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Abstract

The ability to re-engineer enzymatic pH-activity profiles is of importance for industrial applications of
enzymes. We theoretically explore the feasibility of re-engineering enzymatic pH-activity profiles by
changing active site pKa values using point mutations. We calculate the maximum achievable DpKa

values for 141 target titratable groups in seven enzymes by introducing conservative net-charge altering
point mutations. We examine the importance of the number of mutations introduced, their distance from
the target titratable group, and the characteristics of the target group itself. The results show that
multiple mutations at 10Å can change pKa values up to two units, but that the introduction of a
requirement to keep other pKa values constant reduces the magnitude of the achievable DpKa. The
algorithm presented shows a good correlation with existing experimental data and is available for
download and via a web server at http://enzyme.ucd.ie/pKD.

Keywords: enzymes; computational analysis of protein structure; pH-activity profile; pKa calculations;
protein electrostatics

The application of enzymes in industrial processes often
requires that the enzyme must function under very
specific and sometimes quite unphysiological conditions.
Several industrial processes will benefit from the appli-
cation of enzymes with re-engineered pH-dependent
characteristics (e.g., starch liquefaction for the production
of ethanol and high-fructose syrup [Shaw et al. 1999],
detergent applications [Ito et al. 1998], and dye bleaching
[Cherry et al. 1999]), and consequently, there is a strong
interest in developing experimental and theoretical meth-
ods for changing the pH-dependent characteristics of
enzymes. Advances have been made in the fields of
protein engineering and directed evolution, and it is
presently possible to routinely optimize the performance
of enzymes for a range of conditions using either rational
engineering or screening/selection-based approaches

(Cherry et al. 1999; Farinas et al. 2001). Unfortunately,
not all characteristics of enzymes are equally easy to
optimize and successes in rational re-engineering of
enzymatic pH-activity profiles remain few despite deca-
des of studies on enzyme structure-function relationships.

The pH-dependence of enzymatic activity is often
determined by the pKa values of active site groups but
can also be limited by protein stability at extreme pH
values. In the present work we concern ourselves only
with re-engineering enzymatic pH-activity profiles by
changing active site pKa values, and we therefore ignore
the cases where protein stability is the limiting factor.

There are a few experimental examples of active site
pKa values that have been changed (and thus the
pH-activity profile re-engineered) to yield an efficient
mutant enzyme (Thomas et al. 1985; Russell et al. 1987;
Meiering et al. 1992; Loewenthal et al. 1993; Cha and
Batt 1998; Joshi et al. 2000; Le Nours et al. 2003; Hirata
et al. 2004; Kim et al. 2006), but the pKa shifts have been
modest and often the essential mutations have been found
using comparative protein engineering strategies (i.e.,
mutations are introduced based on comparisons with a
homologous enzyme that possesses the desired
pH-activity profile).
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Therefore, the conclusion from two decade’s work is
that very specific point mutations in the active sites can
change the pH dependence of enzymatic activity, but
unless such specific active site point mutations are known
(e.g., from comparative studies), there is not much hope
of achieving a dramatic pH-activity profile shift with
rational engineering methods. This somewhat disheart-
ening conclusion is reached because mutations that give
large pH-activity profile shifts normally are close to the
active site and therefore likely to give mutant enzymes
that are inactive or have dramatically reduced activity.
Distant point mutations, on the other hand, mostly give
mutant enzymes with wild-type activity but also produce
very small pH-activity profile shifts.

We further explore the strategy of changing enzymatic
pH-activity profiles using charged mutations. Specifi-
cally, we investigate the possibility of introducing multi-
ple point mutations far from the active site that will
change active site pKa values through charge–charge
interactions (charge-only mutations) without perturbing
the active site structure through other effects. This strat-
egy has been advocated before and was explored by
Fersht and coworkers in a series of articles (Thomas et al.
1985; Russell and Fersht 1987; Russell et al. 1987;
Sternberg et al. 1987; Loewenthal et al. 1993) and yielded
promising results for Subtilisin and Barnase, although no
systematic experimental or theoretical study was per-
formed to assess the general feasibility of the approach.

We report the development of a novel, fast algorithm
(pKD) for the redesign of protein pKa values using
charge-only mutations. We validate the performance of
pKD using experimental data and theoretical tests (see
Materials and Methods), and we apply the algorithm to
assess the feasibility of changing enzymatic pH-activity
profiles and protein pKa values in general using charge-
only mutations.

We apply pKD for the redesign of 141 titratable groups
in seven enzymes to determine the feasibility of
re-engineering protein pKa values in general. We examine
the connection between the number of point mutations,
their distance from the target group, and the DpKa values
achievable. In light of our findings, we comment on
the general feasibility of re-engineering enzymatic
pH-activity profiles using charge-only mutations.

Changing protein pKa values

The degree of protonation of a protein titratable group, at
a given pH, is determined by the free-energy difference
(DGa) between the accessible protonation states for the
titratable group. The pH dependence of DGa is typically
described by a single equilibrium constant (the pKa

value), although this description breaks down for strongly
coupled groups. DGa is determined by the relative

strength of the interactions between the protonation states
of the titratable group and the rest of the atoms in the
protein. To change the degree of protonation of a par-
ticular residue at a certain pH (hereafter referred to as
‘‘redesigning the pKa value’’), we therefore must change
the way one or more of the protonation states interact
with the rest of the protein.

Since at least one protonation state carries a net charge,
we can change the energy of that state by inserting or
removing charged residues around the titratable group.
The problem of redesigning a pKa value therefore consists
of identifying the point mutations that change DGa in the
way that we desire. In the present work we combine a
standard modeling algorithm (Chinea et al. 1995) with a
new fast DpKa calculation routine based on energy
calculations from the WHAT IF PBE-based pKa calcu-
lation package (WIpKa) (Nielsen and Vriend 2001).
WIpKa is comparable in accuracy to other pKa calcu-
lation packages (Bashford and Karplus 1990; Yang et al.
1993; Antosiewicz et al. 1994; Karshikoff 1995; Dem-
chuk and Wade 1996; Alexov and Gunner 1997; Sham
et al. 1997; Mehler and Guarnieri 1999; Mongan et al.
2004; Warwicker 2004; Li et al. 2005; Khandogin and
Brooks 2006; Krieger et al. 2006), and has been bench-
marked extensively to assess its sensitivity to structural
errors (Nielsen and McCammon 2003b) and performance
on mutant proteins (Lambeir et al. 2000; Joshi et al.
2001). In the Materials and Methods section we show that
pKD is much faster than WIpKa and is as accurate, thus
making it ideally suited for the present purpose.

The pKD algorithm carries out three tasks:

(1) Identification of all point mutations that change the net
charge of the enzyme but maintains its fold and
activity.

