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Abstract

The basic differences between the 20 natural amino acid residues are due to differences in their
side-chain structures. This characteristic design of protein building blocks implies that side-chain–side-
chain interactions play an important, even dominant role in 3D-structural realization of amino acid
codes. Here we present the results of a comparative analysis of the contributions of side-chain–side-
chain (s-s) and side-chain–backbone (s-b) interactions to the stabilization of folded protein structures
within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest
that side-chain–backbone interactions play the major role in side-chain packing, in stabilizing the folded
structures, and in differentiating the folded structures from the unfolded or misfolded structures, while
the interactions between side chains have a secondary effect. An additional analysis of electrostatic
energies suggests that combinatorial dominance of the interactions between opposite charges makes the
electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but
also compact random conformations. This observation is in agreement with experimental findings that,
in the denatured state, the charge–charge interactions stabilize more compact conformations. Taking
advantage of the dominant role of side-chain–backbone interactions in side-chain packing to reduce the
combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain
conformations. We present the results of a validation study of the method based on a set of high
resolution X-ray structures.

Keywords: protein structure; protein folding; amino acid code; side-chain prediction; electrostatic
interactions; van der Waals interactions

An important feature of natural amino acid residues in
respect to their role as the basic building blocks of
proteins, is that they are assembled from two distinct
units—the chemically nonvariable peptide backbone and
the highly variable side-chain groups. This characteristic
design suggests that interactions between amino acid side

chains are important intramolecular interactions in the
structural realization of amino acid code. Based on this
premise, many knowledge-based potentials used in pro-
tein modeling are derived from the frequencies of atomic
contacts only between side-chain atoms (Tanaka and
Sheraga 1976; Miyazawa and Jernigan 1985; Skolnick
et al. 1997). Similarly, many side-chain-predicting algo-
rithms focus their search strategies on intensive sampling
of the mutual side-chain–side-chain orientations, some of
them based on powerful dead-end elimination theory
(Desmet et al. 1992). On the other hand, simpler pre-
dictive methods (Eisenmenger et al. 1993; Xiang and Honig
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2001) have shown that the sampling of mutual side-chain
orientations is relatively unimportant to the prediction of
side-chain packing. This suggests that other forces
involving side chains may play the dominant role in
amino acid side-chain packing and consequently in
stabilizing protein native conformation. A few studies
have analyzed how the relative contributions of side-
chain–side-chain and side-chain–backbone interactions to
the stabilization of protein structures extend beyond the
well-recognized restrictive role of backbone environment
on side-chain conformation (Gelin and Karplus 1979;
Desmet et al. 1992). Eisenmenger et al. were among the
first to address this question (Eisenmenger et al. 1993).
Based on the results of side-chain predictions and the
statistics of short-range contacts in a small set of protein
structures, the authors concluded that the main chain has
the dominant effect on the optimization of side-chain
geometry. A more recent statistical analysis (Buchete
et al. 2004) of short-range intramolecular contacts in
globular proteins demonstrates that side-chain–backbone
contacts represent a substantial fraction of all side-chain
contacts. From this observation, the authors developed
novel, orientation-dependent statistical potentials by includ-
ing a virtual backbone center as a 21st interacting site. In a
study on determinants of side- chain packing (Tanimura
et al. 1994) the authors concluded that the average ‘‘dis-
criminating power’’ of side-chain–side-chain and side-
chain–backbone interactions are almost equal.

In order to understand the side-chain packing forces
better, we undertook a comparative analysis of different
intramolecular energy contributions involving amino acid
side chains. In agreement with several previous studies,
but somewhat contradictory to conventional thinking, our
results indicate that among intramolecular side-chain
interactions, the side-chain–backbone interaction is the
dominant force for side-chain packing and for stabilizing
the folded structure. This observation suggests two
possible improvements to protein modeling approaches.
First, if the mutual interactions between amino acid side
chains are of secondary importance, it is possible to re-
duce the combinatorial search in many side-chain predict-
ing algorithms. Second, side-chain–backbone interaction
should be considered when constructing knowledge-
based potentials for protein modeling. The calculated
electrostatic contribution to s-s interactions showed some
interesting but counterintuitive results for misfolded
structures. This led us to undertake an additional theo-
retical analysis of charge–charge interactions involving
acidic and basic residues. The results suggest that charge–
charge interactions stabilize compact protein conformations
in a nonspecific way.

During the past decade, a large number of side-chain
optimization algorithms have been described in the liter-
ature that use different search strategies and computational

methods (De Mayer et al. 1997; Looger and Hellinga 2001),
including dead-end elimination theory (Desmet et al. 1992),
Monte Carlo methods (Liang and Grishin 2002; Peterson
et al. 2004), iterative search (Xiang and Honig 2001),
Gaussian evolutionary method (Yang et al. 2002), and
graph theory (Canutescu et al. 2003). Most of these
methods are based on combinatorial sampling using differ-
ent types of rotamer libraries, such as backbone-indepen-
dent (Ponder and Richards 1987), backbone-dependent
(Dunbrack Jr. and Karplus 1993), and even libraries including
dihedral angles, bond lengths, and bond angles (Xiang and
Honig 2001). On the other hand, it has been demonstrated
(Eisenmenger et al. 1993) that combinatorial searches can
be reduced to a search of side-chain conformers with
optimal interactions with backbone only without significant
lost of accuracy.

Based on the observation of the dominant role of side-
chain–backbone interactions, we developed a new
CHARMm (Brooks et al. 1983) based algorithm, ChiRotor,
for rapid side-chain modeling by using a limited sampling
procedure in combination with energy minimization. Ini-
tially ChiRotor places each side chain in absence of other
side chains to reduce the combinatorial problem. However,
a principle difference between ChiRotor and other similar
methods (Eisenmenger et al. 1993) in general is that we
limited the combinatorial search to a possible minimum,
sampling only three initial conformers per residue. In other
words, our working hypothesis was that the steering effect
of side-chain–backbone interactions is strong enough that
the use of energy minimization makes more exhaustive
conformational sampling unnecessary.

Theory

Our analysis focuses on interactions involving side-chain
and backbone atoms as variable and nonvariable compo-
nents of amino acid residues. We used two united atom
force fields: CHARMm polar hydrogens (Momany and
Rone 1993) and charmm19 (Neria et al. 1996). The
Cb atom is generally treated as part of the backbone since
it is present in most amino acid residues and its position is
determined from main-chain conformation. However, in the
CHARMm force field, a few residues, such as Asp and Ser,
have a part of the total side-chain electrostatic charge
delocalized on the Cb atom. To minimize noise in the
results from charging backbone groups with a part of side-
chain charge, in electrostatic calculations only, the Cb

atom’s contribution to the electrostatic energy is treated
as part of the side-chain energy.

