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The emergence of multiresistant bacterial strains and the continuing burden of
infectious disease globally point to the urgent need for novel affordable antimicrobial
drugs. Thioridazine is a phenothiazine antipsychotic drug with well-recognized antimi-
crobial activity, but this property has not been harnessed for clinical use as a result of
its central nervous system and cardiac side-effects. The cardiotoxicity of thioridazine
has recently been shown to be structurally specific at a molecular level, whereas its
antimicrobial properties are shared by a number of phenothiazine analogues. This
raises the possibility that its enantiomers or its inactive metabolite, the ring sulphoxide,
may act as a lead compound in the future development of antimicrobial drugs to face
the new challenges in infectious disease.

Introduction
Phenothiazine drugs, in addition to their antipsychotic
properties, have significant antimicrobial activity against
a wide variety of intracellular microorganisms [1], as
they are concentrated almost 100-fold in macrophages
[2] and lung [3].

The prototypical phenothiazine drug, methylene blue
(methylthioninium chloride), was shown to be active
against Plasmodium falciparum by Ehrlich in 1891 [4].
Subsequently developed phenothiazines, such as chlor-
promazine, have proven in vitro bacteriostatic and bacte-
ricidal activity against several microorganisms, including
Mycobacterium tuberculosis. This antimicrobial poten-
tial has not been harnessed to date due to concern over the
sedative and extrapyramidal side-effects and the car-

diotoxicity of phenothiazine drugs at the plasma concen-
trations required to achieve bactericidal effects.

Thioridazine (an alkylpiperadine phenothiazine), pre-
viously used extensively for its antipsychotic properties,
has recently attracted interest as a potential candidate for
development as an antimicrobial drug, as it is associated
with the lowest risk of extrapyramidal side-effects of
the phenothiazine drugs [5]. However, thioridazine can
cause cardiac repolarization abnormalities and QTc
prolongation at therapeutic doses [6–8] and reports of
torsade de pointes [9] are well documented. A series of
studies showing increased risk of QTc prolongation [6,
10] and sudden death [11–13] in patients treated with
thioridazine has led to a re-evaluation of its use by drug
regulatory agencies worldwide, culminating in the
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voluntary withdrawal of branded versions of the drug
by Novartis in June 2005. Although it is still available
in generic form, there has been a marked decline in
prescription of thioridazine in developed countries.

The antimicrobial properties of phenothiazine drugs
(with particular reference to thioridazine) and recent
developments in our understanding of thioridazine car-
diotoxicity are reviewed in this article, followed by a
discussion of their implications for potential clinical use
and further drug development.

The need for new antimicrobial agents
The development of antibiotic therapy has led to a
massive reduction in the morbidity and mortality asso-
ciated with infectious diseases in the developed world.
Nevertheless, the incidence of serious nosocomial infec-
tions resulting from the emergence of bacterial strains
resistant to conventional antibiotics, in particular,
methicillin-resistant Staphylococcus aureus (MRSA)
and vancomycin-resistant enterococci, has significantly
increased over the past decade [14]. Although glycopep-
tide (vancomycin and teicoplanin) and oxazolidinone
antibiotics (linezolid) are available for the treatment
of MRSA-associated infections, vancomycin-resistant
strains are emerging and the cost of these drugs is pro-
hibitive in developing countries.

Mycobacterium tuberculosis currently infects over 2
billion people worldwide and accounts for >1.5 million
deaths annually. The global proportion of multidrug
resistant (MDR) TB is estimated to be around 1–2% of
all cases [15]. The resurgence of tuberculosis amidst the
global acquired immunodeficiency syndrome epidemic
and the increasing frequency of drug-resistant strains are
matters of public health concern worldwide.

Resource-poor developing countries continue to
suffer the socioeconomic and health consequences of
endemic diseases such as malaria, leishmaniasis and
Chagas disease. Over 3 billion people live in regions
where malaria is endemic. Malaria is a devastating
disease with an annual morbidity of 300–500 million
people and annual mortality of over one million [16].
Chloroquine-resistant strains of P. falciparum, respon-
sible for the most lethal form of human malaria, are
now common in most malaria-endemic regions where
artemisinin-based therapies are often unaffordable.
Twelve million people are estimated to be infected and 2
million new cases of leishmaniasis occur annually
worldwide [17]. Of the population of Latin America,
25% is at risk of acquiring Chagas’ disease. Current
antitrypanosomal drugs such as nifurtimox are highly
toxic, resulting in poor patient compliance.