(2) Calculation of DpKa values for all single-point muta-
tions.

(3) Identification of the sets of mutations that fulfill the
design criteria.

All three steps are described in detail in the Materials and
Methods section, but to appreciate the special design
problem that pKa values present, it is advantageous to
acquire a basic understanding of the effects that titratable
groups have on each other. The insertion of a titratable
group with a negatively charged state (in the following,
called an acid) generally increases the pKa of the residue
it interacts with, whereas the insertion of a positively
charged residue (a base) generally lowers the pKa value
of its interaction partner. In both cases, the magnitude
of the pKa shift is directly proportional to the inter-
action energy between the two titratable groups, and this
has resulted in DpKa values being calculated with the
relation
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DpKa =
DF

lnð10Þ , (1)

where DF is the change in electrostatic potential at the
target group due to the inserted group.
An interaction behaving in such a way is illustrated in

Figure 1 (top), where the insertion of an acid with an
interaction energy of 2.3 kT changes the pKa value of the
target group by one unit. However, in Figure 1 (bottom),
the insertion of the acid has no effect on the target group,
because the inserted group titrates at much higher pH
values than the target group. We therefore define the
‘‘intrinsic pKa value’’ (Bashford and Karplus 1990) as the
pKa value of a titratable group when it does not interact
with the charged states of other titratable groups. In
Figure 1 (top) the intrinsic pKa value of the inserted
group is two units lower than that of the target group. In
Figure 1 (bottom) the situation is reversed with the
inserted group having the higher intrinsic pKa. Thus,
for a titratable group to induce a pKa shift in another
titratable group it must have an appropriate intrinsic pKa

value to behave according to Equation 1. Figure 1 pres-
ents a simple, clear-cut case for two groups, with a rela-
tively weak interaction energy (2.3 kT) and a large
difference in the intrinsic pKa values. In situations where
there are multiple groups, strong interaction energies, and
similar intrinsic pKa values, the effects become more
difficult to rationalize and Equation 1 inevitably also
fails to describe these situations. When calculating DpKa

values in target groups originating from single- or multiple-

point mutations, it is thus essential to use a full description
of the energetics of the system to accurately calculate the
resulting DpKa values.

The effect of point mutations on catalytic activity

A large fraction of the residues in any given enzyme can
be mutated to yield a mutant form whose activity is
similar to the wild type. This has been illustrated
convincingly for small enzymes such as T4 lysozyme
(Karpusas et al. 1989; Kuroki et al. 1998), and for bigger
enzymes it is likely that even larger fractions of the
residues can be mutated with little effect on the catalytic
properties of the molecule.

The effect of a mutation on the pKa value decreases
with increasing distance between the site of mutation and
the target pKa value. Similarly, the effect of a point
mutation on the catalytic activity of an enzyme is gen-
erally inversely related to the distance to the active site,
but whereas electrostatic effects generally are expected to
decrease by 1/r, effects arising from nonelectrostatic
forces are expected to decrease at least by 1/r6.

In most cases, we are unable to predict the quantitative
effect of a point mutation on the catalytic activity, and
therefore it is not desirable to mutate residues too close to
the active site. Similarly, we cannot mutate residues too
far from the active site since they will have practically no
effect on the active site pKa values. We are therefore left
with residues in an intermediate distance range, where
1/r6 terms are small and electrostatics are significant, and it
is here that we can construct charge-only mutations. In the
following, we identify the maximum range for charge-only
mutations by calculating the maximum inducible DpKa

value for 141 target groups as a function of the number of
mutations and their distance from the target group.

Results

We investigate the solution space of the pKD algorithm
when applied for the redesign of target group pKa values
in seven enzymes (Table 1). We calculate the magnitude
of DpKa values obtainable for single targets and observe
the dependence of the target DpKa values on the number
of mutations we use and on their proximity to the target
group. Finally, we use our results to re-evaluate the
prospects of redesigning enzymatic pH-activity profiles
using mutations outside the active site and illustrate that
evolution has favored changing active site pKa values
with local effects rather than long-range effects.

The data set

The data set consists of seven enzymes (Table 1). The
total number of titratable groups in the data set is 451, and

Figure 1. The importance of the intrinsic pKa when redesigning protein

pKa values. In the top panel an acid with an intrinsic pKa of 4.0 is inserted

so that it interacts with the target group (intrinsic pKa 6.0) with an

interaction energy of 2.3 kT/e. This results in the pKa of the target residue

being elevated 1.0 unit. Similarly, in the bottom panel we insert an acid

with an intrinsic pKa value of 8.0 that interacts with the target acid with an

interaction energy of 2.3 kT/e. However, since the intrinsic pKa value of

the inserted group is larger than that of the target residue, the pKa value of

the target group remains 6.0, whereas the pKa value of the inserted group

is elevated by 1.0 units.
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of these, 141 (31%) have calculated pKa values in the
2.0 ! 12.0 range, and these were used in the pKa redesign
calculations. The seven enzymes vary considerably in
size and geometry, and we therefore anticipate the
environments of the titratable groups to be broadly repre-
sentative of the environments of titratable groups in
water-soluble globular proteins. Furthermore, the calcu-
lated pKa values for the active site residues in the seven
enzymes are in qualitative agreement with experimental
findings with regard to the identity of the proton donor.

The effect of single mutations

Using quite restrictive mutation selection criteria, we
found 1016 mutations to fulfill the criteria for solvent
accessibility (minimum 30%) and rotamer library pop-
ulation and we proceeded to calculate the 37,284 DpKa

values that these mutations induce. Figure 2 shows the
DpKa values calculated with pKD as a function of the
DpKa values calculated using Equation 1. The majority
of DpKa values are calculated equally well with both
methods, but for a significant fraction there is a marked
difference in the results. These cases fall into two general
categories: (1) mutations where the intrinsic pKa value of
the mutant is inappropriate for inducing a pKa shift in the
target, and (2) mutations that interact strongly with the
target residue and thus cause either a breakdown of
typical Henderson-Hasselbalch titrational behavior or
create a nonadditive titratable system (Nielsen 2006).

Figure 3A shows the distance dependence of DpKa

values for single mutations, and it is seen that a single
mutation must be quite close (<13Å) to a target residue to
achieve a significant effect on the target pKa value. Our
aim is to alter active site pKa values exclusively through
electrostatic forces, but we do not know the exact distance
at which mutations no longer affect active sites through
nonelectrostatic forces. Studies have shown point muta-
tions more than 15Å from the active site to affect catalytic

activity (Rajagopalan et al. 2002), and we are therefore
left with an uncomfortably narrow (or indeed nonexist-
ing) distance range where charge-only mutations can be
engineered ‘‘safely.’’ Drops in catalytic activity for muta-
tions in this range have been observed for BLI (Nielsen
et al. 1999, 2001), D-xylose isomerase (Cha and Batt
1998), and BCX (Joshi et al. 2001), but for Subtilisin,
significant pKa shifts have been achieved with little
change in catalytic activity (Russell and Fersht 1987).

