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What makes a successful drug target? A target molecule with an appropriate (druggable) tertiary structure is a
necessary but not the sufficient condition for success. Here we analyzed specific properties of human genes and
proteins targeted by 919 FDA-approved drugs and identified several quantitative measures that distinguish them from
other genes and proteins at a highly significant level. Compared to an average gene and its encoded protein(s),
successful drug targets are more highly connected (but far from being the most highly connected), have higher
betweenness values, lower entropies of tissue expression, and lower ratios of nonsynonymous to synonymous
single-nucleotide polymorphisms. Furthermore, we have identified human tissues that are significantly over- or
undertargeted relative to the full spectrum of genes that are active in each tissue. Our study provides quantitative
guidelines that could aid in the computational screening of new drug targets in human cells.

[Supplemental material is available online at www.genome.org.]

Every successful drug, such as Gleevec (counteracting chronic
myeloid leukemia), Prozac (an antidepressant), or Viagra (an an-
tidote to erectile dysfunction), affects the well-being of numerous
people and brings substantial financial rewards to its inventors
and manufacturers. Unfortunately, every highly visible success
resides on an iceberg of (invisible) failures. The majority of ex-
perimental drugs remain obscure because they never reach con-
sumers and fail to attract the attention of the news media. Some
drugs, such as Merck’s Vioxx (a treatment for acute pain in ar-
thritis), do reach consumers, only to be withdrawn later after
unanticipated side effects are revealed (Vioxx appears to occa-
sionally trigger a heart attack or stroke).

The development of a new drug is a fusion of art and sci-
ence: typically it involves finding both a drug target (such as a
protein) and a molecule that binds the target as selectively as
possible while triggering a desirable physiological change. This
search is typically guided by (often scarce) evidence for the dis-
ease mechanism, analysis of the chemical structures of drug can-
didates and their targets, and animal and human trials of prom-
ising molecules (Drews 2000, 2003, 2006; Egner et al. 2005). This
procedure is staggeringly expensive. Although precise numbers
are not available, estimates of the cost of developing a new drug
range between 800 and 1200 million dollars (Adams and Brant-
ner 2006). Any technological breakthrough that would reduce
the probability of new drug failure and/or the development cycle
length would be a major economic and healthcare boon.

To even be considered by a pharmaceutical company, a drug
must produce a desirable change in a human physiological state
(Zheng et al. 2006). However, we can (presumably) attain com-
parable physiological changes by modulating different molecules
within a complex pathway. What makes some genes better tar-
gets than others? Here we suggest, in addition to the traditional
drug target analysis focusing on putative links between disease
and specific genes, looking at the common sequence-, tissue-,

and pathway-level properties of the targets of successful drugs
(narrowly defined here as those approved by the U.S. Food and
Drug Administration, FDA).

We analyze the intended targets of 919 FDA-approved drugs
that interact with human genes and proteins (Wishart et al.
2006). Specifically, we focus on the targets’ topological niches
within the molecular network, the properties of their single-
nucleotide variation, the tissue-specificity of their expression,
and their overlap with essential and disease-predisposing genes.

Results

We first looked at the relationships between drugs and their tar-
gets, and the functional properties of the successful drug targets
(Fig. 1). As would be expected, successful drugs are very specific
to their targets: most of them (62%) have only one specific target,
although many have two or more (Fig. 1, blue curve). Curiously,
most of these multitarget drugs are designed to modulate the
central nervous system. The majority (36%) of successful drug
targets are regulatory and receptor proteins, such as G-protein-
coupled receptors, or GPCRs (Fig. 1, bar plot). Slightly less fre-
quently, successful drug targets are enzymes (35%) or transport
and storage proteins (21%). A minority of drug targets are non-
proteins (4%, including individual amino acids, DNA, and oligo-
saccharides), immune proteins (2%), and motility proteins (1%).
The remaining 1% comprises other classes of the commonly used
chemical taxonomy (e.g., see Chapter 4.3 in Boyer 2006), such as
structural proteins.