In empirical molecular models with implicit solvation
terms, the total energy of a conformational state can be
expressed by the potential of mean-force E:

E =Fintra +DGslv (1)

Side-chain backbone interactions and ChiRotor
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The potential E is formed from the energies of intra-
molecular interactions between protein atoms, Fintra, and
the interactions of protein atoms with the solvent, DGslv:
Because the interactions between atoms inside the same
residue as well as the interactions between backbone
atoms were beyond the scope of this study, the corre-
sponding contributions were omitted. The energies of
s-s and s-b intramolecular interactions, Fintra, were calcu-
lated as sum of van der Waals and electrostatic terms:

Fintra =Fvdw
intra +Felec

intra (2)

Some implicit solvent models, such as Generalized
Born (GB) (Still et al. 1990), allow us to combine the
electrostatic interactions between charged atoms easily
with the screening effect of the solvent polarization. In
this study we used the Genborn module in CHARMm
(Dominy and Brooks III 1999) as the implicit solvent model.
GB allows the polar contribution to be referenced to an
environment with the dielectric properties of the protein
interior and, consequently, the second term in Equation 2 is
calculated as (Bashford and Case 2000):
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where qi are the atomic partial charges, ai are the atomic
Born radii, and em and eslv are the dielectric constants of
the molecule and solvent, respectively.

The additivity of pairwise atomic contributions in
Equation 3 allows all terms forming Equation 2 to be
decomposed into group–group terms and makes it possi-
ble to evaluate and compare the net effect of different
types of interactions between variable and nonvariable
parts of amino acid residues:

Fintra =Fb�b +Fs�b +Fs�s (4)

where Fb-b is the energy of intramolecular interactions
between backbone atoms, Fs-b is the contribution of the
interactions of side chains with backbone, and Fs-s is the
interaction energy between amino acid side chains.
Taking into account the capability of backbone atoms to
form intensive networks of hydrogen bonds, the Fb-b term
should have a considerable, even the major contribution
to Fintra. However, the value of Fb-b does not reflect
directly the differences in amino acid sequence, if
excluding some effects of Gly and Pro residues. Hence,
the selection of native structure should be going mainly
through the optimization of the interactions forming Fs-b,

Fs-s, and, of course, DGslv between a number of possible
backbone folds with relatively low Fb-b energies.

Fs-b and Fs-s can be decomposed additionally as sums
of intraresidue and interresidue terms:

Fs�s = +
Nr

i

f ðsi,siÞ+ 1=2+
Nr

i

+
Nr

j 6¼i

f ðsi,sjÞ (5)

Fs�b = +
Nr

f ðsi,biÞ+ 1=2+
Nr
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where si and bi denote the group of side-chain atoms and
backbone atoms of residue i, respectively, and Nr is the
number of residues. In contrast to side-chain–side-chain
interaction terms, the self terms, f(si,si) and f(bi,si) include
some covalent 1–2 and 1–3 interaction types. In the folding
process the optimization of f self terms can be important for
the selection of the possible backbone or side-chain con-
formations, but does not contribute directly to the forces
that keep protein structures folded. To avoid the noise of a
possible artificial coupling between covalent and noncova-
lent terms, we limited the analysis to the interresidue parts
of intramolecular energy, given by

Fs�s = 1=2+
Nr

i

+
Nr

i 6¼j

f ðsi; sjÞ (6)

Fs�b = 1=2+
Nr

i

+
Nr

j6¼i

f ðsi; bjÞ+ f ðbi; sjÞ
� �

:

Note, that according to Equation 6, any residue i can
contribute to side-chain–backbone energy not only through
its side-chain atoms, but also through interactions of the
backbone group with other side chains. This means that in a
random protein structure, the formation of up to two s-b
contacts versus no more than one s-s contact will be
possible for any two residues in close contact.

Results and Discussion

Side-chain determinants of intramolecular interactions

Most of the results in this article were obtained using a set
of 24 nonhomologous proteins with high resolution struc-
tures (S24, see Materials and Methods). The atomic
composition of the S24 set shows that the average number
of side-chain heavy atoms varies from 2.5 to 3 atoms in
different proteins, while backbone atoms are consistently
;4.9 atoms per residue, when the Cb atom is considered as
a part of the backbone. The ratio above suggests that the
optimization of s-b interactions might be important for the
stabilization of native structure, even taking into account
that some backbone atoms are involved in short-range
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interactions with other backbone atoms. A similar, unbal-
anced atomic composition has been reported before (Eisen-
menger et al. 1993) as well as an unexpectedly large number
of short-range s-b contacts compared to s-s interactions.

Considering the importance of atomic distributions
around the side-chain atoms as determinant of intra-
molecular forces, we undertook a further analysis. For
each structure in the S24 set we calculated the distribu-
tion of the heavy atoms around any side-chain atom as a
function of distance. The results presented in Figure 1
show the average numbers of side-chain and backbone
atoms, respectively, within a 1-Å spherical layer around
any given side-chain atom. Figure 1A shows the distri-
bution of a 64-residue protein, 1aho, which is typical for
small proteins in the S24 set, and Figure 1B shows the
distribution of a 321-residue protein, 1ixh, typical for the
large proteins. The most important feature seen in Figure
1 is that side-chain atoms are surrounded mainly by
backbone atoms, and the average number of s-b contacts
dominates the number of s-s contacts at a ratio of ;2:1 at
almost all distances, including the most important range,
;3 to ;6 Å, for stabilizing van der Waals and some polar
contacts. Consequently, for the attractive van der Waals
interactions, the cumulative stabilizing effect of optimiz-
ing the s-b term is expected to be significantly larger than
of s-s terms. For the electrostatic terms, however, the
distributions on Figure 1 are not directly informative,
because of the significant contribution of a small number
of charged side chains of acidic and basic residues.
However, at least for the ‘‘dipole–dipole’’ type of inter-

actions between side-chain and backbone groups, the
results indicate that the optimization of the s-b interaction
might have more potential than the s-s optimization to
stabilize native structure.

The striking difference in densities of the surrounding
backbone and side-chain atoms was an additional moti-
vation to study the relative contribution of s-b and s-s
interactions to the protein folding mechanism. The
rigorous approach to study the role of a given interaction
type in the folding process is to compare the differences
in corresponding free energy terms between native and
unfolded states. However, the modeling and evaluation of
the average properties of the unfolded state is an
extremely difficult problem, because it is related to the
sampling of an enormous number of possible conformers.
Therefore, following other examples in the literature
(Shaefer et al. 1997; Warwicker 1999), we referenced
the energy terms of native (ntv) structures not to the
energies derived from an ensemble of unfolded structures,
but to the energy of a single conformation, modeled as a
relaxed b-strand. In other words, the modeled intra-
molecular energy of folding will be referenced to a
‘‘totally unfolded structure’’ b:

DFint =FintðntvÞ � FintðbÞ

and, correspondingly,

DFs�s =Fs�sðntvÞ � Fs�sðbÞ (7)

DFs�b =Fs�bðntvÞ � Fs�bðbÞ:

Although the extended conformational state might not
be the best approximation of the denaturated state
(Elcock 1999), we believe that the model results are
informative. Equation 7 gives an estimation that is close
to the upper limit of the folding energy as well as to the
upper limit of the differences in intramolecular energy
terms between a folded state and a conformational state
with minimum long-range noncovalent interactions.