A crucial factor in determining how close mutations
can be made is the apparent dielectric constant (eapparent),
which describes the efficiency with which the electro-
static field is transmitted from the site of mutation to
induce a DpKa for the target group. Figure 3B shows the
eapparent calculated from the predicted DpKa values as a
function of the distance between charged atoms of the
target and the mutated residue. Two effects determine

Table 1. Statistics for all targets, all active site targets, and for the individual enzymes examined in this study

Protein (PDBID) E.C. Size (aa) Targets
Avg.

abs(DpKa) (SD)
Avg. max

abs(DpKa) (SD)
Mutations used

(% of wt mutated)

HIV-1 protease (1a30) 3.4.23.16 198 22 0.7 (0.7) 1.6 (1.1) 82 (28.8)

Bacillus licheniformis a-amylase (1bli) 3.2.1.1 483 49 0.9 (0.9) 2.7 (1.3) 280 (39.0)

Bacillus lentus subtilisin (1gci) 3.4.21.62 269 12 1.1 (1.1) 3.3 (0.9) 125 (26.4)

Trichoderma b-mannanase (1qno) 3.2.1.78 344 14 1.0 (1.0) 3.1 (1.4) 180 (28.5)

Bacillus circulans xylanase (1xnb) 3.2.1.8 185 12 0.8 (0.8) 1.9 (1.2) 77 (22.2)

T4 lysozyme (2lzm) 3.2.1.17 164 20 0.9 (0.8) 2.5 (1.6) 138 (43.9)

Hen Egg White Lysozyme (2lzt) 3.2.1.17 129 12 0.6 (0.5) 1.4 (0.8) 79 (35.7)

All — 1772 141 0.9 (0.9) 2.4 (1.4) 961 (28.6)

Active site targets — — 11 1.3 (1.1) 3.9 (1.5) —

(PDBID) Protein Data Bank Identifier; (E.C.) enzyme commission number; (Size) number of amino acids; (Targets) number of targets designed; (Avg
abs(DpKa) value) the average absolute DpKa value obtained averaged over all targets using all attempted design runs that gave a solution; (Avg. max.
abs(DpKa) the average of the maximum absolute DpKa values obtained for each target.

Figure 2. The correlation between the DpKa value calculated with

DF/ln(10) compared with the DpKa value calculated with the Monte Carlo

method for all single mutations in the test set. DF/ln(10) (Equation 1)

gives highly inaccurate results for a number of mutations due to the lack of

description of effects related to the intrinsic pKa differences for both the

inserted residue and the target residue.
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the magnitude of eapparent as reported in Figure 3B: the
appropriateness of the intrinsic pKa values of the system
for achieving a DpKa (see Fig. 2), and the dielectric
constant of the volume between the mutated residue and
the target group. In the calculations, the dielectric proper-
ties of the protein are modeled both by using a dielectric
constant in the PBE runs, and also by optimizing the
hydrogen-bond network before every PBE calculation,
thus allowing many protein dipoles to respond to the
electric field. The combination of these effects produces
very high and very low values of eapparent for mutations
very close to the target groups, since the response of the
target group is strongly influenced by the detailed
dielectric properties of the target group surroundings.
As the distance between the mutated residue and the
target group grows, the maximum values of eapparent
decrease due to calculation-specific restrictions (due to
reasons of accuracy we consider only DpKa values $0.1),
but it is evident that the minimum values of eapparent also

increase. This is to be expected since the effect of
mutations at larger distances to a larger extent will be
modulated by the average dielectric properties of the
protein and the solvent surrounding it than will mutations
very close to the target group.

Multiple mutations

The use of multiple charge-only mutations might
extend the distance range that is useful for redesigning
active site pKa values since the collective effect of
multiple distant point mutations might be as powerful
as a few mutations close the active site. Figure 4 shows
the average maximum DpKa value obtainable for all
targets as a function of the number of mutations used
and the minimum distance between the mutated residue
and the target group. Clearly, there is an added effect of
using multiple mutations as compared with using single
mutations, but for distances larger than 13Å, the DpKa

values obtainable are quite modest even when using a

Figure 3. (A) The distance dependence of the effect of single mutations. Above 12.5 Å the effect of a point is rarely above 0.5 units.

(B) eapparent as a function of distance between the formally charged atoms of mutated residue and the target group. The large variation

in eapparent for small distances is an effect of the dielectric properties of the protein molecule and the appropriateness of the pKa values

for inducing a DpKa. At larger distances eapparent becomes representative of the ‘‘average’’ dielectric properties of the protein and its

surrounding solvent.
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large number of mutations. This result is heavily depen-
dent on how many point mutations one is willing to
squeeze in at a certain distance around the active site and
also where in the enzyme the active site is located.
Shallow enzyme active sites on the surface of proteins
severely restrict the number of point mutations that can be
constructed, whereas many more mutations can be con-
structed around deeply buried active sites.

Are active sites special?

So far we have examined the redesign of any protein pKa

value, but in order to re-engineer pH-activity profiles one
needs to redesign active site pKa values. Active sites
constitute very special environments in proteins and it is
therefore possible that the conclusions reached on the
feasibility of redesigning a general protein pKa value are
not valid for active sites. Specifically, we examine the effect
of the strong electrostatic interactions found in active sites.

Active sites are known to harbor very strong elec-
trostatic interactions, and it is therefore possible that
changes in active site pKa values somehow could be
‘buffered’ by a network of titratable groups that maintain
the catalytic residues in their catalytically competent
protonation state. Such buffering effects can exist in
artificially constructed systems (Nielsen 2006), but it is
uncertain whether enzyme active sites display such
effects. Table 1 compares the average DpKa values
obtained for active site targets with those obtained for

all targets, and it is clear that active site DpKa values are
not buffered by their environment. In contrast, the results
show that it is slightly easier to change the pKa values of
active site targets than it is to change the pKa value for the
average target. Active site targets tend to be more buried
than the average target and Figure 5 shows that buried
targets are easier to redesign simply because it is possible
to perturb the electrostatic field in active sites more
because the remoteness from solvent diminishes dielec-
tric screening effects. It should be noted that the pKa

values of catalytic residues are often predicted to be
highly perturbed compared with their model pKa values,
especially for larger enzymes, and that in those cases one
would need to engineer much larger DpKa values in order
to achieve a measurable effect.