We treated the drug targets as nodes within a large undi-
rected graph (molecular-interaction network) (see Methods;
Table 1) and considered their topological properties. Specifically,
for all drug target nodes, we examined connectivity, between-
ness, and the connectedness of their immediate neighbors within
the network (clustering). We will discuss these properties one by
one, defining each property first. To validate the robustness of
our conclusions, we performed exactly the same analysis using
five independently produced data sets (see Methods; Table 1).
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The connectivity of a node within a graph is simply the total
number of incoming and outgoing arcs (direct molecular inter-
actions, in our case). As has been previously established, the con-
nectivity distributions for real molecular networks are so-called
heavy-tail distributions resembling Zipf’s (Pareto’s or power-law)
distribution (Fig. 2A; Barabasi and Bonabeau 2003). The success-
ful drug targets occupy a rather narrow niche within this distri-
bution: their connectivity is significantly higher than that of an
average node within the network (in GeneWays it is ∼9.1, P-
value = 0.0064 [Fig. 2A,B,F]; in HPRD1 and HPRD2, it is 10.9 and
11.5, P-values = 0 and 0.0001, respectively; the same comparison
performed using the smaller Y2H and BIND networks revealed no
significant difference [see Table 2]). However, the average con-
nectivity of drug targets is relatively small compared to the maxi-
mum connectivity observed in the network (9.1 vs. a maximum
of 346 in GeneWays). The most highly connected high-revenue
drug targets in the GeneWays network (ABL1, androgen receptor
[AR], BCHE, EGFR, INSR, NR3C1, TNF, and VEGFA; see Fig. 2G)
are targeted by drugs intended to provide relief for the most
life-threatening phenotypes, such as cancer and autoimmune
disorders. The successful drugs targeting these highly connected
genes and proteins are associated with terrible side effects (think
of chemotherapy patients) that are tolerable only in life-or-death
situations.

The betweenness of a network node is defined as the number
of times this node appears in the shortest path between two other
network nodes, summed over all node pairs in the network and
divided by the total number of node pairs (e.g., Noh 2003). The
clustering coefficient of a network node is the ratio of the actual
number of direct connections between the immediate neighbors
of the node to the maximum possible number of such direct arcs
between its neighbors (e.g., Holme and Kim 2002). The clustering
coefficient is zero if a node’s neighbors do not interact directly
(e.g., a professor who interacts with many graduate students, but
whose students avoid talking to one another). The highest clus-
tering coefficient is attained in a complete graph where every
node is connected to every other node. The betweenness values
of the drug targets in the GeneWays, BIND, and Y2H networks
are not significantly different from those of the rest of genes

within the network, although the drug
targets in the GeneWays network tend
to have slightly higher betweenness
values than average (P-value = 0.1943;
Fig. 2C). The increased average between-
ness of drug targets is most obvious in
the HPRD1 and HPRD2 networks (P-
values = 0.0004 and 0.004, respectively),
suggesting that successful drug targets
tend to bridge two or more clusters of
relatively closely interacting molecules.
The clustering coefficients of drug tar-
gets are similar to those of the rest of the
network nodes in all five data sets (see
Table 2; Fig. 2D).

We next asked if proteins that are
successful drug targets are less polymor-
phic (considering only human, intraspe-
cies variation) than human genes on av-
erage. To answer this question, we used a
large set (16,462 genes) of known hu-
man single-nucleotide polymorphisms
(SNPs) available at dbSNP (Sherry et al.

2001). To reduce any effects of SNP sampling bias (some genes
enjoy more attention on the part of the scientific community
than others), instead of studying the absolute number of re-
ported SNPs for each gene, we used the ratio (Cratio) of nonsyn-
onymous to synonymous SNPs (with an expected value of 1 for
a perfectly neutral mode of SNP accumulation). The assumption
underlying this analysis is that sampling bias for a gene affects
synonymous and nonsynonymous SNPs equally.

Our analysis indicates (Fig. 2E,F) that Cratio for successful
drug targets is significantly smaller than that for an average hu-
man gene (P-value = 0.0007). This result suggests that successful
drug targets tend to be less nonsynonymously polymorphic at
the human population level than are human genes on average.
Furthermore, Cratio is significantly negatively correlated with
gene connectivity (Spearman rank correlation coefficient
�0.4841, P-value = 0.0000), consistent with the observation that
more highly conserved proteins tend to have higher connectivi-
ties (Fraser et al. 2002). Another line of evidence shows that
highly expressed genes tend to evolve more slowly than those
whose expression is low (Drummond et al. 2005). Furthermore,
some experimental techniques, such as yeast two-hybrid pro-
tein–protein interaction screening, may detect interactions of
highly expressed proteins more readily (Bloom and Adami 2003).
Hence, relationships between gene expression level, sequence
conservation, and connectivity may involve data biases and
should be interpreted with caution.

We interpret the results of our SNP analysis as follows: a
drug designed to target a protein that is polymorphic among

Figure 1. Distribution of the number of human gene targets per successful drug. The plot is super-
imposed on a family classification of drug targets.

