
Overview of model-building strategies in population
PK/PD analyses: 2002–2004 literature survey
C. Dartois,1,2 K. Brendel,3,4 E. Comets,3,4 C. M. Laffont,5 C. Laveille,6 B. Tranchand,1,2,7 F. Mentré,3,4,8 A. Lemenuel-Diot5 &
P. Girard1,2

1Université de Lyon, Lyon, 2Université Lyon 1, EA3738, CTO, Faculté de Médecine Lyon Sud, Oullins, 3INSERM U738, Paris, 4Univeristé
Paris 7, UFR de Médecine, Paris, 5Institut de Recherches Internationales Servier, Courbevoie, France, 6EXPRIMO NV, Meehelen, Belgium
and 7Centre Anticancéreux Léon Bérard, Lyon, 8AP-HP, Hôpital Bichat, UF de Biostatistique, Paris, France

What is already known about this subject
• The reviews already published on population

pharmacokinetic/pharmacodynamic (PK/PD) analyses
have focused on theory and have presented some clinical
applications, evaluated validation practices in limited
circumstances, defined the interest and sometimes the
complexity of this approach in drug development or
proposed a list of relevant articles.

• None of them has exhaustively evaluated published
analyses and more precisely the model-building steps.

• In view of the statistical complexity of population PK/PD
methodology, more attention is required to how models
are built and how they are reported in the literature.

What this study adds
• With a strict methodology and by establishing a standardized

tool, this survey provides an exhaustive, objective and
up-to-date review of model-building practices.

• It reveals deficiencies in information reporting in most articles
and the genuine need for guidance in publishing.

• An initial, minimal list of items is suggested, which can be
used by authors and reviewers in pharmacology journals.

• The value of published peer-reviewed papers could be greatly
improved if authors were to address the suggested list of
items systematically.
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Aims
A descriptive survey of published population pharmacokinetic and/or
pharmacodynamic (PK/PD) analyses from 2002 to 2004 was conducted and
an evaluation made of how model building was performed and reported.

Methods
We selected 324 articles in Pubmed using defined keywords. A data abstraction form
(DAF) was then built comprising two parts: general characteristics including article
identification, context of the analysis, description of clinical studies from which the data
arose, and model building, including description of the processes of modelling. The
papers were examined by two readers, who extracted the relevant information and
transmitted it directly to a MySQL database, from which descriptive statistical analysis
was performed.

Results
Most published papers concerned patients with severe pathology and therapeutic
classes suffering from narrow therapeutic index and/or high PK/PD variability. Most of
the time, modelling was performed for descriptive purposes, with rich rather than
sparse data and using NONMEM software. PK and PD models were rarely complex
(one or two compartments for PK; Emax for PD models). Covariate testing was
frequently performed and essentially based on the likelihood ratio test. Based on a
minimal list of items that should systematically be found in a population PK–PD
analysis, it was found that only 39% and 8.5% of the PK and PD analyses, respectively,
published from 2002 to 2004 provided sufficient detail to support the model-building
methodology.

Conclusions
This survey allowed an efficient description of recent published population analyses,
but also revealed deficiencies in reporting information on model building.
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Introduction
The earliest work in the field of population pharmaco-
kinetics (PK) appeared in the late 1970s [1, 2]. During
the 1990s, the number of papers describing the popula-
tion approach applied to pharmacodynamics (PD) and
dose–effect models increased dramatically [3]. Recently,
the number of population PK/PD publications has esca-
lated further. Success in this field can be attributed to the
fact that this approach, which can be performed using
different techniques (two-stage, nonlinear mixed effect
model, Bayesian hierarchical model), has greatly
improved the efficiency of PK analyses. It leads to quan-
tification of variability and identification of relevant
covariates by modelling the PK of a typical patient asso-
ciated with different levels of variability. The population
approach allows one to collect integrated information on
PK from only a few measurements per subject and it can
be applied easily in the clinic and in drug development
[4–8]. In the clinic, the population approach can provide
prior information for hospital therapeutic drug monitor-
ing; it allows the study of PK and/or PD in specific
populations of patients, understanding and anticipation
of drug interactions or tolerances to treatment, and the
study of compliance issues in oral and long-term
therapy. In drug development, where it is promoted by
the drug authorities, it is frequently used to combine data
from different clinical trials and in the application
process [9–12]. Coupled with Monte-Carlo simulations,
it can be used to optimize future clinical trials according
to the number of patients, inclusion and exclusion crite-
ria, dosage regimen, study length, dates of visits, toxic-
ity and efficacy.