Discussion

We have shown that the re-engineering of protein pKa

values using site-directed mutagenesis depends critically
on the number of mutations and their distance from the
target residue. We have furthermore performed a number
of in silico design experiments where we have introduced
the additional constraint that the pKa value of a neighbor-
ing residue should remain constant. In all cases, this extra
constraint limits the maximum DpKa that can be achieved
with a fixed number of mutations. Nevertheless, we show
that it is theoretically possible to achieve significant pKa

shifts for target groups using a high number of point
mutations, all being a minimum of 10 Å from the target
group. However, we have no data to prove that mutations
at 10 Å are at a ‘‘safe’’ distance from an enzyme active
site. Indeed, experimental studies (de Kreij et al. 2002;
Rajagopalan et al. 2002) have shown that even mutations

Figure 4. The average maximum abs(DpKa value) obtainable for all

targets as a function of a number of mutations and minimum distance

allowed between any atom of the mutated residue and any atom of the

target residue. Above 13Å, pKa shifts are generally quite small even when

using multiple mutations.

Figure 5. The correlation between the DpKa value obtainable for a target

and its solvent accessibility. Circles show the maximum abs(DpKa value)

obtained for targets, whereas the squares show the average abs(DpKa

value) for the targets.
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at very large distances can have an effect on the catalytic
activity of an enzyme, thus making re-engineering of
pH-activity profiles using multiple charge-only mutations
a risky operation.
When examining the determinants of the pKa values of

catalytic groups in naturally occurring enzymes, it is
obvious that the use of charge-only mutations has not
been favored during evolution. Indeed, the removal of all
nonactive site titratable groups in Hen Egg White Lyso-
zyme and Bacillus circulans xylanse favors a further
elevation of the proton donor pKa value (calculations not
shown), and the enzyme electrostatic field as a whole
seems to ‘‘work against’’ the active site.
Thus, enzyme active sites have been carefully opti-

mized to perturb the pKa values of the catalytic residues
as required. This perturbation is typically achieved by a
combination of desolvation effects and strong electro-
static interactions with neighboring residues, and we are
currently unable to re-engineer enzyme active site pKa

values in this way since it is near impossible to maintain a
high catalytic efficiency when introducing multiple-point
mutations in an active site.
Seen in this light, the re-engineering of pH-activity

profiles using charge-only mutations, however unappeal-
ing, remains our sole option for rational engineering.
Therefore, this option deserves proper attention in com-
ing years to improve our theoretical and experimental
understanding of the importance of electrostatic fields in
enzyme active sites.
The question remains as to why naturally occurring

enzymes have chosen to perturb active site pKa values
using short-range desolvation effects and strong electro-
static interactions in the active site. We speculate that the
reason for this is a division of labor between the enzyme
surface and the active site itself. The surface surrounding
the active site has been proven to play an important role
in attracting substrates (Antosiewicz et al. 1995; Livesay
et al. 2003), and the protein surface in general is subject
to multiple evolutionary pressures such as the require-
ment for the protein to be soluble, to adapt to its
subcellular location (Andrade et al. 1998), and to form
interdomain and interprotein interactions. It is tempting
to conclude that given these multiple restraints, it proved
evolutionarily less costly and more flexible to let the
protein surface adapt to the solvent conditions and
interaction partners, while the active site was left to
evolve its pH-dependent characteristics autonomously. It
has indeed been found that active site pKa values often
can be predicted from the electrostatic properties of the
enzyme active site itself and its immediate surroundings
(Nielsen and McCammon 2003a).
In summary, we have shown that it is theoretically

possible to achieve pKa shifts for protein titratable groups
using multiple charge-only mutations quite removed from

the target titratable group. However, when attempting to
re-engineer enzymatic pH-activity profiles it remains to
be investigated whether significant pKa value shifts can
be obtained for catalytic residues while maintaining the
wild-type catalytic efficiency. Work on confirming the
practical feasibility of re-engineering pH-activity profiles
is currently ongoing.

Materials and methods

Preparing PDB structures

PDB structures were regularized using WHAT IF (Vriend 1990).
All missing side-chain atoms were rebuilt using the CORALL
function. All ligands, cofactors, and crystal water molecules
were deleted prior to pKa calculations.

Calculating pKa values for wild-type proteins

pKa values for wild-type protein structures were calculated using
the WHAT IF pKa calculation suite (Nielsen and Vriend 2001). All
parameters were set as stated previously, except that the dielectric
constant for the protein was set to 8 at all times. The WHAT IF
pKa calculation algorithm uses a standard PBE-based pKa calcu-
lation scheme (Yang et al. 1993) coupled with a hydrogen-bond
optimization algorithm (Hooft et al. 1996). Briefly, the effect of
the nontitratable protein environment is modeled by calculating
the intrinsic pKa value for each titratable group. The intrinsic pKa

values are used as the starting point for calculating the effects on
the pKa values of the charge–charge interactions between all pairs
of titratable groups. These effects are quantified by calculating the
fractional degree of protonation of each titratable group at a
predetermined pH range using either explicit evaluation of the
Boltzmann sum (for small systems) or Monte Carlo sampling
(Beroza et al. 1991). pKa values are determined as the pH value
where a given group is half-protonated.

Calculating electrostatic interaction energies

The electrostatic interaction energy is calculated by solving the
PBE for each possible mutation, and subsequently by measuring
the electrostatic interaction potential at the sites of both all wild-
type and all mutant titratable groups. We used Delphi II (Nicholls
and Honig 1991) for solving the PBE. Values for the PBE solver
were set as follows: (eprotein, 8; esolvent, 80; ion exclusion radius,
2 Å; solvent probe, 1.4 Å; T, 298.15 K; final grid resolution,
0.25 Å/grid point; ionic strength, 0.144 M). In cases where two
titratable groups were further apart than 15 Å, a lower final grid
resolution was used to calculate the interaction energy.

Overview of the pKD algorithm

The work of the algorithm can be divided into three phases: (1)
selecting mutations that could contribute to a design solution,
(2) calculating DpKa values for each of those mutations, and
(3) combining these mutations to arrive at the solution closest to
the design goals.

Selecting mutations

In this study we consider only mutations that alter the net
charge on the protein and furthermore we use a restrictive set of
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selection criteria to ensure that the mutations perturb the protein
structure, and hence catalytic activity, as little as possible.
We alter the net charge of the protein by removing or inserting

a charged residue or by substituting a charged residue for
another charged residue of the opposite sign.
We allow all titratable groups to be mutated to a neutral

residue of approximately the same size (Asp !Asn, Glu ! Gln,
His ! Phe, Lys ! Leu, Arg ! Leu), and we also allow the
insertion and the reversal of charges at a number of positions.
The insertion of a charged residue and the swapping of one
charged residue for an oppositely charged one requires a more
sophisticated approach, since not all charged residues can be
accommodated at any given position in the protein. Mutations
are selected so that they are compatible with the local environ-
ment, and we mutate only residues that are at least 30% solvent
exposed in order to minimize the effect on the protein structure.
Each of the five charged residues (Asp, Glu, His, Arg, Lys) are
then modeled at the position, and we select only those who are
contained in a standard backbone-specific rotamer library
(Chinea et al. 1995). Specifically, we require the modeled
residue to achieve a WHAT IF rotamer score of at least 0.0.