Table 1. Comparison of different human molecular interaction
data sets

No. of
genes/proteins

No. of
interactions

No. of drug
targets covered

Y2H 2936 5722 49
BIND 2886 4964 157
GeneWays 4458 14,124 197
HPRD1 7764 28,149 304
HPRD2 9462 37,107 318
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humans may fail for a significant percentage of individuals, be-
cause of the lack of a specific interaction between the drug and
the protein. Even though pharmaceutical companies are not
typically taking into account the SNP properties of prospective
drug targets (Johnson and Lima 2003), the successful drugs ap-

pear to be those that target proteins that
vary less at the population level.

Yet another aspect of the biology of
successful drug targets concerns the tis-
sue-specificity of their expression.
Chemists involved in drug development
know that good drug targets are tissue-
specific. But what is the right level of
specificity? Typically, this question is
answered through trial and error.
Herein, we propose a method to quan-
tify this specificity: given a distribution
that describes the expression of a target
gene over a set of tissues (where the
overall expression of the gene is divided
over all tissues in proportion to the ob-
served expression levels, so that the total
mass of probability over all tissues sums
to 1), we use Claude E. Shannon’s
method of entropy measurement (Shan-
non and Weaver 1949) to gauge the tis-
sue-specificity of expression of each drug
target. The lowest entropy (highest
specificity) would be observed for a hy-
pothetical gene that is expressed in only
one tissue, while the highest entropy
(lowest specificity) would be observed
for a ubiquitously expressed gene. Using
the Brenda Tissue Ontology (Schomburg
et al. 2004; see Methods), we computed
the expression entropy of various drug
targets. As a reference, we computed an
analogous distribution for randomly
sampled human genes (to simulate the
null model of expression-independent
sampling of genes). Our results show
(Fig. 3A) that the expression entropy of
successful drug targets is significantly
smaller than that of randomly sampled
genes, and that the drug target-
expression entropy is smaller for the
higher (coarser) levels of the ontology.

We next considered another tissue-
specificity metric: the nonrandomness of
tissue coverage by drug targets (with re-
spect to tissue-specific gene expression
levels). For each tissue, we compute a
statistic that represents the probability
of randomly picking a drug target that is
expressed in that tissue (the probability
sums to 1 over all tissues; see Methods
for details). We then compute a back-
ground distribution for this statistic un-
der the assumption that the same num-
ber of drug targets is selected randomly
out of the pool of all genes. This exercise
can direct us to tissues that are signifi-

cantly “overtargeted” or “undertargeted” (assuming a uniform
distribution of efforts and resources among tissues and related
maladies). This analysis can be useful in highlighting research
opportunities (for undertargeted tissues) and footprints of fads in
the pharmaceutical industry (for overtargeted tissues, see Fig. 3B).

Figure 2. Molecular network and population-variability properties of targets of FDA-approved drugs.
(A) Connectivity distribution for the entire molecular network. (B) Targets of the successful drugs are
significantly more connected than an average gene in the network, but are not the most highly
connected genes in the network. (C) Drug targets tend to have higher than average betweenness
values. (D) The successful drug targets are not statistically different from the rest of the genes in terms
of their clustering coefficients. (E,F) Analysis of the ratio (Cratio) of the number of nonsynonymous to
synonymous single-nucleotide polymorphisms (SNPs). (E) Successful drug targets have significantly
smaller Cratio than human genes on average. (F) The value of Cratio tends to correlate negatively with the
gene’s connectivity in the network. (G) Connectivities of genes are superimposed with drug revenue
data: the high-revenue drugs tend to target genes and proteins of low connectivity. The position of a
gene is determined by its network connectivity. The closer a gene is to the center, the higher its
connectivity within the GeneWays molecular network. The size of a gene node is determined by the
revenue of the corresponding drug. The color of a gene node is determined by its membership in the
three sets of genes: (yellow) drug targets, (blue) essential genes, and (red) disease genes. These three
sets of genes overlap significantly.
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Our analysis indicates that among 47 tissues (Level 3 of the
Brenda Tissue Ontology), five are significantly overtargeted (en-
docrine glands, central nervous system, urinary tract, excretory
glands, and ganglia), while six are significantly undertargeted
(male reproductive system, embryonic structures, skin, cartilage,
bone, and lymph; see Fig. 3B). It is likely that some of the tissues
(e.g., embryonic) have been deliberately undertargeted because
of the potential for dangerous side effects.

