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Abstract

Leucyl/phenylalanyl-tRNA-protein transferase (L/F-transferase) is an N-end rule pathway enzyme,
which catalyzes the transfer of Leu and Phe from aminoacyl-tRNAs to exposed N-terminal Arg or Lys
residues of acceptor proteins. Here, we report the 1.6 A resolution crystal structure of L/F-transferase
(JWO0868) from Escherichia coli, the first three-dimensional structure of an L/F-transferase. The L/F-
transferase adopts a monomeric structure consisting of two domains that form a bilobate molecule. The
N-terminal domain forms a small lobe with a novel fold. The large C-terminal domain has a highly
conserved fold, which is observed in the GCN5-related N-acetyltransferase (GNAT) family. Most of the
conserved residues of L/F-transferase reside in the central cavity, which exists at the interface between
the N-terminal and C-terminal domains. A comparison of the structures of L/F-transferase and the
bacterial peptidoglycan synthase FemX, indicated a structural homology in the C-terminal domain,
and a similar domain interface region. Although the peptidyltransferase function is shared between the
two proteins, the enzymatic mechanism would differ. The conserved residues in the central cavity of
L/F-transferase suggest that this region is important for the enzyme catalysis.
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Leucyl/phenylalanyl-tRNA-protein transferase (EC: 2.3.2.6.,
L/F-transferase) (Kaji et al. 1965) is one of the essential
enzymes controlling the half-lives of proteins in vivo in the
N-end rule pathway (Tobias et al. 1991; Varshavsky 1992;
Shrader et al. 1993). The two proteolytic systems, the Clp-
dependent and the ubiquitin-dependent, are both referred to
as the N-end rule pathways in prokaryotes and eukaryotes,
respectively (Hwang et al. 1988; Katayama et al. 1988).
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In bacteria with the N-end rule pathway, the primary
destabilizing N-terminal residues, Leu and Phe, are recog-
nized by the ATP-dependent protease ClpAp (Tobias et al.
1991; Goldberg 1992). The analogous eukaryotic protein,
arginyl-tRNA-protein transferase (ATEI, R-transferase),
mediates arginyl transfer to Asp and Glu (Kaji et al. 1963).
One of the primary destabilizing N-terminal residues, Arg, is
recognized by the ubiquitin proteolytic system (Hochstrasser
1996; Haas and Siepmann 1997; Varshavsky 1997). Despite
the enzymological similarities between the eukaryotic
R-transferase and the prokaryotic L/F-transferase, there is
no significant sequence similarity between them.

The L/F-transferase is encoded by the aat gene, which
was first isolated from Escherichia coli (JWO0868)
(Leibowitz and Soffer 1970). It also exists in actinobacteria,
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cyanobacteria, proteobacteria, chlorobi, spirochaetes, and
thermus-deinococcus (Fig. 1) and is widely distributed in
eubacteria (Ichetovkin et al. 1997). L/F-transferase cata-
lyzes the transfer of Leu and Phe from aminoacyl-tRNAs to
exposed N-terminal Arg or Lys residues of acceptor
proteins (Leibowitz and Soffer 1971).

Several previous studies have explored the biochemical
and kinetic properties of L/F-transferase (Abramochkin
and Shrader 1995, 1996). The L/F-transferase preferred
Leu-, Phe-, and Met-tRNA as substrates, thus suggesting
that an unbranched (-carbon and the side-chain hydro-

phobicity of the aminoacyl group of the aminoacyl-tRNA
were recognized by the enzyme (Kaji et al. 1965;
Scarpulla et al. 1976; Abramochkin and Shrader 1995).
The research suggested that the recognition of the amino-
acyl-tRNA by L/F-transferase started from the 5’ end to
the single-stranded 3’-terminal CCA, where no base pairs
were formed at all (Abramochkin and Shrader 1996).
The L/F-transferase enzymatic activity core domain
encompasses ~120 amino acids (Ichetovkin et al. 1997),
but the critical residues that catalyze the peptidyltransfer-
ase reaction are still unclear. Here, we determined the
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Figure 1. The secondary structure-based sequence alignment of L/F-transferase from E. coli. The classifications of proteobacteria,
cyanobacteria, actinobacteria, thermus-deinococcus, spirochaetes, and chlorobi strains are shown with blue, red, gray, magenta, orange,
and green letters, respectively. The highly conserved and completely conserved residues in all proteins are highlighted in yellow and
red, respectively. The conserved residues in the cavity of L/F-transferase are indicated by dark green-colored stars.
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crystal structure of E. coli L/F-transferase, the first three-
dimensional structure of an L/F-transferase. The structure of
L/F-transferase contains two domains and revealed the location
of the enzyme catalytic region at the domain interface.