The emergence of multidrug-resistant bacteria has led
to revived interest in the search and development of new
antibiotics to add to our existing armamentarium.
However, with the spiralling cost of new drug discovery
estimated to exceed $750M per new chemical entity
[18], there is insufficient economic incentive for the
pharmaceutical industry to develop novel drugs to tackle
infectious diseases endemic in developing countries. In
this context, the development of existing chemical enti-
ties with documented antimicrobial activity must be
explored in an attempt to bring affordable drugs to the
billions of people worldwide afflicted by common
endemic infectious diseases.

Antimicrobial activity of thioridazine
MRSA
Thioridazine, in addition to its activity against intracel-
lular methicillin-susceptible S. aureus (MSSA) [19], has
demonstrable activity against MRSA with minimum
inhibitory concentrations (MIC) ranging between 16 and
50 mg l-1 [20–22]. Addition of thioridazine at concen-
trations of 25–50% of its MIC to conventional antibiot-
ics has led to a two-to-eightfold reduction in the MIC of
norfloxacin [22] and a reduction in the MIC of oxacillin
from >500 mg l-1 to 10 mg l-1 against some MRSA
strains [23]. This is due to inhibition by thioridazine of
bacterial efflux pumps which confer antibiotic resistance
[22–24]. In addition, at subinhibitory concentrations,
thioridazine inhibits the replication of phagocytosed
MRSA and causes ultrastructural changes in the cell
envelope structure, resulting in bacterial lysis after
phagocytosis [21]. The mechanism of action of thior-
idazine is not fully understood, but the ultrastructural
changes are similar to those produced by b-lactam anti-
biotics, suggesting that inhibition of membrane-bound
enzymes may partly be responsible.

Enterococcus species
Multiresistant enterococci have emerged as a cause of
serious nosocomial infections over the past decade.
These strains produce b-lactamase enzymes conferring
resistance to multiple antibiotics, including penicillins,
carbapenems and glycopeptides, and also possess mul-
tidrug resistance efflux pumps. The finding that methyl-
ene blue and two methylated derivatives have
bactericidal activity against vancomycin-resistant patho-
genic strains of Enteroccus species [25] has led to the
investigation of thioridazine as a potential antienterococ-
cal antibiotic. Thioridazine inhibits E. faecalis and E.
faecium strains (originating from human infections and
animal faecal flora) at a concentration of 16–32 mg l-1,
regardless of their antibiotic sensitivity. At subinhibitory
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concentrations, thioridazine has shown synergistic
effects when combined with vancomycin or ampicillin,
by a mechanism unrelated to P-glycoprotein-mediated
multidrug resistance [26].

Mycobacterium tuberculosis
Thioridazine has significant in vitro activity against sus-
ceptible and multidrug-resistant strains of M. tuberculo-
sis, with reported MIC varying from 6 to 32 mg l-1

[27–29]. It also acts synergistically with some first-line
antituberculous drugs [30] and may allow reduced doses
of these drugs to be used. In vitro experiments using
THP-1 macrophage cell lines and human peripheral
monocyte-derived macrophages infected with M. tuber-
culosis have shown that the minimum bactericidal con-
centration of thioridazine is as low as 0.1 mg l-1, with
complete killing occurring within 3 days of infection
[29]. Phenothiazines affect a number of key mycobacte-
rial targets [31–33]. They bind to and inactivate calm-
odulin, a calcium transport protein which is a vital
constituent of the cell wall envelope of mycobacteria
[34–36]. Development of resistance to thioridazine is
unlikely, as mutations affecting mycobacterial calcium
flux would affect the viability of the organism. Genomic
analysis of M. tuberculosis led to identification of type II
nicotinamide adenine dinucleotide (NADH) dehydroge-
nase as a key enzyme for bacterial growth under aerobic
conditions and a specific target for drug action, as
human mitochondria only use type I NADH dehydro-
genase. The antituberculous activity of phenothiazines
appears to be partially due to specific inhibition of
type II NADH dehydrogenase, as determined by
NADH:menaquinone oxidoreductase activity [37].