Table 1 compares the s-b and s-s contributions to DFint

calculated for all proteins from the S24 set. The energy
terms are derived from the minimized X-ray structure
assuming a minimized reference state.

All energy terms in Table 1 correspond to the normal-
ized per residue values of intramolecular contribution to
the folding energy DF.

As expected, the transition from an extended state to the
native conformation results in a considerable gain in the
total side-chain interaction energy, about 5.6 kcal/mol per
residue on average. For all studied proteins, the side-chain
interactions provide a stabilizing effect on native structure,
and this effect becomes stronger with the increasing size of
the protein. The most striking result is that, for all studied
structures, the stabilizing effect of side-chain–backbone

Figure 1. The average number of side-chain atomic contacts with back-

bone atoms (black bars) and with side-chain atoms (white bars) as a

function of distance. The data are averaged for spherical layers of 1 Å

thickness. (A) 1AHO structure (64 residues); (B) 1IXH structure (321

residues).
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interactions is more than three times stronger than that of
the interactions between side chains. Surprisingly this result
comes not only from the van der Waals contributions, but
also in almost the same proportion from the electrostatic
interaction. The last column of Table 1 gives the percen-
tages, Q, of the residues that have lower s-b energies than
s-s energies. The significantly lower s-b energies than
s-s energies, as well as the high Q values, suggest that
the interactions of the side chains with the backbone are
effectively the real intramolecular glue that prevents the
structure from unfolding, while the interactions between
side chains have a secondary effect. The above feature is
more strongly expressed in the interactions of the residues
from the protein core, because the atoms of surface residues
are less involved in intramolecular interactions.

For a more detailed look at the factors influencing the
difference between the net s-b and s-s interaction ener-
gies, we calculated the contributions of the different types
of amino acid residues to DFintra. The data shown in
Figure 2 represent the mean values of residue contribu-
tions averaged over all residues in proteins from the S24
set. A general conclusion that can be drawn from Figure 2
is that both types of interaction terms, s-s and s-b, show

stabilizing van der Waals and electrostatic contributions
to intramolecular energy of folding for all amino acid
residues. In other words, none of the amino acid side
chains have evolved a destabilizing role in respect to
intramolecular energy of folding. For electrostatic inter-
actions the above result is not exactly trivial, since if there
is a difference between the numbers of negatively and
positively charged groups, the electrostatic s-s interac-
tions may not favor the folded states, even being opti-
mized almost always in native conformation (Spassov and
Atanasov 1994; Spassov et al. 1994; Petrey and Honig
2000). In summary, the stabilizing effect is larger from
s-b interactions than from s-s interactions for almost all
amino acid residues. This result is in agreement with the
results shown in Table 1 and is valid for almost all types
of side chains and for both van der Waals and electrostatic
interactions, except for the electrostatic terms involving
charged Lys and Arg residues. A large electrostatic term
of s-s interactions reflects the involvenemt of Lys and Arg
residues in salt bridges or networks of charged groups.
Similar results should be expected for Asp and Glu;
however, not taking into account the metal ions or
positively charged ligands in the analysis, the results

Table 1. The side-chain contributions to the intramolecular interaction energy

Protein Nres

DFint/residue (kcal/mol)

Total VDW Elec Q(s-b) (%)

s-b s-s s-b s-s s-b s-s All Core

1ejg 46 �2.36 �0.63 �1.24 �0.49 �1.12 �0.14 94 100

1rb9 52 �3.32 �0.95 �1.8 �0.91 �1.52 �0.04 95 89

2fdn 55 �2.16 �0.38 �1.44 �0.32 �0.74 �0.06 97 100

1g6x 58 �2.71 �0.85 �1.83 �0.64 �0.88 �0.22 87 83

1f94 63 �3.16 �1.08 �1.84 �0.71 �1.32 �0.38 88 100

1aho 64 �3.48 �1.22 �1.62 �0.76 �1.86 �0.45 78 100

1c75 71 �2.31 �0.76 �1.55 �0.53 �0.76 �0.23 80 100

1iqz 81 �4.83 �0.92 �2.23 �0.82 �2.59 �0.1 89 100

1iua 83 �3.73 �1.13 �2.15 �0.71 �1.58 �0.42 88 100

2pvb 107 �5.38 �0.95 �2.27 �1.23 �3.12 0.29 82 84

1g4i 123 �4.49 �1.36 �1.9 �0.88 �2.59 �0.48 86 92

1dy5 123 �4.03 �1.34 �2.15 �0.8 �1.88 �0.55 93 97

3pyp 125 �4.53 �1.53 �2.43 �1.2 �2.11 �0.33 87 98

3lzt 129 �4.29 �1.43 �2.22 �1.01 �2.07 �0.43 89 97

1g66 207 �5.63 �0.65 �2.22 �0.9 �3.41 0.25 91 95

1fn8 224 �4.41 �1.27 �2.26 �0.74 �2.15 �0.53 91 98

1k4i 216 �5.08 �1.45 �2.43 �0.99 �2.64 �0.46 87 98

1byi 224 �4.15 �1.35 �2.24 �0.99 �1.91 �0.36 90 97

1nls 237 �5.02 �1.24 �2.41 �1.06 �2.61 �0.18 89 95

1gci 269 �5.32 �1.12 �2.49 �0.76 �2.83 �0.37 92 98

7a3h 300 �6.42 �2.13 �2.76 �1.44 �3.65 �0.7 83 92

1ixh 321 �5.5 �1.72 �2.6 �1.2 �2.89 �0.52 87 97

1bxo 323 �5.22 �1.25 �2.45 �1.05 �2.77 �0.2 95 99

1kwf 363 �7.08 �2.64 �2.83 �1.42 �4.25 �1.22 83 95

Average �4.36 �1.22 �2.14 �0.90 �2.21 �0.32 88 96

The energy terms are referenced to the energies of a relaxed b-strand conformation. All energy terms are normalized as per residue values. Q(s-b) is the
percent of residues with stronger stabilizing effect of s-b than of s-s interactions.
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are affected by uncompensated interactions between
anionic side-chain groups involved in ion-binding clus-
ters. Therefore the results of the electrostatic contribution
to s-s interaction should be generalized with caution for
charged side chains.

The results in Figure 2 also show a striking difference
in the stabilizing effect of s-b interactions involving Asp
and Glu relative to all other residues. This feature is con-
sistent with the results of a previous statistical analysis
(Spassov et al. 1997) that the interactions between iono-
genic side chains and the peptide backbone show a
considerably higher level of structural optimization com-
pared to the charge–charge interactions between side
chains. However, the effect is only observed for nega-
tively charged Asp and Glu, and not for the positive Lys
and Arg residues. A possible explanation of this charge
‘‘asymmetry’’ follows from the asymmetry in the distri-
bution of the electrostatic potential generated from back-

bone permanent dipoles in the interior of native proteins.
It has been found (Spassov et al. 1997; Gunner et al.
2000) that the protein side-chain atoms are immersed
dominantly in a space of positive potential generated by
the peptide backbone.

