, at least in the beginning. In CI-- 
free Ringer's solution, the changes in amplitude of the negative EOG's were 
very irregular. In some cases, the EOG's simply decreased in amplitude (Fig. 
13), while in other cases, they initially increased and then began to decrease 
(Fig. 5). Thus the results obtained did not provide conclusive evidence for 
the solution of the problem. 

In the present experiments, it was shown that 1 m_~ Ba ++ blocks only the 
CI- influx, but not the K + efflux through the membrane which produces the 
positive EOG. If the CI- should play a role in the generation of the negative 
EOG's, and if such an influx of the ion should be blocked by Ba ++, augmenta- 
tion of the negative EOG's could be expected. In fact, the negative EOG's 
were never augmented by Ba ++. Consequently, the contribution of CI- to the 
generation of the negative EOG's could very probably be ruled out. The de- 
crease in amplitude of the negative EOG's at higher concentrations of Ba ++ 
(Fig. 12) indicates that the entry of Na + may be affected by this ion, but the 
efflux of K + is never affected. 

Role of K + 

Although the role of Na + has been studied in a variety of receptor potentials 
(part 1 of the Discussion, see above) the role of K + has been studied only in the 
lateral eye of the horseshoe crab (Kikuchi et al., 1962) and in the stretch 
receptor cell of the crayfish (Edwards et al., 1963). Kikuchi et al. assumed that 
the initial increase in permeability of the receptive membrane to Na + is re- 
sponsible for the rising phase of the ommatidial action potential and the sub- 
sequent increase in permeability to K + for the falling phase, although Edwards 
et al. could not determine the role of K + in the generator potential of the 
stretch receptor cell. 

In the present experiments the contribution of K + to the negative EOG's 
was examined: (a) the negative EOG's reversibly decreased in amplitude in 
proportion to the increase o fK + concentration in the bathing solution (Fig. 6). 
(b) Within a certain limit, however, they increased in amplitude (Fig. 9). The 
membrane resistance is reduced in high K + media, hence the generator poten- 
tial decreases in other sensory neurons (Edwards et al., 1963); and the mem- 
brane potential is supposed to decrease in these high K + Ringer's solutions; 
but, nevertheless, such an increase in amplitude was observed in the present 
experiments. This may indicate an active role for K + in the negative EOG's. 
(c) The negative EOG's increased in amplitude in K+-free Ringer's solution. 
(d) An interaction was observed between the amplitudes of the negative 
EOG's and that of the positive one (Fig. 10). It has been shown that the posi- 
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tive E O G  is produced primarily by the entry of CI- and secondarily by the 
exit of K ÷ (Takagi et al., 1966). The  contribution of K+ to the generation of 
both the positive and negative EOG's may  then explain their apparent  inter- 
action. A decreased exit of the internal K + should increase the ampli tude of 
the negative EOG's  and simultaneously decrease that  of the positive EOG, 
while an increased exit of the internal K + should elicit the opposite results. 
Thus the interaction of the two kinds of EOG's lends further support to the 
conclusion that K + movement  contributes to generation of the negative EOG. 
From these four findings, it may  well be concluded that K ÷ contributes to the 
generation of the negative EOG's. 

In the olfactory epithelium, K + as well as Na + appears to contribute to the 
negative EOG. Since there is no evidence of afterhyperpolarization following 
the EOG, it is likely that the Na + and K + movements are simultaneous, rather  
than the sequential movements inferred from afterhyperpolarization in the 
horseshoe crab eye (Kikuchi et al., 1962). From the experiments with Ba ++ 
(Figs. 11 and 19) it seems likely that  CI- movement  does not contribute to the 
negative EOG. The  ionic mechanism of the negative E O G  thus resembles that 
of the muscle end plate potential, which results from simultaneous increase in 
permeability to Na + and K+ but not to C1- (Takeuchi and Takeuchi,  1960). 

Role of Ca ++ 

The  importance of Ca ++ in the excitable tissues is well-known (Brink, 1954; 
Koketsu, 1965). Nonmyelinated and myelinated axons lose excitability in 
Ca++-free solutions (Frankenhaeuser and Hodgkin, 1957; Frankenhaeuser,  
1957). The  same phenomenon was found in the Purkinje fiber (Weidmann, 
1955). The  indispensability of this ion in the EGG's of the turtle has already 
been established (Tucker and Shibuya, 1965). In  the present experiments, an 
apparently deteriorative effect of Ca++-free Ringer's solution was shown in the 
olfactory receptor potential, just as in the excitable tissues. 