Plasmodium falciparum
Since the initial description of its activity against P.
falciparum by Ehrlich [38], methylene blue has been
shown to inhibit P. falciparum glutathione reductase.
Evaluation of methylene blue in combination with chlo-
roquine in children with uncomplicated P. falciparum
malaria in sub-Saharan Africa has confirmed its antima-
larial effects [39]. Newer phenothiazines have also been
shown to have in vitro activity against P. falciparum
[40–42]. In a preliminary screening study of existing
chemical entities against two strains of P. falciparum,
thioridazine inhibited growth of P. falciparum within
clinically achievable therapeutic plasma concentrations
of thioridazine (effective 50% inhibitory concentrations,
EC50, of 1.9 and 2.6 mm) [43].

Trypanosoma cruzi
Trypathioninone plays a prominent role in the redox
defences of pathogenic Trypanosoma species. Phenothi-

azines inhibit two key trypanosomal enzymes, try-
panothione reductase [44] and dihydrolipoamide
dehydrogenase [45, 46], and also induce mitochondrial
disruption in epimastigote and tripomastigote forms
by formation of cationic free radicals through the
peroxidase/H2O2 sytem [47]. In mice with experimental
Chagas’ disease, thioridazine significantly improved
survival and cardiac function in the acute phase [48, 49]
and chronic phase of the disease [50].

Other parasites
Thioridazine has been shown to be the most active phe-
nothiazine agent against Pseudomonas aeruginosa,
Stenotrophomonas maltophilia [19] and M. avium in
vitro [51]. Although thioridazine has not been tested
specifically, other phenothiazines also appear to be
active against Leishmania species [52, 53], Schistosoma
mansoni and Trypanosoma brucei and gambiense [54].

Clinical pharmacology of thioridazine
Following oral administration, thioridazine is rapidly
absorbed, with peak plasma concentrations occurring
within 2–3 h [8]. Plasma concentrations of thioridazine
and its metabolites achieved in clinical use show wide
interindividual variability and are affected by factors
such as age, smoking and genetic polymorphisms in
drug-metabolizing enzymes [55–57]. Thioridazine is
widely distributed to tissues throughout the body.

Thioridazine is metabolized to mesoridazine
(thioridazine-2-sulphoxide), which undergoes further
2-oxidation to sulphoridazine (thioridazine-2-sulphone).
Thioridazine also undergoes 5-oxidation to the ring
sulphoxide (thioridazine-5-sulphoxide) (Figure 1) [8].
Studies using human liver microsomes suggest that the
metabolism of thioridazine to mesoridazine and sul-
phoridazine is catalysed mainly by CYP2D6, but
CYP1A2 and CYP3A4 are the main isoforms involved
in the formation of the ring sulphoxide [58]. Drug–drug
interactions may therefore occur when drugs which
inhibit or induce CYP2D6, CYP1A2 or CYP3A4 are
used concomitantly. Smokers have lower plasma con-
centrations of thioridazine, mesoridazine and sulphori-
dazine compared with nonsmokers [56, 57]. Patients
who are genetically poor metabolizers of CYP2D6 or
take drugs which are potent inhibitors of CYP2D6 have
higher plasma concentrations of thioridazine and the
ring sulphoxide due to inhibition of metabolism to
mesoridazine [55, 57].

The therapeutic thioridazine plasma concentration for
its antipsychotic efficacy is 0.5–1.0 mg l-1. Thioridazine
exhibits linear kinetics within the dose range used clini-
cally. The plasma concentrations of thioridazine and its
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metabolites per mg of thioridazine given orally as a
single dose and at steady state after chronic once-daily
dosing are shown in Table 1. The mean half-life of thior-
idazine is 6.5 h in healthy volunteers after single dosing,
but may be significantly prolonged to 40 h in the elderly.
The ring sulphoxide is the main metabolite in chroni-
cally treated patients due to its longer elimination half-
life (Table 1) [8].

Thioridazine, mesoridazine and sulphoridazine are all
potent D2 receptor blocking agents in rat and rabbit
striatal membranes [59, 60], suggesting that they all
contribute to the antipsychotic effects and the extrapy-
ramidal side-effects of thioridazine. However, the ring
sulphoxide metabolite (thioridazine-5-sulphoxide) is
thought not to have antipsychotic activity [61].