The results in Table 1 and Figure 2 demonstrate a major
stabilization role of s-b interactions in protein native
structure. In addition, it is important to know if the s-b
interactions play a dominant role in differentiating the true
native fold from alternative folded conformations. One way
to study this is to compare energies of native structures with
energies of the alternative folds of the same sequence.
Similar to the approach used in the study of free energy
determinants of tertiary structure (Petrey and Honig 2000),
we used the same EMBL set (Holm and Sander 1992)
of deliberately misfolded protein structures as structural
models to evaluate the discriminative role of the different
interaction terms to protein intramolecular energy.

Table 2 compares the energies of s-b and s-s interactions
calculated for pairs of native and decoy structures from the
EMBL collection of misfolded proteins. Each decoy struc-
ture has the same sequence as the native one, but belongs to
a completely different fold. The decoy structures are
modeled based on the atomic coordinates of protein main
chain taken from the second PDB entry in Table 2. As
expected, Table 2 shows that the average contributions to
DF of the native structures of the EMBL set are similar to
those of the S24 set and that the two data sets have almost
the same ratio between s-b and s-s contributions. The decoy
structures also have considerable stabilizing negative DF
energies for almost all s-b and s-s interactions. This result
indicates that the amino acid side chains have many
stabilizing intramolecular contacts even in the nonnative
folds. Interestingly, both native and decoy conformations
show similar ratios between the average values of s-b and
s-s interaction terms. For each pair of PDB entries in Table
2, the second row shows the differences, DDF, between the
intramolecular energy terms calculated for native and
misfolded structures:

DDF =FintraðnativeÞ � FintraðdecoyÞ: (8)

For almost all types of s-s and s-b interactions, the
native structures have lower energies than the decoy struc-
tures. On average, the intramolecular interaction energy
of an amino acid side chain is lower by 1.4 kcal/mol in the
native structures than in the decoy structures. This
implies that for a relatively small protein of 100 residues,
the native conformation will be differentiated from a mis-
folded structure by a significant amount, 140 kcal/mol, of
intramolecular energy.

Similar to the transition from extended to native
conformation, on average, the s-b interactions have about
twice as strong an effect on discriminating the decoy

Figure 2. Average contributions of different amino acid residues to

intramolecular energy of folding. (Black bars) The energy of s-b

interactions; (white bars) s-s interactions. (A) Total interaction terms; (B)

van der Waals contributions; (C) electrostatic contributions.
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Table 2. The s-b and s-s contributions to folding energies of native (ntv) and misfolded decoy (dcy) structures, calculated for proteins
from EMBL set

DFint/residue (kcal/mol)