Calculating DpKa values for all single mutations

A typical full-fledged protein pKa calculation with full
hydrogen-bond optimization and determination of protonation
states using a Monte Carlo algorithm takes anywhere between
minutes to days, depending on the size of the protein and the
pKa calculation package used. The straightforward way of
calculating DpKa values for a point mutation is to perform
two full pKa calculations (one for the mutant and one for the
wild type) and then subtract the corresponding pKa values.
When evaluating DpKa values for tens (or hundreds) of point
mutations and combinations of these (see later), this becomes
intractable. In the case of a charged residue inserted into the
protein, we calculated the charge–charge energies between the
inserted group and all other titratable groups using a standard
PBE calculation, and we calculate the intrinsic pKa value by
explicitly modeling the residue and then performing the stand-
ard desolvation energy and background energy calculations
(Yang et al. 1993). The intrinsic pKa values and charge–charge
interaction energies for all other titratable groups are known from
the wild-type pKa calculation, and we can now simply insert the
new group in the charge–charge interaction matrix and recalculate
the titration curves for all groups. In order to achieve high accuracy
in the single-mutation DpKa values, we calculate the fractional
degree of protonation from pH 0 to pH 14.0 in steps of 0.05 pH
units using 200,000 Monte Carlo steps for each pH value.
We ignore the fact that the intrinsic pKa values of wild-type

titratable groups will change when mutations are inserted in their
vicinity. However, given that we are interested in DpKa values at
larger distances, this approximation becomes reasonable.

The method presented here provides a significant speed-up as
compared with calculating DpKa values by explicitly modeling
point mutations and calculating pKa values from scratch using a
modeled structure. The speed-up factor scales nonlinearly with
the number of titratable groups in the protein, the strength of
group interaction energies, and calculation parameters. With the
setup presented here, the speedup factor ranges from 10 for
HEWL to ;1000 for BLI.

Finding combinations of single mutations that constitute
a design solution

Design solutions are found by minimizing the score

E = +
N

i = 1

abs

�
DpKai;obtained � DpKai;desired

DpKai;desired

�
wi,

where the sum is over all residues specified in the design
criteria, and wi is a user-specified weight associated with the
prioritization of individual parts of the design criteria. Only
point mutations that change a pKa value at least 0.1 unit for any
target group are allowed in a design solution.
Initially, we find the 20 solutions that give the lowest score by

using a simple Monte Carlo search (250,000 steps) using simple
addition of the DpKa values from single mutations to calculate
the DpKa values of sets of mutations.
This simple addition of DpKa values introduces inaccuracies

due to the accumulated error inherent in determining pKa

values from titration curves, and we therefore recalculate the
DpKa values for the 20 best combinations of mutations using
the same methodology as described above for calculating
DpKa values for single mutations. In the case of multiple
mutations, we calculate titration curves at every 0.1 pH unit,
and initially only in a 4 pH unit range centered on the wild-
type pKa value of the target group. This is feasible since
we determine pKa values simply by finding the pH value at
which the group is half-charged. In cases where a 4 pH unit
range is inadequate, we expand this range to the full 0 ! 14 range.
The functionality of the pKD algorithm is available at http://

enzyme.ucd.ie/pKD (Tynan-Connolly and Nielsen 2006).

Validating the accuracy of the algorithm

When designing protein pKa values we must make sure that we
can obtain solutions that are accurate, that we explore the solution
space sufficiently, and that we find an optimal set of mutations.
The performance of the pKa design algorithm depends on the

accuracy with which we can calculate DpKa values resulting
from sets of point mutations. These DpKa values are dependent
not only on the accuracy of the calculated pairwise interactions
between the mutated group(s) and all other titratable groups, but
since DpKa responses to interaction energies in some cases are

Table 2. Experimental and calculated DpKa values for two mutations at a range of ionic strengths

Mutation/Ionic strength 0.005 M 0.01 M 0.025 M 0.10 M 0.144 M 0.50 M 1.00 M

D99S DpKa �0.38 (�0.4) �0.42 (�0.4) �0.36 (�0.4) �0.29 (�0.3) — �0.10 (�0.1) �0.02 (0.0)

D99S DpKa calc �0.3 �0.3 �0.3 �0.2 �0.l �0.1 �0.1

E156S DpKa �0.32 (�0.3) �0.44 (�0.4) �0.41 (�0.4) �0.25 (�0.3) — — �0.06 (�0.1)

E156S DpKa calc �0.4 �0.3 �0.3 �0.2 �0.2 �0.1 �0.1

Experimental values are taken from Russell et al. (1987). DpKa values are rounded to nearest tenth of a unit (values in parentheses) in order to be directly
comparable to the accuracy of the algorithm.
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nonlinear, the DpKa also depends on the accuracy of the calcu-
lated pKa values for the wild-type structure. To obtain a reliable
design solution, we therefore need to address the issues of (1)
errors in the calculated pKa values of the wild-type structure,
and (2) inaccuracies in calculating DpKa values.

Errors in calculated pKa values for the wild-type protein

To understand why errors in the calculated pKa values for the
wild-type enzyme are important, consider the case presented in
Figure 1, where the intrinsic pKa value plays a large role in
determining the effect of an inserted group. In proteins, most

groups have pKa values that are perturbed from their solution
values, and if an inserted residue is to affect the pKa value of a
target group, then the intrinsic pKa value of the target group
must be on the ‘‘correct side’’ of the pKa value of the target
group. If the pKa values of the wild-type protein are calculated
incorrectly (i.e., the calculated values are different from the
experimental values), then the pKD algorithm might give
incorrect solutions due to the effects mentioned above.