Thioridazine is administered clinically as a 50 : 50
racemic mixture of its two enantiomers (R) and

(S)-thioridazine. In isolated rat brain preparations (R)-
thioridazine has 2.7 times higher affinity than (S)-
thioridazine for D2 receptors, and acute administration
of (R)-thioridazine to rats induced slightly more cata-
lepsy than (S)-thioridazine and appeared to be more
toxic at large doses [62].

Cardiotoxicity of thioridazine
The cardiac effects of thioridazine are related to the
concentration-dependent blockade of the cardiac
delayed inward rectifier potassium channel (Ikr) [63,
64]. Mesoridazine has similar concentration-dependent
Ikr channel blocking activity to the parent drug [65].
Thioridazine and, more recently, mesoridazine have
been shown to prolong the QTc interval following
single-dose administration to healthy volunteers [8,
66]. It has been postulated that the cardiotoxic effects

Figure 1
Metabolic pathway of thioridazine in man
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of thioridazine may be due to the ring sulphoxide as a
result of the reported cardiotoxic effects in the isolated
perfused rat heart [67] and in dogs [68]. Conflicting
animal studies [68, 69] and findings of recent studies
in patients treated with thioridazine and in healthy
volunteers receiving mesoridazine have cast doubt on
this hypothesis [57, 66]. The QTc interval at steady
state was shown to be significantly correlated with
the plasma concentrations of thioridazine and its
2-oxidation metabolites (mesoridazine and sul-
phoridazine), but not with the 5-oxidation metabolite
(ring sulphoxide) [57]. The effect of the ring sulphox-
ide on Ikr channels has not been studied and these find-
ings should be considered preliminary. Nevertheless,
recent understanding of the mechanism of thioridazine
Ikr blockade at the molecular level may explain why the
ring sulphoxide does not appear to prolong the QTc
interval in patients on thioridazine and may pave the
way to derivatives of thioridazine which do not cause
this side-effect.

Human ether-a-go-go-related gene (hERG) potassium
(K+) channels mediate the rapidly activating delayed
rectifier K+ current (IKr), which plays a key role in repo-
larization of the ventricular action potential. This is not
involved in the electrophysiology of the rat and studies
in the isolated perfused rat heart cannot therefore be
extrapolated to man. In man, four hERG subunits
assemble as a tetramer to form the ion channels that
conduct the Ikr current. They consist of voltage sensor
regions (S1–S4) and pore regions (S5–S6). The pore-
forming unit of the Ikr channel contains a high-affinity
drug binding site, of which aromatic amino acids present
in the inner (S6) helices are key components [70]. It has
been demonstrated that thioridazine causes Ikr blockade
as a result of binding to the S6 helix amino acid residue
F656 [71]. Single mutation F656A at this site leads to

almost complete abolition of thioridazine-induced Ikr

blockade [71].
As a result of the specificity of thioridazine-induced

blockade, it is possible that 5-sulphoxidation leads to
molecular changes, which reduce the affinity of the ring
sulphoxide for that binding site.

Potential antimicrobial use of thioridazine
Thioridazine shows most promise for the adjunctive
treatment of infections caused by multiresistant strains
of intracellular organisms such as M. tuberculosis and P.
falciparum in resource-poor countries [40]. Although
the in vitro MIC against M. tuberculosis is high, killing
of phagocytosed mycobacteria in macrophages occurs at
a thioridazine concentration of 0.1 mg l-1 (which is clini-
cally achievable using oral doses as low as 10–20% of
those used in psychiatry) because of the ability of mac-
rophages to concentrate phenothiazines [29]. Plasma
thioridazine concentrations corresponding to the in vitro
inhibitory concentrations of 0.75–1.0 mg l-1 for two
strains of P. falciparum [43] can be achieved using oral
doses used in psychiatric practice. Further evaluation is
required in animal models of infection to determine
whether clinical efficacy can be achieved in vivo prior to
the conduct of clinical trials in man. The potential use of
low-dose thioridazine as antimycobacterial prophylaxis
in HIV-infected patients in areas with a high prevalence
of HIV seropositivity may also be explored.