Total VDW Elec

Structure s-b s-s s-b s-s s-b s-s

native decoy N
ntv
DDF dcy

ntv
DDF dcy

ntv
DDF dcy

ntv
DDF dcy

ntv
DDF dcy

ntv
DDF dcy

1cbh 1ppt 36 �1.4 �1.3 �0.3 �0.2 �0.7 �0.7 �0.2 �0.2 �0.7 �0.5 �0.1 0.0

�0.1 �0.1 0.0 0.0 �0.2 �0.1

1ppt 1cbh 36 �1.4 �1.6 �0.8 �0.7 �1.2 �1.1 �0.7 �0.7 �0.3 �0.5 �0.2 0.0

0.1 �0.1 �0.1 0.0 0.2 �0.2

1fdx 5rxn 54 �1.8 �1.5 �0.1 �0.3 �1.3 �1.0 �0.2 �0.4 �0.4 �0.4 0.1 0.0

�0.3 0.2 �0.3 0.1 0.0 0.1

1sn3 2ci2 65 �2.8 �2.0 �1.0 �0.7 �1.5 �1.4 �0.7 �0.4 �1.3 �0.6 �0.3 �0.2

�0.8 �0.3 �0.1 �0.2 �0.7 �0.1

1sn3 2cro 65 �2.8 �1.9 �1.0 �0.7 �1.5 �1.3 �0.7 �0.4 �1.3 �0.7 �0.3 �0.3

�0.8 �0.3 �0.2 �0.3 �0.7 0.0

2ci2 1sn3 65 �3.6 �2.5 �1.8 �1.1 �1.9 �1.6 �0.9 �0.6 �1.6 �0.9 �0.8 �0.4

�1.1 �0.7 �0.4 �0.3 �0.7 �0.4

2ci2 2cro 65 �3.6 �2.3 �1.8 �1.0 �1.9 �1.8 �1.0 �0.9 �1.6 �0.5 �0.8 �0.1

�1.3 �0.8 �0.1 �0.1 �1.1 �0.7

2cro 1sn3 65 �3.6 �2.0 �1.4 �1.1 �2.2 �1.4 �0.9 �0.7 �1.3 �0.6 �0.6 �0.5

�1.5 �0.3 �0.8 �0.2 �0.7 �0.1

2cro 2ci2 65 �3.6 �2.1 �1.4 �0.9 �2.3 �1.6 �0.9 �0.6 �1.3 �0.5 �0.6 �0.4

�1.5 �0.5 �0.7 �0.3 �0.8 �0.2

2b5c 1hip 85 �3.5 �3.2 �1.9 �0.9 �2.1 �1.7 �1.0 �0.8 �1.4 �1.5 �0.9 �0.1

�0.3 �1.0 �0.4 �0.2 0.1 �0.8

1hip 2b5c 85 �3.3 �2.0 �1.1 �0.2 �2.1 �1.4 �0.7 �0.5 �1.3 �0.7 �0.4 0.3

�1.3 �0.9 �0.7 �0.2 �0.6 �0.7

2ssi 2cdv 107 �2.2 �1.7 �0.7 �0.5 �1.5 �1.0 �0.5 �0.4 �0.7 �0.7 �0.2 �0.1

�0.5 �0.2 �0.5 �0.1 0.0 �0.1

2cdv 2ssi 107 �2.8 �1.9 �1.3 �0.5 �1.3 �1.5 �0.6 �0.6 �1.5 �0.4 �0.7 0.1

�0.9 �0.8 0.2 0.0 �1.1 �0.8

1bp2 2paz 123 �4.3 �3.5 �1.6 �1.4 �1.9 �1.7 �1.0 �0.8 �2.3 �1.7 �0.6 �0.6

�0.8 �0.2 �0.2 �0.2 �0.6 0.0

2paz 1bp2 123 �3.9 �2.4 �1.4 �1.1 �2.4 �1.7 �0.9 �0.7 �1.5 �0.7 �0.5 �0.4

�1.5 �0.3 �0.7 �0.3 �0.8 �0.1

1p2p 1rn3 124 �3.5 �2.7 �1.5 �1.1 �1.8 �1.6 �0.9 �0.8 �1.7 �1.1 �0.6 �0.4

�0.8 �0.4 �0.2 �0.1 �0.6 �0.2

1rn3 1p2p 124 �3.7 �2.5 �1.4 �1.1 �2.1 �1.7 �0.8 �0.7 �1.7 �0.8 �0.6 �0.4

�1.3 �0.3 �0.4 �0.1 �0.9 �0.2

1lh1 2i1b 153 �3.3 �2.8 �1.6 �1.1 �2.2 �2.1 �1.2 �0.9 �1.1 �0.7 �0.4 �0.2

�0.5 �0.5 �0.1 �0.3 �0.4 �0.2

2i1b 1lh1 153 �3.3 �2.6 �2.0 �1.1 �2.2 �1.7 �1.1 �0.8 �1.1 �0.8 �1.0 �0.4

�0.8 �0.9 �0.5 �0.3 �0.3 �0.6

2cyp 1rhd 293 �5.6 �4.8 �2.2 �1.4 �2.8 �2.1 �1.5 �1.2 �2.8 �2.7 �0.7 �0.2

�0.8 �0.8 �0.7 �0.3 �0.1 �0.5

1rhd 2cyp 293 �4.4 �3.3 �1.6 �1.5 �2.2 �2.1 �1.1 �1.0 �2.2 �1.2 �0.5 �0.5

�1.1 �0.1 �0.1 �0.1 �1.0 �0.0

2tmn 2ts1 316 �5.4 �2.8 �1.8 �1.0 �2.6 �1.7 �1.2 �0.8 �2.8 �1.1 �0.6 �0.2

�2.6 �0.8 �0.9 �0.4 �1.7 �0.4

Average em = 1 �3.4 �2.4 �1.4 �0.9 �1.9 �1.5 �0.9 �0.7 �1.5 �0.9 �0.5 �0.2

�1.0 �0.5 �0.4 �0.2 �0.6 �0.3

Average em = 4 �2.3 �1.7 �1.1 �0.8 �1.9 �1.5 �0.9 �0.7 �0.4 �0.2 �0.1 �0.0

�0.6 �0.3 �0.4 �0.2 �0.2 �0.1

The decoy structures in each row have the same sequence as the sequence of native structure (first PDB entry), but the backbone conformation
corresponding to the second PDB entry. The second row shows the differences of folding energy, DDF, between the native and misfolded conformations.
The results are obtained at a value em = 1 of internal dielectric constant in Equation 3. In the last two rows are shown also the average results obtained
at em = 4.
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structures than s-s interactions, and this is valid for both
van der Waals and electrostatic contributions. As a test for
a possible effect on the results of the value of molecular
dielectric constant, in Table 2 we present also the average
results obtained at a value of em in Equation 3 equal to 4.
It is seen that in increasing the em value, the absolute
values of the electrostatic contributions decrease, but the
ratios between s-b and s-s interaction terms remain almost
the same in all cases.

An unexpected result from the calculations on the
EMBL decoy structures can be seen in the last column
of Table 2, where the contributions of side-chain–side-
chain electrostatic interactions to folding energy system-
atically show stabilizing negative values. The energy of
s-s electrostatic interactions is formed mainly from the
interactions between charged groups, and because the
charged groups in decoy structures are distributed in an
arbitrary way, one would expect the stabilizing and
destabilizing s-s electrostatic contributions to appear in
an arbitrary way as well. In an attempt to explain the
origin of the stabilizing effect of s-s electrostatic terms
seen in all decoy structures, we carried out a novel simple
analysis of charge–charge interactions.

Charge–charge interactions in proteins

As an initial model consider a virtual charge multipole or
polymer chain containing N+ positively charged groups
and N� negatively charged groups approximated as point
charges Qi

+ ¼ 1 and Qj
� ¼ �1 e.u. unit charges with

coordinates Xi
+ and Xj

�, respectively. The total energy of
electrostatic interactions Eel can be expressed as:

Eel = +
N +

i= 1

+
N�

j = 1

Q +
i Q

�
j jðX +

i ;X
�
j Þ+

+
N + �1

i= 1

+
N +

j> i

Q +
i Q

+
j jðX +

i ;X
+
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+
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j Þ
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j Þ+ +
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+
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+
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i= 1

+
N�

j> i

jðX�
i ;X

�
j Þ (9)

where jðX; YÞ is the energy of interaction of two positive
unit charges with coordinates X and Y. In the absence of
structure information the pairwise terms in Equation 9 are
approximated by a mean interaction energy <j> and,
using Coulomb’s law, <j> ffi C=eReff where Reff corre-
sponds to a mean effective distance and C ¼ 332 kcal/mol.

Consequently, after some simple transformations, the elec-
trostatic energy can be expressed as:

Eel = � < j >

2
½ðN + + N�Þ � ðN + � N�Þ2� (10)

or expressed in Coulomb’s law

Eel = � C

2eReff
½ðN + + N�Þ � ðN + � N�Þ2�: (11)

The main result, from Equations 9–11, is that the
energy of an arbitrary charge constellation will most
probably have a negative value, if the numbers of
positively and negatively charged groups are the same
or not highly unbalanced. For example, the expected
electrostatic energy of an arbitrary multipole of 10
positive and 10 negative charges, according to Equation
11, will be a considerably negative value,
Eel = �10C=eReff ; and the energy of a small ion-pair
cluster of two cations and one anion on a triangle of equal
distances will have a negative value, Eel = �C=eReff ; etc.

To illustrate the average stabilizing effect of charge–
charge interactions following from Equation 11, we
calculated the Coulomb contribution to electrostatic
energy for an ensemble of 1000 randomly folded struc-
tures. The results are shown in Figure 3. The structure of
2i1b in the PDB database is selected for illustrative
purposes, as a structure with a balanced number of 18
cationic and 19 anionic side-chain groups. Each of the
1000 arbitrarily folded structures was generated by
CHARMm using random combinations of paired values
of f and c main-chain dihedral angles of amino acid
residues. The initial values of f, c pairs, (f ¼ �120,

Figure 3. The energy of charge–charge interactions in native structure and

1000 random conformation of 2i1b calculated as a function of the radius of

gyration of the protein.
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c ¼ 120°) and (f ¼ �65, c ¼ �40°) correspond to the
most populated ‘‘b strand’’ and ‘‘right a helix’’ areas on
Ramachandran plots. The random structures are relaxed
using optimization protocols as explained in Materials
and Methods. It is important to note that the structural
optimization is carried out without an electrostatic term in
the CHARMm energy function. In electrostatic energy
calculations the model was idealized by removing all
partial charges and modeling the charged groups of ionic
residues as point charges, centered on CG, CD, NZ, and
CZ atoms of Asp, Glu, Lys, and Arg, respectively. The
electrostatic energy for each random structure was calcu-
lated as a Coulomb term without any cutoffs. In this
analysis the effect of the solvent was not considered and
calculation assumed done in vacuum with dielectric
constant, e ¼ 1. Considering that the more compact
structures correspond to shorter effective distances
Reff, in turn, lower electrostatic energy, the computed
electrostatic energy term for the random structures is
presented in Figure 3 as a function of the radius of
gyration, Rgyr.