Results and Discussion

The L/F-transferase was crystallized by the hanging-drop
vapor diffusion method. The L/F-transferase crystal
belonged to the space group C2, with unit cell dimensions
ofa=68.3A,b=44.8 A, and c = 76.4 A. The structure
of L/F-transferase was solved by the MAD method using
the Se-Met crystal, and was refined to an R factor of
18.7% and an R-free factor of 21.7% to 1.6 A resolution
(Table 1). There was no observable electron density for
the region encompassing residues 105-109, and the two
C-terminal residues, and thus these residues were not
included in the final structure. The L/F-transferase is a
monomeric protein consisting of two domains that form a
bilobate molecule, with dimensions of 54 X 32 X 34 A
(Fig. 2A). The smaller lobe of the molecule is formed by
four B strands, with two parallel (31, 32) and two anti-
parallel (B3, B4), surrounded by an « helix (al) and a

Table 1. X-ray crystallography statistics

Data collection and processing statistics

Space group Cc2

Cell constant (A) a=683Ab=448 A c=764A
Remote Peak Edge

Wavelength (A) 0.9680 0.9795 0.9797

Resolution limit (A) 50.0-1.6 50.0-1.6 50.0-1.6

Redundancy® 3.9 7.5 3.9

No. of unique reflections® 28,862 28,737 28,791
Completeness” (%) 98.7 (93.9) 99.1 (98.3) 99.1 (97.9)
<l/o(D)>" 20.2 (4.5) 23.3 (8.6) 18.2 (5.3)

Rmergea.b (%)
Figure of merit (FOM)

0.051 (0.242) 0.065 (0.225) 0.054 (0.229)
0.58 (after resolve
modification, 0.74)

Refinement statistics

Resolution limits (A) 36.8-1.6
No. of unique reflections 28,814
R-factor® (%) 18.7
Riee (%) 217
No. of protein atoms 1850
Root-mean-square deviation from ideal values
Bond lengths(A) 0.01
Bond angles (degree) 1.6
Dihedral angles (degree) 23.9
Improper angles (degree) 1.05

*Values in parentheses are for the highest-resolution shell.

"Rmﬂge = 1003/l — L|/Z4|L]), where I, is the average of all individual
observations I;.

R = 100E|F, — F./2|F,|), where F, and F. are the observed and
calculated structure factor amplitudes.

IRiee = 100(3|F, — F.J/S|F,)), calculated using a test data set consisting
of 10% of the total data randomly selected from the observed reflections.
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3,0-helix (3,p91) of the N-terminal domain (residues 1—
63). The larger lobe of L/F-transferase comprises eight
B strands with two parts of an anti-parallel B-sheet (85,
10, B11; B6-B9, B12), and with six o helices (a2—-a7)
and a 3jp-helix (3;92) (Fig. 2). An analysis of the
molecular surface electrostatic potential indicated a long
shallow cleft at the surface, running across the N-terminal
and C-terminal domains. A large central cavity exists at
the interface of the N-terminal and C-terminal domains,
with the characteristic positive charge contributed by the
corner of the cleft on the C-terminal domain surface
(Fig. 3A), suggesting that they probably complement the
negatively charged phosphate backbone of the substrate
aminoacyl-tRNA. A structure database search was per-
formed using the Dali server (Holm and Sander 1993).
Three similar structures were found, including GCNS5
histone acetyltransferase (Protein Data Bank [PDB]
code 1PUY9, Z-score = 10.3, sequence identity = 6%)
(Clements et al. 2003), FemX transferase (PDB code
1XE4, Z-score = 9.8, sequence identity = 12%) (Maillard
et al. 2005), and aminoglycoside 6'-N-acetyltransferase
(PDB code 1S3Z, Z-score = 9.0, sequence identity =
12%) (Vetting et al. 2004). Although they lack significant
sequence identity, the C-terminal domains of L/F-
transferase and the others consist of the structurally
conserved core region formed by four a helices and six
B strands (a3—-a6, B6—B11 in L/F-transferase), which is
observed in the GCNS5-related N-acetyltransferase
(GNAT) family (Fig. 2B). In addition, the GNAT super-
family fold usually indicates the binding of acetyl-CoA,
which donates the acetyl group that is transferred to a
primary amine (Vetting et al. 2005).