The main drawback of population PK/PD methodol-
ogy is its statistical complexity [4, 13]. It requires the
use of many models (structural, interindividual, intrain-
dividual and covariate), numerous statistical assump-
tions (random and fixed effects distribution) as
enumerated by Karlsson et al. [14] and a variety of esti-
mation methods (algorithms and approximations) [15,
16]. In this context, population analyses should be per-
formed carefully and reported precisely [17–19]. Ideally,
this description should include the purpose of the model
and possible model applications, a relevant description
of the data used for model building and description of
their exploratory examination, listing of model-building
steps, and a description of all submodels, of the final
model and of the qualification process [11], the aim
being to allow an independent modeller (with access to
the data) to redo the analysis. Faced with the aforemen-
tioned complex issues, the quality and completeness of
published analyses vary greatly. In the 1990s, a first
exhaustive review of the literature from 1977 to 1996

was performed by Mentré and Ebelin to illustrate and
comment on these different aspects [3].

The main objective of the present study was to
perform an exhaustive survey of recently published
population PK/PD analyses. A secondary objective was
to assess whether model-building steps are correctly per-
formed and reported, based on a list of minimal items
that should always be documented. The methodology
was as follows: first, papers cited in MEDLINE
(Pubmed) from 2002 to 2004 were selected using spe-
cific keywords; second, a questionnaire was constructed
in order to establish a data abstraction form (DAF); and
third, all the selected papers were carefully read, the
questions in the DAF were answered and information
was entered into a database. This study includes a
description of DAF building and paper selection, pre-
sents the survey results in terms of the data used in the
modelling and in term of model building. Another paper,
using the same database but a different DAF, addresses
the question of population PK–PD model qualification
[20]. These present results focus on model-building
practices, on which no exhaustive and detailed review
has ever been published.

Methods
Article selection
Initial article selection was performed in MEDLINE
(Pubmed) using a list of keywords aimed at captur-
ing papers concerning population PK, PD or PK–PD
published from 1 January 2002 to 12 December 2004:
((population AND model*) OR (non AND linear AND
mixed AND effect*) OR bayesian OR hierarchical
OR NONMEM OR nlme OR NLMIXED OR P-PHARM
OR WinNonMix OR *bugs OR NPLM OR NPEM OR
Kinetica OR ADAPT OR ITRLS OR MP2) AND
(PK-PD OR PK-PD OR PBPK OR pharmacokinetic*
OR pharmacodynamic*). Additionally, the search was
limited to ‘English language’ and ‘human data’. Based
on the abstract or, if necessary, on the full article, papers
were then further limited to those dealing with medica-
tions or analyses performed on original clinical data.
Reviews and methodology articles were excluded.