Inaccuracies in the calculation of protein pKa values arise
mainly from an inaccurate representation of the protein
structures. These might be due to inaccuracies in the exper-
imentally determined X-ray structure or from an insufficient

Table 3. Experimental and calculated DpKa values for a set of 37 mutations

Protein I (mM) Mutation(s) Target Exp. DpKa Calc. DpKa Error

Subtilisin BPN’a,b 1 D99S H64 �0.40 (�0.4) �0.3 0.1

— — E156S — �0.38 (�0.4) �0.4 0.0

— — K213A — +0.14 (+0.1) +0.2 0.1

— — K213T — +0.08 (+0.1) +0.2 0.1

— — D36Q — �0.18 (�0.2) �0.2 0.0

— — D99K — �0.64 (�0.6) �0.7 0.1

— — E156K — �0.63 (�0.6) �0.7 0.1

— — D99S+E156S — �0.63 (�0.6) �0.6 0.0

— — D99K+E156K — �1.00 (�1.0) �1.4 0.4

— — D36Q — �0.18 (�0.2) �0.2 0.0

— — K136A — +0.11 (+0.1) +0.0 0.1

— — K170A — +0.20 (+0.2) +0.2 0.0

— — K136A+K170A — +0.36 (+0.4) +0.2 0.2

— — K136A+K213A — +0.19 (+0.2) +0.2 0.0

— — K170A+K213A — +0.39 (+0.4) +0.3 0.1

— — K136A+K170A+K213A — +0.48 (+0.5) +0.4 0.1

Barnaseb 9 D8A H18 �0.14 (�0.1) �0.1/�0.1 0.0

— — D12A — �0.23 (�0.2) �0.2/�0.2 0.0

— — T16R — �0.22 (�0.2) �0.1/�0.2 0.1/0.0

— — D22M — �0.11 (�0.1) �0.1/�0.1 0.0/0.0

— — K27A — +0.06 (+0.1) +0.1/+0.0 0.0/0.1

— — K49L — +0.01 (+0.0) +0.1/+0.1 0.1/0.1

— — K66A — +0.16 (+0.2) +0.2/+0.2 0.0/0.0

— — R110Af — +0.18 (+0.2) 0.0/�0.1 0.2/0.3

— — D8A+D12A — �0.37 (�0.4) �0.2/�0.2 0.2/0.2

— — D8A+R110Af — +0.22 (+0.2) �0.1/�0.1 0.3/0.3

— — D12A+R110Af — +0.01 (+0.0) �0.2/�0.2 0.2/0.2

— — D8A+D12A+R110Af — �0.08 (�0.1) �0.3/�0.3 0.2/0.2

— — D12A+T16A — �0.32 (�0.3) �0.2/�0.2 0.1/0.1

Thioltransferasec 500 K19L C22 +0.40 (+0.4) +0.3 0.1

— K19Qg C22 +0.80 (+0.8) +0.3 0.5

Ribonucleased 300 D121N H12 �0.09 (�0.1) �0.2 0.1

— D121N H105 �0.12 (�0.1) �0.1 0.0

— D121Nh H119 +0.05 (+0.1) �0.4 0.5

4-oxalocrotonate

tautomerasee 125 R11A P1 +0.1 (+0.1) +0.0 0.1

— R39Q P1 +0.7 (+0.7) +0.2 0.5

— R61A P1 +0.1 (+0.1) +0.0 0.1

Experimental and calculated DpKa values for mutations reported by aSternberg et al. (1987), PDB ID 1gns; bLoewenthal et al. (1993), PDB ID 1gns, 1bni,
1bnj; c Jao et al. (2006), PDB ID 1b4q; dCederholm et al. (1991), PDB ID 1srn; and eCzerwinski et al. (1999), PDB ID 1bjp. Experimental DpKa

values were rounded to nearest tenth of a unit (values in parentheses) in order to be directly comparable to the accuracy of the algorithm. (I) The ionic
strength in mM.
fThe poor agreement for R110A mutations is likely to be a result of a structural rearrangement in the proteins containing this mutation as speculated by
Loewenthal et al. (1993).
gFrom comparison with K19L, it is clear that mutation of K19 can cause structural rearrangements.
hD121 is in close proximity to H119, and thus gives the poorest results since we do not model changes in the desolvation energies of the
target group.
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representation of the protein dynamics. The most common
source of inaccuracies in X-ray structures are due to crystal
contacts, which can have a profound impact on the accuracy of
calculated pKa values (Nielsen and McCammon 2003b), but
also factors such as resolution, cofactors, etc. can influence the
result of the pKa calculation. Here we use proteins that are
relatively well behaved with protein pKa calculations.

Inaccuracies in calculating DpKa values

In standard pKa calculation packages, pKa values are deter-
mined from calculated titration curves. These titration curves
are calculated by combining the effects of the local environment
(captured in the intrinsic pKa) with information on the pairwise
interaction energies of titratable groups.
In a typical pKa design calculation for Glu 35 in HEWL there

are 45 positions that can be mutated to one or more residues,
yielding a total of 1.2 3 108 possible ways of introducing six
point mutations. Clearly, it is not feasible to model each of these
mutant proteins and submit them to a full pKa calculation,
and therefore, we make a number of approximations as
described in the above section to speed up the process. Most
significantly, we assume that the extra charge–charge interac-
tion energies originating from a single mutation is not influ-
enced by the presence of other mutations, and secondly, we
assume that the intrinsic pKa value of an inserted residue is
independent of all other inserted residues. These assumptions
hold for single mutants, but break down when the density of
mutations increases so that the dielectric boundary is changed
significantly (assumption no. 1) and when mutations are made
close to each other (assumption no. 2).
To examine the accuracy of the DpKa values calculated by the

pKD algorithm, we explicitly modeled 22 sets of mutations in
2lzt and 1gci and calculated the resulting DpKa by subtracting
mutant from wild-type pKa values, which both were determined
using a full-fledged pKa calculation with the WHAT IF pKa

calculation package (Nielsen and Vriend 2001). We found the
average difference between the DpKa values from pKD and the
DpKa values calculated from the full pKa calculation program to
be 0.13 units (data not shown).

Validation on experimental data

The ultimate test of the accuracy of the pKD algorithm is to
compare calculated DpKa values with experimentally mea-
sured DpKa values. Unfortunately, little very experimental
data exists on the effect of point mutations on pKa values.
We tested the performance of the pKD algorithm using the data on
the point mutation D99S and E156Q in Subtilisin (Russell et al.
1987) using the PDB entry 1GNS. The results are presented in
Table 2 and show a good correlation between calculated and
experimentally measured DpKa values for the two mutations over
a range of ionic strengths. Note that the DpKa calculations are
accurate only to within 0.1 pH unit due to the iterative method
used when calculating titration curves.
Furthermore, we validated the performance of the pKD

algorithm using a set of 37 point mutations (Table 3), which
clearly shows that pKD is able to reproduce experimental data
with good accuracy. Figure 6 displays experimental DpKa values
plotted versus theoretical DpKa values, and the corresponding fit
showing a correlation coefficient (R2) of 0.79.
The WHAT IF pKa calculation package, on which the pKD

algorithm depends for calculating electrostatic energies, has
furthermore been validated using experimental data from site-
directed mutations in separate studies (Lambeir et al. 2000;

Joshi et al. 2001), and the collective data from these validation
studies and the comparisons above allows us to assume that
the pKD algorithm is sufficiently accurate for the purposes of
this work given the limitations of current pKa calculation
methodology.