Furthermore, we investigated whether a phenotypic classi-
fication of genes, such as disease-predisposition status and essen-
tiality, can help us to predict the odds of a gene being successful
as a drug target. The term disease gene is commonly used to in-
dicate genes that occasionally harbor germline genetic variation
causing a disease phenotype. In this study, we used a list of genes
predominantly linked to phenotypes with Mendelian inherit-
ance (Jimenez-Sanchez et al. 2001; see Methods). The essential
genes are usually defined through gene knockout experiments in
model organisms: if the organism fails to develop and survive
after deletion of a gene, the gene is called essential. We approxi-
mate the set of human essential genes by the set of human or-
thologs of essential genes experimentally identified in the mouse
(see Methods).

We observed that the targets of successful drugs are signifi-
cantly over-represented within the sets of disease and essential
genes in the GeneWays network (P-values = 3.07 � 10�9 and
0.0025, respectively). Moreover, the three sets (drug targets and
disease and essential genes) share a significant three-way overlap
(P-value is effectively 0; Fig. 2G).

We conjectured that the status of overlap of a drug target
with disease and/or essential genes might be a powerful indicator
of side effects of the new drug. When a drug target is also an
essential gene, the corresponding drug is likely to threaten the
fetus. For example, TNF (tumor necrosis factor �) is targeted by
thalidomide, a drug that became infamous for the side effects of
its use in the 1950s and 1960s. It was originally prescribed as a
sedative and hypnotic treatment for pregnant women. However,
even a single tablet ingested by a pregnant woman between the
20th and 36th day after conception almost certainly caused se-
vere deformities in the fetus, with an estimated 10,000 infants

affected worldwide. Nevertheless, thalidomide is still the leading
treatment for leprosy and multiple myeloma in adults.

An interesting question is whether the properties of the drug
target genes are still distinguishable from the rest of the network
when they are compared with genes from similar functional cat-
egories. To address this question, we repeated our analyses, di-
viding the network nodes into eight functional groups (see Table
3). This division into smaller parts inevitably reduced the
discriminative power of our test. Nevertheless, for a subset of
large-scale properties, such as connectivity and betweenness
(see Table 3), drug target genes are still significantly different
from the rest of the genes, especially those encoding structural,
regulatory, and receptor proteins. We note that, to produce Fig-
ure 1A, we manually annotated drug targets by their functional
categories. Since we could not easily scale such manual analysis
to annotate the entire human network, we used an existing
classification of human genes (Thomas et al. 2003), slightly
adapted for our purposes (see Supplemental material for details
on the mapping of PANTHER categories to our eight functional
groups).

To make our analysis more relevant to the practice of drug
discovery, we experimented with building predictive models that
take advantage of drug targets’ systemic properties. Since a
method for building the best possible predictor of successful drug
targets deserves a study of its own, here we applied only four
standard machine-learning approaches: naive Bayesian classifier,
logistic regression, and radial basis function (RBF) network and
Bayesian networks (see Methods; Fig. 4; Table 4). Our goal was to
prove that our classification features (systemic properties of
genes and proteins) are informative and practically useful. How-
ever, we have little doubt that one could find additional features
and more sophisticated algorithms that would make the predic-
tion even better.

The comparison of the performance of the four classifiers in
distinguishing successful drug targets from the rest of the human
genome is summarized in Table 4. Virtually any real-life classifier
makes false-positive and false-negative errors. Given just two dis-
joint classes of objects, such as successful drug targets (which we
label “1”) versus other human genes (which we label “0”), a false-
positive error consists of classifying an object that should be la-
beled 0 into class 1, while a false-negative error consists of label-
ing with 0 an object that would be correctly labeled 1. True posi-
tives and true negatives are correctly classified 1- and 0-objects,
respectively. Every classifier can be adjusted in numerous ways to
favor false positives over false negatives (or the other way
around). Therefore, to compare different classifiers in a meaning-
ful way, it is customary to use a so-called receiver operating char-
acteristic (ROC) score (also known as the area under the ROC curve).
The ROC score measures the overall performance of a classifier
integrated over the whole range of false-positive and false-
negative error rates (Hanley and McNeil 1982). A completely use-
less (random) classifier has an ROC score of 0.5, while a perfect
classifier has a score of 1. (It is possible to build a classifier that
has an ROC score of <0.5—it can be immediately improved by
flipping the prediction labels.)

All of our four classifiers have ROC scores significantly
higher than 0.5 (see Figure 4 and Table 4). (We measured the
standard errors of ROC scores using 10-fold cross-validation ex-
periments, where 90% of the data were used for training and 10%
for testing.) Therefore, the systemic properties of genes and pro-
teins are, indeed, practically useful for narrowing the list of pro-
spective drug targets.