The majority of the randomly folded structures show
large negative values of the Coulomb electrostatic term,
in full agreement with Equation 11. The average energies
of the random structures can be approximated by Equa-
tion 11 with Reff � 0.7 Rgy and are represented by the bold
line in Figure 3. Reflecting the evolutionary optimization
of electrostatic interactions, the effective distance
between charge centers in native structure shows a lower
Reff � 0.4 Rgyr. The dashed line represents Eel calculated
using Equation 11 but with Reff � 0.4 Rgyr, i.e., a rough
approximation of what energy would be if the structural
optimization of charge–charge interactions in a random
structure were similar to native structure of 2i1b. Figure 3
shows that the energy values of many random structures
are below the dashed line, which implies a relatively low
level of spatial optimization of charge–charge interac-
tions in 2i1b native structure, a feature that is not unusual
in proteins (Spassov et al. 1994).

Based on the combinatorial dominance of counterion
interactions, expressed by Equations 10 and 11, as well as
observed in Figure 3, we suggest a novel role of electro-
static interactions as an unspecific folding force that
stabilizes not only native structure, but also compact
random structures.

An interesting conclusion from Equations 10 and 11 is
that, in vacuum or other low dielectric media, propor-
tionally increasing the numbers of positively and neg-
atively charged residues can be used to stabilize
structures with more compact shape. In water solvent,
however, the situation is more complex, since any gain in
intramolecular electrostatic stabilization of the more
compact states will be offset by the reduction of the
polar interactions between charged groups and solvent

molecules. Interestingly, if desolvation effects are
neglected, our simple model gives a reasonable explan-
ation of the experimental data reported recently by Pace
et al. (2000). Based on the pH-dependent denaturation
and mutation experiments, the authors suggested that if
not too far from iso-electric point, the unfolded polypep-
tide chains are rearranged to compact conformations
favored by long-range electrostatic interactions. The
same conclusion can be drawn from Equation 10; i.e.,
in more compact structures the charge centers, on aver-
age, will be at closer distances, the absolute value of
pairwise electrostatic interaction term <j> will increase,
and, consequently, the electrostatic energy will have more
negative values than in more extended structures. Note
that, according to Equation 10, the average stabilization
effect of charge interactions depends on the difference
between positively and negatively charged groups in a
nonlinear way, and a highly unbalanced charge multipole
will change the sign of the electrostatic energy and will
favor extended structures. In other words, the structural
characterstics of the denaturated state will be strongly
dependent on pH, which could be important in modeling
protein stability. An indirect evidence of the above can be
found in the profiles of protein stability reported by
Elcock (1999). The author finds that if the denaturated
state is modeled as a series of compact nativelike states, it
is in better agreement with experimental data in general.
However, further analysis of the data shows that at very
low pH, where the balance is strongly shifted to positive
charges, the extended conformation might be a better
approximation of the denatured state. The combinatorial
dominance of attractive interactions expressed by Equa-
tion 10, we believe, is a good basis to explain also the
effective sampling of compact denatured states in Monte
Carlo experiments (Kundrotas and Karshikoff 2003) at a
zero net charge of ionized groups.

ChiRotor—A program for rapid side-chain prediction

The observed dominant role of side-chain–backbone
interactions in stabilizing the native structures suggests
possible ways to reduce the combinatorial search of side-
chain conformers in structure prediction algorithms.
Following this idea we developed a new algorithm,
ChiRotor, for fast prediction of side-chain conformation
using CHARMm. Similar to most side-chain prediction
algorithms, ChiRotor constructs side-chain structures of
amino acid residues onto a fixed, known backbone
framework. On the other hand, in contrast to most
existing algorithms, ChiRotor does not use rotamer
libraries or any other exhaustive conformational sam-
pling. In ChiRotor the combinatorial search is maximally
reduced by ignoring the interaction between side chains
from different residues. It also only samples three initial
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conformations of any amino acid side chains for optimal
interactions with peptide backbone. The guiding principle
in all steps of the ChiRotor algorithm is to maximally
replace the work spent performing a discrete conforma-
tional search by CHARMm energy minimization.

We chose to develop ChiRotor as a CHARMm script so
that it can be easily incorporated as an integral part in any
CHARMm protocol, as well as to produce energy mini-
mized output structures that are consistent with the
standard CHARMm parameterization. In particular, it
makes ChiRotor useful for preliminary optimization of
side-chain conformations before molecular dynamics
simulations of homology models or computation models
of mutated proteins. An important difference between
ChiRotor and many of the known methods for side-chain
optimization is that it does not use special energy
potentials or scoring functions, but it is designed to work
with any standard CHARMm force fields. Written as an
open CHARMm script, ChiRotor allows the energy
function to be easily extended to a large number of
possible potentials of mean force that can be constructed
based on the CHARMm routines.

Table 3 reports the testing results of the ChiRotor
algorithm on the structures of the S24 set of high-resolution
proteins. The complete test was carried out using the
CHARMm polar hydrogen force field (Momany and Rone
1993), but the calculations for the fast mode were also
repeated using charmm19 (Neria et al. 1996). The results
are compared to the results obtained by us for the same set
of structures using the SCAP program (Xiang and Honig
2001), one of the best side-chain prediction programs
described in the literature. Usually the results of side-chain
predictions are presented both in terms of root mean
squared deviation (RMSD) of predicted atomic coordinates
from native structure and in the percent of correctly
predicted dihedral angles. Here, to avoid redundancy, we
presented the results as RMSD values only, because the two
measures are coupled and, as can be seen in the literature,
low RMSD values almost always correspond to high
percentages of correctly predicted x angles.

The results presented in Table 3 demonstrate that despite
the highly reduced combinatorial sampling, the ChiRotor
algorithm is able to achieve an average RMSD of 0.77 Å for
core residues and 1.73 Å for all residues. This level of

Table 3. The RMSD of predicted side-chain atomic coordinates for proteins of the S24 set using ChiRotor in fast (fst) and slow (slw)
mode compared to RMSD calculated using the SCAP program (Xiang and Honig 2001) with 3 (fst) and 120 (slw) initial conformations