Definition of active sites

The residues constituting the active site were defined as residues
that have at least one heavy atom within 5 Å of one of the
catalytic residues. The catalytic residues for the individual
structures were defined as: 1GCI (Subtilisin): Asp 32, His 64,
Ser 221; 2LZM (T4 lysozyme): Asp 20, Glu 11; 2LZT (HEWL):
Glu 35, Asp 52; 1XNB (Xylanase): Glu 78, Glu 172; 1BLI
(a-amylase): Asp 231, Glu 261, Asp 328; 1QNO (b-Manna-
nase): Glu 169, Glu 276; 1A30 (HIV-1 protease): Asp 25(A),
Asp 25(B).

Calculating the apparent dielectric of interactions

The effective dielectric constant at the ionic strength used in the
calculations (0.144 M) was calculated according to the equation:

eapparent = abs
q1q2

d lnð10ÞDpKa
e2

1 � 10�10 m
A kT

1

4pe0

� �

eapparent = abs
243:40 A8

dDpKa

 !

where d is the distance (in Å) between charged atoms, q1 and
q2 are the formal charges present on the titratable groups
(�1 for acids, +1 for bases), DpKa is the observed pKa change,
e is the elementary charge, k Boltzmann’s constant, T the
temperature (298.15K), and e0 is the vacuum permittivity.
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Figure 6. Plot of calculated DpKa values vs. experimentally determined

DpKa values for the values shown in Table 3. The calculations are able to

reproduce the experimental values reasonably well, with a R2 of 0.79.

Tynan-Connolly and Nielsen

248 Protein Science, vol. 16

JOBNAME: PROSCI 16#2 2007 PAGE: 10 OUTPUT: Wednesday January 3 13:31:40 2007

csh/PROSCI/127809/ps0625387



References

Alexov, E.G. and Gunner, M.R. 1997. Incorporating protein conformational
flexibility into the calculation of pH-dependent protein properties. Biophys.
J. 72: 2075–2093.

Andrade, M.A., O’Donoghue, S.I., and Rost, B. 1998. Adaptation of protein
surfaces to subcellular location. J. Mol. Biol. 276: 517–525.

Antosiewicz, J., McCammon, J.A., and Gilson, M.K. 1994. Prediction of
pH-dependent properties of proteins. J. Mol. Biol. 238: 415–436.

Antosiewicz, J., McCammon, J.A., Wlodek, S.T., and Gilson, M.K. 1995. Sim-
ulation of charge-mutant acetylcholinesterases. Biochemistry 34: 4211–4219.

Bashford, D. and Karplus, M. 1990. pKa’s of ionizable groups in proteins:
Atomic detail from a continuum electrostatic model. Biochemistry 29:
10219–10225.

Beroza, P., Fredkin, D.R., Okamura, M.Y., and Feher, G. 1991. Protonation of
interacting residues in a protein by a Monte Carlo method: Application to
lysozyme and the photosynthetic reaction center of Rhodobacter sphaer-
oides. Proc. Natl. Acad. Sci. 88: 5804–5808.

Cederholm, M.T., Stuckey, J.A., Doscher, M.S., and Lee, L. 1991. Histidine
pKa shifts accompanying the inactivating Asp121 ! Asn substitution in a
semisynthetic bovine pancreatic ribonuclease. Proc. Natl. Acad. Sci. 88:
8116–8120.

Cha, J. and Batt, C.A. 1998. Lowering the pH optimum of D-xylose isomerase:
The effect of mutations of the negatively charged residues. Mol. Cells 8:
374–382.

Cherry, J.R., Lamsa, M.H., Schneider, P., Vind, J., Svendsen, A., Jones, A., and
Pedersen, A.H. 1999. Directed evolution of a fungal peroxidase. Nat.
Biotechnol. 17: 379–384.

Chinea, G., Padron, G., Hooft, R.W., Sander, C., and Vriend, G. 1995. The use
of position-specific rotamers in model building by homology. Proteins 23:
415–421.

Czerwinski, R.M., Harris, T.K., Johnson Jr., W.H., Legler, P.M., Stivers, J.T.,
Mildvan, A.S., and Whitman, C.P. 1999. Effects of mutations of the active
site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of
active site residues and on the pH dependence of catalysis. Biochemistry
38: 12358–12366.

de Kreij, A., van den Burg, B., Venema, G., Vriend, G., Eijsink, V.G., and
Nielsen, J.E. 2002. The effects of modifying the surface charge on the catalytic
activity of a thermolysin-like protease. J. Biol. Chem. 277: 15432–15438.

Demchuk, E. and Wade, R.C. 1996. Improving the continuum dielectric
approach to calculating pKas of ionizable groups in proteins. J. Phys.
Chem. 100: 17373–17387.

Farinas, E.T., Bulter, T., and Arnold, F.H. 2001. Directed enzyme evolution.
Curr. Opin. Biotechnol. 12: 545–551.

Hirata, A., Adachi, M., Utsumi, S., and Mikami, B. 2004. Engineering of
the pH optimum of Bacillus cereus b-amylase: Conversion of the pH
optimum from a bacterial type to a higher-plant type. Biochemistry 43:
12523–12531.

Hooft, R.W., Sander, C., and Vriend, G. 1996. Positioning hydrogen atoms by
optimizing hydrogen-bond networks in protein structures. Proteins 26:
363–376.

Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., and Hatada, Y. 1998.
Alkaline detergent enzymes from alkaliphiles: Enzymatic properties,
genetics, and structures. Extremophiles 2: 185–190.

Jao, S.C., English Ospina, S.M., Berdis, A.J., Starke, D.W., Post, C.B., and
Mieyal, J.J. 2006. Computational and mutational analysis of human
glutaredoxin (thioltransferase): Probing the molecular basis of the low
pKa of cysteine 22 and its role in catalysis. Biochemistry 45: 4785–4796.

Joshi, M.D., Sidhu, G., Pot, I., Brayer, G.D., Withers, S.G., and McIntosh, L.P.
2000. Hydrogen bonding and catalysis: A novel explanation for how a
single amino acid substitution can change the pH optimum of a glycosidase.
J. Mol. Biol. 299: 255–279.

Joshi, M.D., Sidhu, G., Nielsen, J.E., Brayer, G.D., Withers, S.G., and
McIntosh, L.P. 2001. Dissecting the electrostatic interactions and pH-dependent
activity of a family 11 glycosidase. Biochemistry 40: 10115–10139.