Data abstraction form building
The methodology used for building the DAF was based
on the work of Boutron et al. [21], who published
several systematic reviews using a checklist of items.
The DAF was constructed around a single statistical unit
defined as a PK, PD or PK–PD model, rather than the
paper itself. The rationale was based on the fact that our
work focused mainly on describing the quality of pub-
lished models and techniques used to qualify them,
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rather than on the quality of published papers. Conse-
quently, when a paper described more than one model, it
had as many entries in our database as the number of
models described in the paper. A two-part grid was then
created. The first part, devoted to general characteristics,
included article identification, context of the analysis
and description of clinical studies from which the data
arose. Article identification (number of items = 4) con-
tained generalities about the paper and the journal in
which it was published. Context of the analysis (number
of items = 7) collected information about authors and the
treatment administered. It characterized the nature of the
authors’ laboratory (industry/academia), the therapeutic
classes and names of administered drugs. Therapeutic
classes were defined according to the Food and Drug
Administration (FDA) National Drug Code Directory
[22]. Clinical study(ies) (number of items = 49)
described the clinical trial(s) from which the data arose,
including phase of clinical development, objectives of
clinical trial(s) (PK, dose finding, therapeutic drug
monitoring, etc.), target population, treatment summary
(routes of administration, treatment duration, number of
doses, etc.) as well as experimental design. This section
provided information about potential complexities of
design (sparse data, cross-over study, etc.) and then
potential difficulties for model building. The second part
of the DAF (number of items = 214) aimed to provide
precise information about the characteristics of the
model-building process. Given that this last part was the
most interesting with regard to modelling, a larger
number of items were defined. Information was col-
lected on the objectives of modelling (predictive or
descriptive), the software used and the drugs included in
the model. Added information was related to the PK, PD
or PK–PD model, the amount of data actually included
in the modelling process, the nature of the structural,
inter- and intraindividual models and, when applicable,
the nature of the covariate model. For each model, infor-
mation was gathered about criteria used for final cova-
riate model building and selection from an exhaustive
list, including criteria such as graphs and statistical cri-
teria such as the likelihood ratio test.

This DAF was built and finalized between July 2004
and January 2005 by nine independent PK–PD modellers
(authors of this paper). The gamut of the author’s back-
grounds (Pharmaceutical Science, Veterinary Medicine,
Medicine, Statistics, and Engineering), their different
levels of experience and skill, positions (permanent or
PhD student) and origins (industry and academia)
improved the relevance of the questions and increased the
understanding necessary to classify them according to the
overall point of view of the modellers. The group ensured,

especially, that the questions, whether single, multiple
choice or open, were as simple and unambiguous as
possible. Moreover, the group prioritized the use of dif-
ferent fields with defined checklists to provide for the effi-
cient recording of information and subsequent automated
analysis. Finally, a draft was tested by the two readers
(C.D. and K.B.) using 20 additional articles, selected
according to the criteria described above, but published
either before 2002 or after 2004. The articles were exam-
ined by both readers, which assisted them in agreeing on
the interpretation of different questions and resolv-
ing differences in answers. The final version of the DAF
is available at: http://www.bichat.inserm.fr/equipes/
Emi0357/download.html.

Data collection
The DAF was implemented in HTML and PHP lan-
guages. PhpMyAdmin (version 2.5.3) software was
used, which is a tool written in PHP intended to handle
the administration of a MySQL database server [23]. In
this way, it was possible to enter interactively the items
in the DAF while reading the papers through a clear and
easily usable local web interface. At the end of reading,
answers were then directly transmitted to the MySQL
database. Variables were encoded as either numeric or
character variables, including categorical or continuous
data, depending on the type of answer. All coding was
defined in the PHP script. The 324 articles retrieved were
split between the two readers according to a randomiza-
tion stratified by year. The reading finally selected
required 4 months (from March to July 2005).

Statistical analysis
Once the reading was completed, the MySQL database
was exported into SAS (version 8) and S-plus (version
6.2) statistical packages for statistical analysis. For each
item within the different parts, descriptive statistics
(mean, SD, minimum and maximum values) were used
to report the results for continuous variables, whereas
frequencies were used to describe categorical variables.
New variables were generated and cross analyses were
performed in order to highlight the results. For example,
covariates were regrouped according to treatment char-
acteristics, demographics, and clinical or biological
characteristics of the patients. Journals were classified as
statistical, pharmacological or clinical [24] and the time
was split by year of publication. Differences across jour-
nals or years were tested with a c2 test.