RDB code Residues

ChiRotor

SCAP

charmm19

CHARMm polar

Core All Core All

Core fst All fst fst slw fst slw fst slw fst slw

1ejg 46 0.54 1.69 0.69 0.62 1.59 1.65 0.26 0.25 0.99 1.01

1rb9 53 0.37 1.87 0.20 0.25 1.49 1.68 0.51 0.51 1.26 1.26

2fdn 55 0.38 1.69 0.35 0.34 1.61 1.60 1.66 1.40 2.68 1.49

1g6x 58 0.88 2.02 1.04 0.30 1.73 1.83 2.00 0.33 1.97 1.80

1f94 63 0.31 2.2 0.31 0.27 2.23 2.23 1.07 0.79 2.03 2.03

1aho 64 1.51 1.79 1.09 0.57 2.11 1.71 0.81 0.37 1.90 1.85

1c75 71 0.13 1.43 0.19 0.23 1.42 1.62 0.60 0.60 1.57 1.57

1iqz 81 0.29 1.53 0.59 0.25 1.61 1.52 0.75 0.68 1.29 1.28

1iua 83 1.18 1.89 1.10 0.67 1.56 1.43 0.38 0.40 1.47 1.50

2pvb 107 1.56 2.00 1.65 1.13 2.05 2.02 0.40 0.40 1.26 1.22

1dy5 123 1.00 2.12 0.97 0.89 1.98 1.83 0.88 0.55 1.90 1.52

1g4i 123 0.95 1.61 1.01 0.58 1.53 1.68 0.65 0.67 1.93 1.70

3pyp 125 1.05 1.5 0.99 0.62 1.57 1.52 1.56 1.18 1.71 1.57

3lzt 129 1.27 1.87 0.91 0.64 1.83 1.93 0.89 0.55 1.63 1.69

1g66 207 1.29 1.77 1.72 0.96 1.80 1.49 0.65 0.66 1.34 1.36

1byi 224 1.81 2.18 1.66 1.57 2.09 2.08 0.90 0.80 1.67 1.65

1fn8 224 0.68 1.54 1.21 0.60 1.54 1.33 0.62 0.54 1.13 1.80

1k4i 233 1.16 2.20 1.33 1.06 2.14 2.28 1.00 0.76 1.90 1.79

1nls 237 1.28 1.88 1.47 1.33 2.22 1.95 0.75 0.76 1.55 1.57

1gci 269 1.05 1.92 0.88 0.80 1.50 1.61 0.78 0.64 1.38 1.19

7a3h 303 1.66 2.06 1.17 1.31 1.83 1.79 1.16 0.80 1.56 1.45

1ixh 321 1.45 1.98 1.39 1.04 1.91 1.58 1.20 0.66 1.65 1.38

1bxo 323 1.33 1.60 1.19 1.35 1.52 1.65 0.53 0.53 1.10 1.10

1kwf 363 1.73 1.84 1.47 1.27 1.66 1.50 1.30 1.05 1.70 1.60

Average 1.03 1.84 1.02 0.77 1.77 1.73 0.89 0.66 1.61 1.52
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accuracy is very close to the SCAP algorithm, where
calculations carried out in both slow and fast modes
corresponded to 3 and 120 initial conformers, respectively.
Table 3 and Figure 4 show that the computational cost of
the slow mode of ChiRotor is comparable to the fast mode
of SCAP, while the accuracy of the two methods is similar.
ChiRotor performs slightly better for core residues, but
SCAP is slightly more accurate for all residues. At the
expense of a considerably increased CPU time (20–30
times), the slow mode of SCAP reduces RMSD for
;0.1–0.2 Å on average: i.e., 0.67 Å and 1.50 Å on the
S24 set and 0.74 Å and 1.66 Å on a set of 18 proteins
(Xiang and Honig 2001) for core and all residues, respec-
tively. The accuracy of three of the most recent programs
(Xiang and Honig 2001; Liang and Grishin 2002; Peterson
et al. 2004) for side-chain optimization has been compared
on a set of 65 proteins (Peterson et al. 2004). After
multiplying the RMSD data in the Peterson et al. study
by a factor of 1.2 to take into account the fact that they
included the Cb atom as part of the side chain in their
calculations, all three methods tested show RMSD in a very
close range of ;1.5–1.7 Å for all residues and 0.7–0.9 Å
for core residues. Although there are significant differences
between the approaches, the overall accuracies of all three
methods are very similar. In addition, similar accuracies
were reported by the same predicting programs, but using
different test sets (Xiang and Honig 2001; Liang and
Grishin 2002; Peterson et al. 2004).

The fast mode of ChiRotor shows slightly increased
RMSD values for core residues. However, the average
RMSD of ;1 Å is still relatively small, making the fast
mode useful in many modeling protocols, including side-
chain optimization in homology modeling, loop optimi-
zation, and optimization of docked protein complexes.
Figure 4 shows the performance of ChiRotor in slow
mode on an Intel Pentium 4, 3.0-GHz machine.

The data in Table 3 and Figure 4 demonstrate that in
slow mode ChiRotor gives accurate predictions at a low
computational cost. In fast mode, ChiRotor shows an

almost fivefold increase in calculation speed at the
expense of slightly decreased accuracy, thus making it
useful for protocols requiring extensive modeling of
multiple structures.

Conclusions

While it is obvious that the peptide backbone must have
an effect on side-chain conformation, many studies have
assumed implicitly that the side-chain–side-chain inter-
actions are the most important intramolecular determi-
nants in stabilizing native structures. The results of a
limited set of studies (as discussed in the introduction)
suggest a possible dominant role of side-chain–backbone
interactions. However most of these conclusions are
based on indirect data and do not clarify whether such a
feature follows from some restrictive constraints or from
the ability of side chains to form stabilizing noncovalent
contacts with backbones. In this study we have under-
taken a novel comparative analysis of side-chain–side-
chain and side-chain–backbone interactions in terms of
intramolecular free energies in proteins.

The main result from the comparison of energy differ-
ences between completely unfolded and folded structures
is that the stabilizing effect of side-chain–backbone
interactions is considerably more important than side-
chain–side-chain interactions. In addition, the side-chain–
backbone interactions outperform side-chain–side-chain
interactions in differentiating native structure from the
misfolded structures. The side-chain–backbone interac-
tions show about a twice stronger effect on discriminating
the decoy structures from the native states than s-s
interactions and this is valid for both van der Waals and
electrostatic contributions. Interestingly, the results imply
a higher capability for amino acid side chains to create sta-
bilizing intramolecular contacts, even in misfolded struc-
tures, but the interactions are optimal in native states.

Our analysis leads to the conclusion that the side-
chain–backbone interactions are the dominant intramo-
lecular factor in the structural realization of amino acid
code. The data in Tables 1 and 2 show quite similar ratios
between s-s and s-b terms for almost all structures in the
S24 and EMBL protein sets and suggest that the domi-
nance of s-b interactions may be an intrinsic property of
protein structures. This is important not only for a better
understanding of the protein folding mechanism, but also
in choosing the strategies of structure-predicting algo-
rithms. In many knowledge-based potentials used in
protein folding models, the effect of s-b interactions is
either completely neglected or absorbed in common
interaction centers. The identification of a dominant role
of s-b interactions can be used to improve the potentials
by including the peptide backbone as an additional 20
first interaction center as shown recently (Buchete et al.

Figure 4. The CPU time used to predict the side-chain conformation of all

residues in proteins of different chain lengths.

Spassov et al.

504 Protein Science, vol. 16

JOBNAME: PROSCI 16#3 2007 PAGE: 11 OUTPUT: Thursday February 1 16:02:08 2007

csh/PROSCI/131633/ps0624471



2004). It is also possible to develop efficient predicting
algorithms where the conformational searching will be
focused on the optimization of s-b, instead of s-s
interactions, as demonstrated by the ChiRotor approach.