Recently the role of Ca ++ as a charge carrier was proven in the lower ani- 
mals (Fatt and Ginsborg, 1958; Hagiwara and Naka, 1964) and in the heart  
muscle of the frog (Hagiwara and Nakajima, 1966). In  the end plate potential 
during acetylcholine action and with low sodium media, a slight increase in 
the membrane  permeability to Ca ++ was suggested (Takeuchi, 1963). From 
the similarity in ionic mechanism of the E O G  with the end plate potential, it 
is conceivable that Ca ++ may  play a similar role in the EOG's. However, even 
if the active role of Ca ++ were proven in the negative EOG's, it would never 
contradict  the above conclusion about the essential roles of Na + and K +. The  
possibility that  Ca ++ acts as a charge carridr in the negative EOG will be 
studied in the future. 
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C O N C L U S I O N  

In the present experiments the ionic mechanisms of the negative EOG's were 
clarified, and were compared with those of various receptor potentials, elec- 
troretinograms, and muscle end plate potential. The  negative EOG's resemble 
the receptor potentials in many respects, and they resemble most the muscle 
end plate potential. Although the final proof can come only from a direct 
comparison of the EOG with single cell activity by means of an intracellular 
electrode, it is highly probable that the negative EOG's are composed of the 
generator potentials. 

However, it has been shown that an electronegative EOG is elicited by ethyl 
ether at low concentrations, but that it decreases in amplitude when the con- 
centration of ether is increased, and that in extreme cases of saturated vapor, 
the EOG disappears, or even appears with a reversed polarity (Takagi et al., 
1960). Even in the latter instances, remarkably clear induced waves appeared 
in the olfactory bulb as in the former cases. These paradoxical phenomena 
were explained by the dual action of ether: (a) its odor, which stimulates the 
olfactory receptive membrane,  producing electronegative EOG's and (b) its 
anesthetic action which effects the membrane in the opposite way, producing 
an electropositive EOG. So far, several odorous substances have been found to 
have similar dual action. I t  is assumed, therefore, that in most cases the EOG'S 
are composed of negative and positive components. In  the case of some odors, 
the electronegative component  surpasses the electropositive one, thus eliciting 
an electronegative EOG; while with other odors, the electropositive compo- 
nent is predominant  and elicits an electropositive EOG (Takagi et al., 1966). 
If such is the case, the paradoxical phenomena found in the studies on the 
EOG's can be explained. As for Shibuya's case against the generator potential 
hypothesis (1964), the dissociation of the EOG and the olfactory nerve twig 
discharge has already been discussed elsewhere (Takagi, 1967 a; Ottoson and 
Shepherd, 1967). One of the authors (S.F.T.) believes that the EOG decreased 
and disappeared because some physical conditions around the receptive mem- 
brane were altered when the olfactory mucus was removed and the conse- 
quent recording of the EOG's was not very successful. In  fact, in olfactory 
epithelia deprived of mucus, Shibuya recorded a slow potential by means of a 
microelectrode, and he believes this to be a real generator potential (personal 
communication). 

Two types of similar potentials have been recorded in single olfactory recep- 
tors of insects: one is the negative (depolarizing) potential, and the other 
positive (hyperpolarizing) potential. It  was found that the role of the negative 
potential is excitation (generator potential) and that of the positive potential, 
inhibition (Boeckh, 1967; Boeckh, Kaissling, and Schneider, 1967). These 
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f indings in insects also s u p p o r t  the  au tho r s '  v iew on  the  in te rac t ion  b e t w e e n  
the  two  kinds  of  E O G ' s  wi th  oppos i te  polari t ies.  

I n  the  l ight  of  the  ionic m e c h a n i s m s  a n d  the  two oppos ing  poten t ia l s  el ici ted 
b y  m a n y  odorous  substances ,  it m a y  well  be  conc luded  t h a t  the  nega t ive  
E O G ' s  a re  in m o s t  cases compos i tes  of  the  two  poten t ia l s :  t rue  g e n e r a t o r  po-  
tentials ,  the  ionic m e c h a n i s m  of  wh ich  was  s tudied in the  p resen t  e x p e r i m e n t s ;  
a n d  the  o the r  po ten t ia l s  of  oppos i te  polar i ty ,  the  origins a n d  funct ions  of  wh ich  
a re  n o w  be ing  invest igated.  

Addendum Hosoya and Yoshida (1937) found that the surface of the olfactory epi- 
thelium is always 1-6 mv negative with respect to the basal side of the epithelium. 
The  origin of this standing potential is still entirely open to question. Consequently, 
our conclusion implying two potentials does not necessarily negate the possibility of 
other unknown potentials contributing to the EOG's.  
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