Results
Generalities
Among the 482 articles initially selected, some were
excluded (see Figure 1). The remaining articles were
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distributed evenly across years: 108 for 2002, 100 for
2003 and 116 for 2004 (list available at: http://
www.bichat.inserm.fr/equipes/.../). The articles came
primarily from pharmacological (58%) and clinical jour-
nals (41%), with most coming from leading journals in
the fields of cancer, anaesthesiology and antimicrobials
(see Figure 2A). Only three articles came from statistical
journals. Authors were primarily from academia (71%)
or a mix of industry and academia (16%). The distribu-
tion of therapeutic classes is presented in Figure 2B.

Consistent with Figure 2A, oncolytics, antimicrobials
and pain relief drugs were among those where a popu-
lation model has been most often published.

Clinical studies
Generally, the data used for modelling came from clini-
cal studies with a majority of PK objectives (68%), the
rest being PK–PD (23%) or PD (9%). Clinical phases of
these studies were reported for 66% of the models. The
majority were in postmarketing authorization (34%) or

Figure 1
Screening of the articles selected in Pubmed

using exclusion criteria (exclusion criteria were

not mutually exclusive)

PD models
(nmodels = 118)

PK models
(nmodels = 360)

Search strategy
(narticles = 482)  

Exclusion criteria according to title and/or abstract and/or reading: 
Review / methodology study
Not a population study neither a PKPD one
Not a drug study
Animal study
Not an original study

Articles screened
(narticles = 324)  

(narticles = 63)
(narticles = 56)
(narticles = 24)
(narticles = 9)
(narticles = 8)     

B

18.8 %

Microbiology

8.3 %
Cardiovascular-renal system

11.4 %

Central nervous system

7.4 %

Immunology

24.1 %

Oncology

14.8 %Other

15.1 %

Pain relief

7.7 %

Anesthesiology

6.2 %

Antimicrobial Agents
and Chemotherapy 

13.6 %

British Journal of
Clinical Pharmacology

5.6 %

Cancer Chemotherapy
and Pharmacology

8.3 %

Clinical Pharmacology
and Therapeutics

6.8 %

Therapeutic Drug
Monitoring

51.8 %OtherA

Figure 2
(A) Journals in which articles on population PK/PD (n = 324) were most frequently published; other: journals in which <5% of the papers were found.

(B) Therapeutic classes most frequently studied in population PK/PD articles (n = 324); other: therapeutic classes found in <5% of the papers
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in Phase I studies (20%). A typical model was charac-
terized from the data of a single clinical study (77%),
with single arm (57%), performed on patients (78%) and
adults (68%). About 25% of the screened models dealt
with paediatric patients, whereas only 2% concerned
elderly patients. Drugs were administered as multiple
doses (68%) or as a single dose (24%) (8% not reported).
The routes of administration included i.v. infusion
(52%), oral (39%) or i.v. bolus (7%). When studies
included more than one arm, subjects were often ran-
domized (65%). About 21% of clinical studies were
typical dose-escalation studies and prospective design
optimization (as described in [25]) was recovered for
9% of the models.

Modelling
Articles included a majority of models with a descriptive
purpose (81%) or predictive and descriptive purposes
(17%). Models with a descriptive purpose presented
parameter estimates, as expected, for 99% of cases, then
defined PK/PD variability (21%) and tested covariates
(58%). The most frequent methodology was the nonlin-
ear mixed-effect model (92%), rarely preceded (2%) or
replaced (5%) by a two-stage approach. These models
included one compound in 89% of cases and more than
two compounds for only 5% of cases. The most fre-
quently used software was NONMEM. Distribution of
software and associated methods across models is pre-
sented in Table 1. Of note, for NONMEM analyses,
algorithms were not reported in 32% of the cases.
Among reported algorithms, First Order Conditional
Estimation (FOCE) was the most often used (with or
without interaction), closely followed by First Order
(FO). Looking at developments over time, the use of
‘FOCE INTERACTION’ increased from 2002 to 2004
(from 7 to 24%, P = 0.006). The use of FOCE (INTER-
ACTION) seemed less frequent for PD models, but the
absence of estimation method reporting in this latter
case was more frequent than for PK models.