Karpusas, M., Baase, W.A., Matsumura, M., and Matthews, B.W. 1989.
Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants.
Proc. Natl. Acad. Sci. 86: 8237–8241.

Karshikoff, A. 1995. A simple algorithm for the calculation of multiple site
titration curves. Protein Eng. 8: 243–248.

Khandogin, J. and Brooks III, C.L. 2006. Toward the accurate first-principles
prediction of ionization equilibria in proteins. Biochemistry 45: 9363–9373.

Kim, T., Mullaney, E.J., Porres, J.M., Roneker, K.R., Crowe, S., Rice, S.,
Ko, T., Ullah, A.H., Daly, C.B., Welch, R., et al. 2006. Shifting the pH
profile of Aspergillus niger PhyA phytase to match the stomach pH

enhances its effectiveness as an animal feed additive. Appl. Environ.
Microbiol. 72: 4397–4403.

Krieger, E., Nielsen, J.E., Spronk, C.A., and Vriend, G. 2006. Fast empirical
pK(a) prediction by Ewald summation. J. Mol. Graph Model 25: 481–486.

Kuroki, R., Morimoto, K., and Matthews, B.W. 1998. Converting T4 phage
lysozyme into a transglycosidase. Ann. N.Y. Acad. Sci. 864: 362–365.

Lambeir, A.M., Backmann, J., Ruiz-Sanz, J., Filimonov, V., Nielsen, J.E.,
Kursula, I., Norledge, B.V., and Wierenga, R.K. 2000. The ionization of a
buried glutamic acid is thermodynamically linked to the stability of Leishma-
nia mexicana triose phosphate isomerase. Eur. J. Biochem. 267: 2516–2524.

Le Nours, J., Ryttersgaard, C., Lo Leggio, L., Ostergaard, P.R., Borchert, T.V.,
Christensen, L.L., and Larsen, S. 2003. Structure of two fungal b-1,4-
galactanases: Searching for the basis for temperature and pH optimum.
Protein Sci. 12: 1195–1204.

Li, H., Robertson, A.D., and Jensen, J.H. 2005. Very fast empirical prediction
and rationalization of protein pK(a) values. Proteins 61: 704–721.

Livesay, D.R., Jambeck, P., Rojnuckarin, A., and Subramaniam, S. 2003.
Conservation of electrostatic properties within enzyme families and super-
families. Biochemistry 42: 3464–3473.

Loewenthal, R., Sancho, J., Reinikainen, T., and Fersht, A.R. 1993. Long-range
surface charge-charge interactions in proteins. Comparison of experi-
mental results with calculations from a theoretical method. J. Mol. Biol.
232: 574–583.

Mehler, E.L. and Guarnieri, F. 1999. A self-consistent, microenvironment
modulated screened coulomb potential approximation to calculate
pH-dependent electrostatic effects in proteins. Biophys. J. 77: 3–22.

Meiering, E.M., Serrano, L., and Fersht, A.R. 1992. Effect of active site
residues in barnase on activity and stability. J. Mol. Biol. 225: 585–589.

Mongan, J., Case, D.A., and McCammon, J.A. 2004. Constant pH molecular
dynamics in generalized Born implicit solvent. J. Comput. Chem. 25:
2038–2048.

Nicholls, A. and Honig, B. 1991. A rapid finite difference algorithm, utilizing
successive over-relaxation to solve the Poisson-Boltzmann equation.
J. Comput. Chem. 12: 435–445.

Nielsen, J.E. 2006. Analysing the pH-dependent properties of proteins using
pKa calculations. J. Mol. Graph. in press.

Nielsen, J.E. and McCammon, J.A. 2003a. Calculating pKa values in enzyme
active sites. Protein Sci. 12: 1894–1901.

Nielsen, J.E. and McCammon, J.A. 2003b. On the evaluation and optimisation
of protein X-ray structures for pKa calculations. Protein Sci. 12: 313–326.

Nielsen, J.E. and Vriend, G. 2001. Optimizing the hydrogen-bond network
in Poisson-Boltzmann equation-based pK(a) calculations. Proteins 43:
403–412.

Nielsen, J.E., Beier, L., Otzen, D., Borchert, T.V., Frantzen, H.B.,
Andersen, K.V., and Svendsen, A. 1999. Electrostatics in the active site
of an a-amylase. Eur. J. Biochem. 264: 816–824.

Nielsen, J.E., Borchert, T.V., and Vriend, G. 2001. The determinants of
a-amylase pH-activity profiles. Protein Eng. 14: 505–512.

Rajagopalan, P.T., Lutz, S., and Benkovic, S.J. 2002. Coupling interactions
of distal residues enhance dihydrofolate reductase catalysis: Mutational
effects on hydride transfer rates. Biochemistry 41: 12618–12628.

Russell, A.J. and Fersht, A.R. 1987. Rational modification of enzyme catalysis
by engineering surface charge. Nature 328: 496–500.

Russell, A.J., Thomas, P.G., and Fersht, A.R. 1987. Electrostatic effects on
modification of charged groups in the active site cleft of subtilisin by
protein engineering. J. Mol. Biol. 193: 803–813.

Sham, Y.Y., Chu, Z.T., and Warshel, A. 1997. Consistent calculations of pKas
of ionizable residues in proteins: Semi-microscopic and microscopic
approaches. J. Phys. Chem. 101: 4458–4472.

Shaw, A., Bott, R., and Day, A.G. 1999. Protein engineering of a-amylase for
low pH performance. Curr. Opin. Biotechnol. 10: 349–352.

Sternberg, M.J., Hayes, F.R., Russell, A.J., Thomas, P.G., and Fersht, A.R.
1987. Prediction of electrostatic effects of engineering of protein charges.
Nature 330: 86–88.

Thomas, P.G., Russell, A.J., and Fersht, A.R. 1985. Tailoring the pH depend-
ence of enzyme catalysis using protein engineering. Nature 318: 375–376.

Tynan-Connolly, B. and Nielsen, J.E. 2006. pKD: Re-designing protein pKa
values. Nucleic Acids Res. 34: W48–W51.

Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program.
J. Mol. Graph. 8: 52–56.

Warwicker, J. 2004. Improved pKa calculations through flexibility based
sampling of a water-dominated interaction scheme. Protein Sci. 13:
2793–2805.

Yang, A.S., Gunner, M.R., Sampogna, R., Sharp, K., and Honig, B. 1993. On
the calculation of pKas in proteins. Proteins 15: 252–265.

Redesigning protein pKa values

www.proteinscience.org 249

JOBNAME: PROSCI 16#2 2007 PAGE: 11 OUTPUT: Wednesday January 3 13:31:47 2007

csh/PROSCI/127809/ps0625387