L/F-transferase and FemX catalyze similar peptidyl-
transferase reactions, involving the transfer of an
uncharged amino acid from a donor aminoacyl-tRNA to an
acceptor peptide. The FemX UDP-MurNAc-pentapeptide
(UDP-MPP):L-alanine transferase from Weissella virides-
cens is a cell-wall peptidoglycan biosynthesis-related protein,
which consists of two domains, and it has a long substrate
binding cleft (Hegde and Shrader 2001; Biarrotte-Sorin et al.
2004). Based on their structural and peptidyltransferase
reaction similarities, we superimposed the L/F-transferase
and FemX structures. The N-terminal domains of the two
structures indicated a very different structure, in which the
N-terminal domain of L/F-transferase appeared to have a
novel BapBaBP fold and to be smaller than that of FemX
(Fig. 4). In contrast, the C-terminal domains of the two
structures can be superimposed with a root-mean-square
deviation (RMSD) of 2.7 A for the structurally conserved
GNAT superfamily fold (Fig. 4C; Dyda et al. 2000; Vetting
et al. 2005). In addition, the two domains of the FemX
structure share a similar fold structure, but the L/F-
transferase did not exhibit the structural homology between
the two domains. The FemX enzyme adds L-Ala to the
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Figure 2. The structure of L/F transferase. (A) Stereo-view ribbon diagram of the overall structure of L/F-transferase. The N-terminal
domain (1-63) is colored blue, and the C-terminal domain (64-232) is colored yellow. The part of the loop that is missing is marked by
asterisks. (B) A cartoon demonstrating the folded topology of L/F-transferase. The orientation and the color scheme of the domains are
the same as in the ribbon diagram. The conserved GNAT superfamily fold is colored pink.

g-amino group of L-Lys (Fig. 4B, C) in the UDP-MPP. It is
bound in the interface of the two domains, thus implying the
existence of a catalytic site in this region. Although the L/F-
transferase and FemX appear to utilize the different sub-

strates, the similar structural features revealed that the two
proteins may share the substrate binding and active regions.

Thus, in the L/F-transferase structure, the domain
interface region involves a broad space surrounded by

Figure 3. Molecular surface representation of L/F-transferase. The front view (A) and the back view (B) are colored by electrostatic
potential (blue, +70KT; red, —70KT). The proposed substrate binding cleft is indicated by a gray line.
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Figure 4. Structural comparison of the L/F-transferase and the FemX transferase. The conserved GNAT superfamily fold regions are
shown in yellow and purple-blue color, respectively, in the structure of the C-terminal domain of L/F-transferase (A) and FemX
transferase (B), belonging to the peptidyltransferase enzymes. The UDP-MPP bound in the FemX transferase structure is colored red
and depicted as a ball-and-stick model. The L-Lys of UDP-MPP is shown in pale cyan. (C) Superposition of the overall backbone
structures of L/F-transferase and FemX transferase (stereo view). The structures are indicated by a main-chain, with the N-terminal
domains of L/F-transferase and FemX colored dark gray and gray, respectively. The C-terminal domains of L/F-transferase and FemX

are colored as in A and B, respectively.