PK models
Of the 324 articles selected, 360 PK models were
retrieved. Nearly all studies (99%) reported the number
of included subjects. The median was approximately 50
and only 26% of datasets included more than 100 sub-
jects. The number of samples per subject (usually more
than three) was defined on observed data in 16% of cases
and on scheduled design in 3% of cases. Quantiles 10,
25, 50, 75 and 90% of number of points per subject were
2, 4, 9, 14 and 17, respectively. When the model
included only one drug, the number of compartments
was mostly limited to less than two (Figure 3). Con-

versely, when parent and metabolite compounds were
modelled together (10% of the models), the number of
compartments could reach a maximum of 13, as for
irinotecan [26]. Linking the number of points per subject
with the number of compartments, an increase was
observed in the number of samples per subject when the
number of compartments increased. For one compart-
ment, the median was four, for two compartments it was
10 and for three compartments it was 12 points per
subject. Parent and metabolite were modelled either
simultaneously (51% of the published models) or
sequentially (34%). With regard to random effect
models, Inter-Individual Variability (IIV) model type
was often reported, whereas the nature of the IIV matrix
was not often reported (only 18% of the PK models). IIV
models were either exponential (53%) or multiplicative
(11%). Residual error was modelled mainly as additive
(17%), combined (additive and multiplicative) (21%) or
multiplicative (24%). Criteria used for selecting the final
model were, when reported, graphics (43%), Akaike cri-
terion, Bayesian information criteria, the likelihood, or
objective function (38%), the likelihood ratio test (22%)
or residuals distribution (15%). Finally, if each item is
considered separately, the majority of analyses showed
an adequate description (see data, interindividual

Table 1
Softwares and methods most used in model building
among the PK (n = 360) and PD (n = 118) population
models. For each method, we report the number of
models and in brackets, the percentage referring to the
corresponding category

Softwares PK models PD models

NONMEM 247 (68.6) 92 (78.0)
FO 58 (23.5) 22 (23.9)
FOCE 71 (28.7) 12 (13.0)
FOCEI 47 (19.0) 13 (14.1)
FOCE centered 2 (0.8) 1 (1.1)
LAPLACE 4 (1.6) 5 (5.4)
NR* 65 (26.3) 39 (42.4)

NPEM 20 (5.6) 2 (1.7)
ADAPT 17 (4.7) 8 (6.8)
PPharm/Kinetica 14 (3.9) 4 (3.4)
MP2 13 (3.6) 0 (0.0)
WinNonMix 10 (2.8) 1 (0.9)
Other 32 (8.9) 8 (6.8)
NR* 7 (1.9) 3 (2.5)

*NR: Not Reported.
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variability, error model or building criteria in Figure 4,
left plot).

Covariates were considered for most PK models with
a median number of six covariates tested. Although
information was sometimes not reported, their selection

was mostly performed based on graphs of posthoc esti-
mates (see Table 2), followed by stepwise inclusion
using only the likelihood ratio test (43% of cases). Other
criteria independent of the likelihood, such as decrease
of IIV or SE, or clinical relevance of the covariates were
also used. A median of two covariates was kept in final
models. Characteristics of the covariates tested finally
retained in the model are reported in Table 3. For most
models, demographic covariates or covariates on liver
and kidney functions were the most often considered.
Overall, very few papers (see, for example, Kerbusch
et al. [27]), provided a complete and relevant description
of covariates model building.