With the advent of newer antipsychotic drugs with a
better safety profile, the use of thioridazine in psychiatry
has declined in developed countries as the risk–benefit
ratio is considered to be unfavourable. However, large
epidemiological studies have shown that the risk of car-
diotoxicity is small, with <20 episodes of torsade de
pointes or sudden death potentially attributable to use of
thioridazine occurring per 10 000 patient-years of treat-

Table 1
Pharmacokinetic parameters of thioridazine and metabolites

Thioridazine Mesoridazine Sulphoridazine Ring sulphoxide

Mean half-life after single 50-mg dose (h)* 6.5 8.7 9.6 18.4
Mean peak plasma concentration per mg thioridazine

after single 50-mg dose (mg l-1 mg-1)*
2.0 5.0 0.9 2.1

Range of steady-state plasma concentration per mg
thioridazine after once daily dosing (mg l-1 mg-1)†

0.4–8.8 0.6–13.4 0.2–3.3 0.2–41.0

*Values for half-life and peak concentrations after single dosing are derived from Hartigan-Go et al. [8]. †Values for thioridazine,
mesoridazine and sulforidazine are derived from Berecz et al. [56], and for the ring sulphoxide from Thanacoody et al. [57].
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ment [12, 72]. In areas with a high prevalence of drug-
resistant malaria and TB, the potential benefits outweigh
the risks and conduct of clinical trials and subsequent
clinical use of thioridazine may be justified if clinical
efficacy is demonstrated. Investigation of methylene
blue in combination with chloroquine in children with
malaria in an area of high chloroquine resistance dem-
onstrates that such clinical trials are both ethically jus-
tifiable and feasible [39].

Although thioridazine is active against resistant
strains of S. aureus and enterococci, the plasma concen-
trations required for bactericidal activity as a single
agent are not clinically achievable without intolerable
side-effects and therefore preclude its use for serious
bacteraemic infections with these organisms. Neverthe-
less, the use of thioridazine in combination with other
antibiotics for its synergistic effects deserves some
further investigation, as higher concentrations of thior-
idazine may be achieved in infected tissues despite
plasma concentrations lower than the MIC seen in vitro.

Potential avenues for drug development
Novel derivatives of thioridazine that have reduced
affinity for the Ikr channel and dopamine receptors but
have higher potency as an antimicrobial have potential to
meet the new challenges in infectious disease.

This is theoretically possible since a number of phe-
nothiazine agents and various derivatives of thioridazine
exhibit antimicrobial activity in vitro, although the
metabolites of thioridazine have not specifically been
investigated. In preliminary studies, novel derivatives of
thioridazine enhance the bactericidal activity of phago-
cytosed M. tuberculosis at concentrations of 0.1 mg l-1

[73]. Phenothiazine analogues with greater potency have
also been characterized and shown to suppress M. tuber-
culosis growth in a mouse model of acute infection [37].
The S-enantiomer of thioridazine and other phenothiaz-
ine isomers has also recently been demonstrated to have
antimicrobial properties with reduced central nervous
system effects [74]. Different EC50 values were obtained
for analogues of thioridazine when tested against two
strains of P. falciparum, raising hope that structural opti-
mization may be possible [43]. The antimicrobial prop-
erties of thioridazine therefore appear to lack the same
structural specificity required for its cardiotoxic effects.

As thioridazine-5-sulphoxide does not appear to have
antipsychotic effects which is the result of binding to
dopaminergic receptors in the brain, it is unlikely to
cause troublesome sedating and extrapyramidal side-
effects and could therefore serve as a lead compound in
the development of more potent and safer derivatives for
clinical use. In addition, thioridazine-5-sulphoxide exist

as two pairs of enantiomers in equal concentrations,
known as thioridazine-5-sulphoxide fast-eluting (FE)
and slow-eluting (SE), based on their separation proper-
ties by chromatography [75]. The characteristics of these
enantiomers are unknown, but they are likely to have
differing affinities for the D2 receptor and Ikr ion chan-
nels, offering another potential avenue for optimization
of the structure–activity relationship.

Conclusions
Thioridazine may have lost its shine as an antipsychotic,
but its potential as an antimicrobial can no longer be
ignored, least of all in the vast areas of the world plagued
by endemic infectious diseases. Further ‘proof of
concept’ studies are required to investigate the binding
of the ring sulphoxide and its enantiomers to the Ikr

channel and dopamine receptors in vitro. Partnerships
between academia and the pharmaceutical industry offer
the best chance of developing a safe, effective and
affordable drug using an existing chemical entity as a
lead compound.

Competing interests: None to declare.
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