The systematic occurrence of stabilizing electrostatic
energy calculated in misfolded structures motivated us to
carry out a novel analysis of charge–charge interactions
between ionized groups. The effect of combinatorial
dominance of interactions between opposite charges, as
expressed by Equations 10 and 11, as well as by the
analysis of electrostatic energies of a set of random model
structures, suggest that charge–charge interactions can act
as an unspecific folding force that stabilizes not only the
native conformation, but also ensembles of relatively
compact random structures. Our analysis, we believe,
gives a convincing explanation of the experimental data
of Pace et al. (2000), who also suggested that the charge–
charge interaction stabilizes the relatively compact
unfolded states. It is tempting to speculate that this effect
plays a role in the evolution of native protein structures.

Based on the hypothesis of a dominant role of side-
chain–backbone interactions, we developed a new algo-
rithm, ChiRotor, for side-chain optimization with mini-
mal combinatorial search. The results of the tests show
that at a low computational cost ChiRotor achieves an
accuracy of side-chain predictions that is comparable to
the most accurate algorithms described in the literature.

Materials and methods

Data sets

S24 is a representative set of 24 nonhomologous proteins with
high resolution X-ray structures. All PDB structures included in
the set have a resolution better than 1.0 Å and a pairwise
sequence identity <20%. The PDB entries in the S24 set were
selected based on a culled PDB list obtained using the Protein
Sequence Culling Server: http://dunbrack.fccc.edu/Guoli/
PISCES.php (Wang and Dunbrack Jr. 2003). For the set of
misfolded structures, we used the well-known EMBL set of
deliberately misfolded proteins (Holm and Sander 1992). The
corresponding PDB files with atomic coordinates were down-
loaded from the Web site at http://dd.compbio.washington.edu.

Calculations of interaction energy terms

All calculations on proteins from the S24 and EMBL sets are
carried out using CHARMm (Momany and Rone 1993) and
charmm19 (Neria et al. 1996) parameter sets. The energy values
are obtained after preliminary relaxation of the structures using
the ABNR (Adopted Basis Newton-Raphson) CHARMm routine
for energy minimization and harmonic constraints applied to
heavy atoms. The initial structures of the reference unfolded
states are constructed from amino acid sequences using
CHARMm BUILD routines with, b�strand conformation, f ¼
�120, c ¼ 120°, for the main chain and all-trans conformation
for all side chains. The electrostatic contributions to s-s and s-b

interaction energy terms were calculated according to Equation
3 using the CHARMm Coulombic electrostatic function CDIEL
in combination with the GBORN (Dominy and Brooks III 1999)
solvation term. To estimate the van der Waals contributions to
s-b and s-s interaction terms shown in Tables 1 and 2, we took
advantage of the CHARMm routine INTERE to calculate the
different contributions to the energy of interactions between the
two selected sets of atoms. In most calculations, a value em ¼ 1
was used for the molecular dielectric constant and 80 for the
water environment, but the calculations shown in Table 2 are
repeated at em ¼ 4. All the nonbonded energy terms are
calculated without any distance cutoffs.

The ChiRotor program

ChiRotor is a program for side-chain construction and energy
optimization written as a single CHARMm script. ChiRotor can
work with any CHARMm force field, but the minimization
protocols discussed in this article are optimized for charmm19
and CHARMm polar hydrogen force fields. It is based on a two-
stage algorithm that can work in either a fast or slower mode.
The latter mode is more accurate.

1. In the first stage, the side-chain atomic coordinates of each
residue are constructed using CHARMm build routines. The
structure of each residue is constructed in three basic initial
conformations corresponding to xx ¼ �60°, 60°, and 180° and
the rest of the side-chain torsion angles in extended, all-trans
conformation. Each of the three conformers is subject to energy
minimization in the absence of all other side chains at fixed
coordinates of all backbone atoms. All other atoms in the
system that do not belong to the set of selected side chains are
treated as backbone. The optimization is carried out using
ABNR minimization for all residues one by one from
N-terminal to C-terminal.
In the fast mode the atomic coordinates of each side chain with
the minimum CHARMm energy are saved, while in the slow
mode the first two lowest energy conformers are saved. The
side chain of proline is constructed in a single initial con-
formation with, x1 ¼ 108°, and although it is not subject to the
conformational search, it is also energy minimized. The side
chains of Cys residues involved in disulfide bridges are re-
garded as part of the protein backbone, as well as Ala and Gly
residues. In the case of partial predictions, the side-chain atoms
with known coordinates are considered as part of the template.

2. In the second stage, the side chains of all residues are put
together based on the coordinates of the lowest energy con-
former of each residue obtained in the first step. The protein
structure is minimized again, but now with all side chains
included, while the template atoms remain fixed. For the fast
mode the above minimization is the final step, while the slow
mode includes an additional cycle over all amino acid residues.
During this cycle the initial structure of each residue is
replaced with the second low-energy conformer from the first
stage. The entire structure is again subject to minimization and,
if after the optimization the second conformer has a lower
energy than the first one, the second conformer is accepted. For
some residues with nonsymmetric planar end groups, such as
Trp, His, Asn, and Gln, the second cycle includes also an
additional rotation corresponding to a change of 180° of
terminal x angle.

In all calculations in the first stage, a short cutoff distance of
10 Å was used and the electrostatic term was not included.
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During the second stage, the cutoff distance was increased to
14 Å and the electrostatic term was included using the most
simple but the fastest model of screened electrostatic interac-
tions using CHARMm RDIEL electrostatic function with ‘‘dis-
tant dependent dielectric constant’’ parameter, EPS ¼ 4.

Accuracy evaluation

The side-chain RMSD was calculated relative to X-ray structures,
with the protein overlayed based on backbone atoms N, CA, C,
and O. Similar to Xiang and Honig (2001), the Cb atom is
excluded from RMSD calculations, because, even subject to
minimization, the Cb coordinates change insignificantly at a fixed
main chain. The definition of core residues is exactly the same as
in Xiang and Honig (2001) and corresponds to a value of
maximum 10% normalized side-chain solvent accessibility. The
solvent-accessible surface of individual residues is calculated by
CHARMm according to Lee and Richards’ definition (Lee and
Richards 1971) using a 1.4-Å solvent probe radius. For SCAP
calculations (Table 3; Fig. 4) we used a SGI IRIX64 compilation
of SCAP program that corresponds to the method proposed by
Xiang and Honig (2001). The SCAP program was downloaded
from http://honiglab.cpmc.columbia.edu. All SCAP calculations
were based on a large rotamer library and were carried out at both
fast and slow modes of 3 and 120 initial conformers, respectively.
All other parameters are set to be the same as in the examples
given in SCAP documentation. The performance data shown in
Figure 4 are obtained using a recent implementation of ChiRotor
program on an Intel Pentium 4, 3.0-GHz machine.
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