PD models
In the selected articles, only 118 PD models were
reported, 77% of which concerned PK and PD models
built simultaneously. For these models, 33% of the
datasets included >100 subjects. For 60% of the cases,
the number of observations was not reported. PD model
types varied, but showed a majority of Emax models,
followed by models for noncontinuous data (defined and
presented in Figure, right side). In 20% of cases, the PD
models included an effect compartment model. With
regard to random effect models, the IIV model type was
most frequently exponential (in 25% of the PD models),
IIV matrix was rarely reported (in only 5%) and residual
error was mainly modelled as additive (18%). Criteria
used for selecting the final model were, when reported,
graphics (22%), Akaike criterion, Bayesian information
criteria, the likelihood, objective function (19%) or the
likelihood ratio test (14%). Overall, the description of
model building was less well reported than for PK ones
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(Figure 4, right plot). However, it is encouraging to note
that for the residual error model, deficiencies in report-
ing information decreased from 2002 to 2004 (75 to 44%
of the models, P = 0.02).

Covariates were tested for 36% of the PD models,
with a median number of five covariates. Covariate
selection, not always clearly described, was often per-
formed with graphs of posthoc estimates and their inclu-
sion, by either the stepwise or forward approach using
only the likelihood ratio test (in 49% of cases, see
Table 2). Most of the time, the number of covariates
selected in the final model was very limited (i.e, 0 for

54% and one for 27% of the PD covariates models) and
they included demographic, liver or kidney function,
biological parameters or disease. Tested and retained
covariates are reported in Table 3.

Discussion
The only method for obtaining an overview of a research
area is through exhaustive reading of recent literature.
For this purpose, a DAF has many advantages. It allows
one to target all interesting questions and to discard
information irrelevant to the study. Simple questions and
a standardized DAF format ensure objectivity. Our inter-
active DAF has other advantages, in that it avoids errors
in transferring data from paper to computer and allows
for presentation of the data in a format compatible with
statistical analysis. The number of experienced scientific
modellers involved in the modelling of the DAF and in
the interpretation of the results, as well as the diversity
of their backgrounds, ensured the quality and reliability
of this approach.

Overall, the models published in the screened papers
were built primarily with clinical data from postmarket-
ing studies. This can be explained partly by confidenti-
ality issues with data from pharmaceutical industry.
Academicians, whose activity is evaluated according to
publishing frequency, not surprisingly, represented the
majority of the authors. They often used data from hos-
pital for therapeutic drug monitoring or data from public
clinical trials. With regard to therapeutic classes, onco-
lytics, antimicrobial agents and anaesthetics were mod-
elled most frequently. These classes can present a
narrow therapeutic index as well as severe toxicity.
Modelling in this context is very useful. One can opti-
mize clinical trials, sampling times, dosing, rhythm of
administration and number of patients in different arms.
One can either perform therapeutic drug monitoring,
limit toxicity or reduce to a certain extent tolerance and
resistance. The data were often homogeneous (in the
majority from one single clinical trial, one arm, includ-
ing only one compound) and rich rather than sparse
(number of points per patients equal to 4, 10 and 12 for
1, 2 and 3 compartments, respectively). This homogene-
ity probably explains why the majority of models are
solely descriptive and are not used to predict data in
other populations, since model usefulness is limited.
With regard to methodology, the one-stage nonlinear
mixed-effect approach was most frequently used over
the 2002–2004 time period. Despite the fact that it has
been demonstrated several times that the two-stage
approach has many drawbacks in practical situations
(including sparse data, data imbalance and subject-
specific dosing history), 5% of models reviewed were

Table 2
Building steps in the 251 (out of 360) PK models and in
the 43 (out of 118) PD models when a covariate model
is performed. For each method, we report the number of
models and in brackets, the percentage referring to the
corresponding category

Covariate models
PK models PD models

251 (69.7) 43 (36.4)