al and B3 of the N-terminal domain, and a4, B5, B9, and
B10 of the C-terminal domain (Fig. 2A). Most of the
conserved residues are extensively distributed within the
cleft of L/F-transferase. Especially, the conserved resi-
dues Tyr42, Phe47, Trplll, Tyr120, Glul56, Serl57,
Aspl186, and GInl88 are assembled in the central cavity
of the long cleft (Figs. 1, 3A). Notably, the completely
conserved residue Glul56 is located at the central
position of the cavity, and its side-chain is directed
toward Tyr42 and Tyr120, respectively belonging to ol
and a4, which are highly conserved in the L/F-transferase
family (Fig. 1). Thus, Tyr42 is located within hydrogen-
bonding distance to Tyr120 and Glul56. It seems that
Tyr120 and Glul56 are structurally similar to the critical
residues for UDP-MPP binding in the FemX complex
structure (Hegde and Shrader 2001; Biarrotte-Sorin et al.
2004). The other completely conserved residues, Asp186

532 Protein Science, vol. 16

and GInl188, are located at the end of 35, and Aspl186 is
positioned within hydrogen-bonding distance to Glul56
via two water molecules (Fig. 5). Interestingly, two
aromatic residues, Phe47 and Trpl11, are located at the
entrance of the cavity of the L/F-transferase, and both of
their side-chains point toward the inside of the cavity,
implying that the aromatic rings of the residues should be
favorable for tRNA stacking. The domain interface region
of L/F-transferase contains many key conserved residues
that form a hydrogen-bond network, suggesting that the
cavity region is important for enzyme catalysis.

Materials and methods

Protein expression, purification, and crystallization

The selenomethionine-labeled L/F-transferase was expressed
from the cloning vector pCA24N in E. coli strain B§34(DE3)
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Figure 5. Detailed view of the domain interface region of L/F-transferase.
The L/F-transferase structure is shown as a cartoon model, and the side-
chains of the residues are shown as ball-and-stick models. The conserved
residues of L/F-transferase are colored gray, and the two water molecules
are shown by wheat-colored spheres. The hydrogen bonds are indicated by
dashed black lines.

(Novagen). The cells were harvested and disrupted by sonication
in 20 mM of Tris-HCI buffer (pH 8.0), containing 500 mM NaCl,
5 mM of 2-mercaptoethanol, and 1 mM of PMSF. The lysate was
cleared by centrifugation for 30 min at 15,000 rpm. The super-
natant was purified by two chromatography steps, on HiTrap
Chelating HP5 and Hiload 16/60 Superdex 200 columns. The
crystals of L/F-transferase were grown using the hanging-drop
vapor diffusion method at 293 K. The protein solution was
dialyzed against 20 mM of MES buffer (pH 6.0), containing
200 mM NaCl and 20 mM of DTT, and was concentrated to
1.1 mg/mL with an Amicon Ultra-15 Centrifugal Filter (Millipore).
The best crystallization conditions employed a reservoir solution
containing 100 mM of Tris-HCI buffer (pH 8.5), 200 mM NaCl, and
25% PEG 3350. The crystals were grown within 5 d to maximum
dimensions of 0.1 X 0.1 X 0.2 mm.

Data collection, structure determination, and refinement

For data collection, all crystals were transferred to a cryopro-
tectant solution including 12% (v/v) of PEG 400, picked up in a
0.2-mm nylon loop, and then flash frozen in a cold nitrogen
stream at 100 K. The MAD data sets were collected at three
wavelengths, 0.9797 A (edge), 0.9795 A (peak), and 0.9630 A
(remote), to 1.6 A resolution on the NW12A beamline at PF-AR
(Tsukuba). Diffraction data were processed and scaled using the
HKL2000 program (Otwinowski and Minor 1997). Data collec-
tion statistics are presented in Table 1.

For phase determination, eight selenium sites were located by
using SOLVE (Terwilliger and Berendzen 1999). The resulting
electron density map (figure of merit 0.58) was considerably
improved by density modification with the program RESOLVE
(Terwilliger 2002) (figure of merit 0.74). The model building

was completed using the program O (Jones et al. 1991). Rigid-
body, simulated annealing, energy minimization, and individual
B-factor refinements were carried out using CNS (Brunger et al.
1998). The stereochemical quality of the final structural models
was checked with PROCHECK (Laskowski et al. 1993). All
figures were made with PyMOL (DeLano 2002), and super-
positions of structures were prepared with LSQMAN (Kleywegt
1996).

The coordinates and structure factors have been deposited in
the RCSB Protein Data Bank, with the accession code 2CXA.
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