Selection based on
post-hoc*

144 (57.4) 25 (58.1)

graphs 102 (70.8) 12 (48.0)
GAM (or bootstrap of

GAM)
32 (22.2) 5 (20.0)

univariate test 17 (11.8) 1 (4.0)
tree 1 (0.7) 0 (0.0)
other 30 (20.8) 6 (24.0)
NR** 31 (21.5) 9 (36.0)

Building approach described 138 (55.0) 15 (34.9)
stepwise 106 (76.8) 10 (66.6)
forward 28 (20.3) 5 (33.3)
backward 4 (2.9) 0 (0.0)

Building criteria reported* 208 (82.9) 31 (72.1)
LRT 168 (80.8) 26 (83.9)
AIC, BIC (or SC), OF, L*** 63 (30.3) 5 (16.1)
IIV decrease 56 (26.9) 4 (12.9)
SE decrease 26 (12.5) 2 (6.5)
clinical relevance 17 (8.2) 1 (3.2)
Wald test 0 (0.0) 0 (0.0)
other 30 (14.4) 6 (19.4)

*Under each category, the percentages in one column sum
up to more than 100% because several different methods
could be used in the same model.
**NR: Not reported.
***AIC: Akaike criterion, BIC (or SC): Bayesian information
criteria (or Schwarz criteria), OF: objective function, L: like-
lihood.
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built with it. Actually, the two-stage approach provides a
poorly approximated asymptotic covariance matrix [17,
28] and is considered less efficient than the one-stage
nonlinear mixed-effect modelling method [29]. In some
cases, as in animal studies, the two-stage approach is
still used due to the limited number of subjects (often n
� 6) and samples per subject (often n � 3). In our case,
the complexity of implementation of population analysis
seems to be the main reason for the continuing popular-
ity of the two-stage approach. Concerning the software,
NONMEM remains the most widely used for analysis,
both in academia and industry. It has been used for quite
some time and is considered overall to be highly flexible
with regard to the NM-TRAN scripting language and
data input system, which allows one to define any type
of dosage regimen, PK, PD or PK–PD models [30].
Surprisingly, there were still instances where this soft-
ware was reported as misused, despite all the training
and references which are available to users. For
example, the FO method was used with multiplicative as
well as exponential interindividual variability model,
although it is known that it can induce bias on parameter
estimates [31]. This may be linked to convergence prob-
lems method or excessive computation time for the more
advanced FOCE method, even with fast, modern com-
puters [32, 33]. Model complexity, however, did not
seem to be an issue, as we did not notice that a PK model
with a large number of compartments was systemati-
cally associated with the use of FO.

We found three times more PK than PD models, and
most of the PD models were simultaneous PK–PD
models. These were primarily Emax models, with effect
compartments. Although such models can be useful in
understanding drug–effect relationships and to quantify
interindividual variability in clinical response, PD
models are less frequent than PK ones. This frequency
can be explained by several factors [34]. First, there is
the difficulty of measuring and modelling drug effects
compared with drug and metabolite concentrations, for
which PK methodology is well established and standard-
ized. A second reason is the absence of apparent causal
relationships between intermediate effects quantified by
biomarkers, most often utilized in PD models, and clini-
cal end-points, which can be expressed as survival data
and can often not be modelled with a methodology such
as population PK–PD.

Covariate testing remains one of main objectives of
population PK modelling (70%) and it is used to explain
variability, but was involved in only 36% of the PD
models. Indeed, among the 118 PD models, 80% were
part of a PK–PD model and in these, testing covariates
on the PK or PD model was performed in 67% of cases.
It is understandable that after covariates have been
included in the PK model, it was more difficult to find
any potential covariates specific to PD models (tested in
only 32%). PK often explains the main part of PD vari-
ability, except if there is substantial heterogeneity in the
disease or in the response. It explains why only few

Table 3
Type of covariate tested and selected in
the 251 (out of 360) PK models and in
the 43 (out of 118) PD models when a
covariate model is performed. For each
method, we report the number of
models and in brackets, the percentage
referring to the corresponding category

Covariate models
PK models PD models
251 (69.7) 43 (36.4)

Covariates Tested* Kept* Tested* Kept*
Demographic 233 (92.8) 186 (74.1) 31 (72.1) 10 (23.3)
Liver/Kidney function 122 (48.6) 105 (41.8) 12 (27.9) 8 (18.6)
Biological parameter 41 (16.3) 34 (13.6) 7 (16.3) 6 (14.0)
Drug interaction 58 (23.1) 47 (18.7) 9 (20.9) 3 (7.0)
Dose 33 (13.1) 26 (10.4) 4 (9.3) 3 (7.0)
Metabolism

induction/inhibition
24 (9.6) 19 (7.6) 3 (7.0) 2 (4.7)

Disease 45 (17.9) 37 (14.7) 12 (27.9) 6 (14.0)
Food 14 (5.6) 13 (5.2)
Performance status 21 (8.4) 18 (7.2) 2 (4.7) 1 (2.3)
Time 22 (8.8) 17 (6.8) 3 (7.0) 2 (4.7)
Administration 10 (4.0) 10 (4.0) 6 (14.0) 3 (7.0)
Adverse events 1 (0.4) 0 (0.0)
PK parameters 4 (9.3) 3 (7.0)

*Under each category, the percentages in one column sum up to more than 100%
because several different covariates could be tested and kept in the same model.
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covariates were found to be significant in the PD models
(Table 3).

Given that the methodology of PK–PD population
models is complex, involves many assumptions and can
be used to make important decisions in drug develop-
ment, it is crucial that it be reliable. As a first step,
readers of published analyses should be able to under-
stand and evaluate the numerous choices made in the
analysis through detailed descriptions. The most recent
FDA guidelines giving an overall description of what is
expected in population PK study reports dates back to
1999 [17]. Recently, pharmacometricians from the
Swedish medical product agency and from the European
Agency for the Evaluation of Medicinal Products
reported on what their agencies look for when assessing
a population PK analysis in an article, and a draft guide-
line [18, 19]. Consulting also some reviews in the field
[3, 4, 13, 30, 35], we established the DAF by defining
the items we considered as interesting for a literature
survey. However, through the review we performed,
many deficiencies in the quality of reported information
were observed. Due to the importance of this result, we
considered it important to quantify and illustrate this
observation. For this purpose, a limited list of items were
defined that we considered essential to be addressed by
authors in any type of journals. Those items extracted
from the DAF were:

• subject characteristics (healthy/patient)
• dosage (single/multiple) and route of administration
• total number of subjects and total number of observa-

tions or number of observations per patient
• criteria used for model selection
• nature of the structural, IIV and error models
• method of estimation and software.

Our survey has revealed that only 39% of the published
PK reports and only 8.5% of the PD models reported the
aforementioned items (see, for example, the excellent
paper of Van Kesteren [32]). Since this information
appeared reasonable, these low percentages were sur-
prising and demonstrate the need to establish guidelines
when reporting population PK–PD analysis in the
literature.

This minimal list of items should be found in all
population PK/PD papers published in peer-reviewed
journals and could be complemented by other items such
as: description of raw data exploration, untested covari-
ates, handling of missing data and data below the limit of
quantification, different model-building steps and all
aspects of model qualification. This last item is one of
the most important and has been addressed in a separate
paper which analyses the same database with similar

methodology but with a different DAF [20]. However,
the establishment of such a check list for population
PK–PD publications would require consensual decisions
between experts and editorial committees of journals
publishing population analyses. Numerous meetings
would probably be required before addressing this chal-
lenge and reaching a consensus. This was not the
purpose of the present study, but its results naturally
point to this conclusion.

This study was supported by Institut de Recherche
International Servier. P.G. is funded by INSERM,
Paris, France.
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