Table 2. Average topological properties of human drug targets
versus all genes in the network, computed for several distinct
data sets

Topological
metric

Mean
(whole

network)
Mean

(drug targets)
Two-sided

P-value

Y2H Connectivity 3.8899 3.6735 0.9726
Betweenness 0.0011 0.0012 0.7225
Clustering 0.0173 0.0066 0.4860

BIND Connectivity 2.9204 3.1210 0.5263
Betweenness 0.00096 0.0011 0.4672
Clustering 0.0802 0.0691 0.5574

GeneWays Connectivity 5.8321 9.114 0.0064
Betweenness 0.0006 0.0010 0.1943
Clustering 0.1434 0.1512 0.6633

HPRD1 Connectivity 6.7853 10.882 0.0000
Betweenness 0.0004 0.0008 0.0004
Clustering 0.1285 0.1040 0.0638

HPRD2 Connectivity 7.3958 11.509 0.0001
Betweenness 0.0003 0.0006 0.0040
Clustering 0.1015 0.0911 0.3739

Statistically significant differences are shown in bold.
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Discussion
The selection of a prospective drug target is a complicated bal-
ance of many considerations. We found that genes associated
with successful FDA-approved drugs have several properties at
the network, sequence, and tissue-expression levels that signifi-
cantly distinguish them from other human genes. Specifically,
successful drug targets tend to be noticeably better connected
(within a molecular network) than the average gene, yet not
extremely highly connected. They tend to have higher-than-
average betweenness values, and significantly lower-than-

average tissue-expression entropies and
instances of nonsynonymous SNPs. Fi-
nally, the successful human-specific
drug targets significantly overlap with
essential and disease genes.

Although the drug-target-selection
guidelines that we suggest here cannot
replace expensive experiments, they can
help pharmaceutical researchers narrow
the prospective set of drug targets at the
earliest stage of a drug development
project. Specifically, when the pharma-
ceutical company must decide which
target to pursue among pathologic path-
ways that are not fully understood, con-
nectivity, betweenness, Cratio, and en-
tropy might be useful quantitative esti-
mates of each prospective target’s
expected success rate.

Methods

Data
Our GeneWays molecular-interaction
network includes 14,124 direct molecu-
lar interactions among 4458 unique hu-
man genes (Rzhetsky et al. 2004; I. Ios-
sifov, unpubl.), of which 427 genes are
each targeted by at least one of 919
drugs. Our Y2H data set was derived
from two yeast two-hybrid studies, one
by Stelzl et al. (2005) (1693 genes, 3120
interactions), and one by Rual et al.
(2005) (1549 genes, 2611 interactions).
To improve the statistical power of our
analysis, we combined these sets into
a joint Y2H network. Our Bind data set
is a subset of the BIND database (Al-
farano et al. 2005) that is restricted to
low-throughput protein–protein and
protein–DNA interactions (January
2006 version). The HPRD1 and HPRD2

data are from the Human Protein Refer-
ence Database (Peri et al. 2004) (Re-
lease_7_09012007, in binary protein–
protein interaction format). In HPRD1,
only data from two types of experiments
(in vivo and in vitro) are used, while in
HPRD2, data from all types of experi-
ments (in vivo, in vitro, and yeast two
hybrid) are used.

To analyze the tissue distribution of
the drug targets’ expression, we use multitissue gene-expression
signatures of about 12,700 human genes obtained from the Tis-
sueDistributionDBs (S. Jonnakuty, A. Hotz-Wogenblatt, K. Glat-
ting, and S. Suhai; TissueDistributionDBs: A repository of organ-
ism-specific tissue distribution profiles. http://genome.dkfz-
heidelberg.de/menu/tissue_db/).

Our disease gene set is derived from a large compendium of
genes harboring known germline disease mutations (Jimenez-
Sanchez et al. 2001). The original set contains 908 disease genes,
of which 445 can be mapped to the GeneWays network. Our
essential gene set contains human orthologs of mouse genes that

Figure 3. Expression patterns of genes targeted by successful drugs. (A) Distribution of Shannon
entropy of gene expression for randomly sampled genes and for drug targets; the successful drug
targets have significantly lower entropies of expression (higher tissue-specificity) at all four levels. See
Methods for details on the tissue ontology levels. (B) Comparison of the expected proportion of drug
targets per tissue under unbiased target selection conditions—(vertical solid lines) 95% confidence
intervals; (dashes on the vertical lines) means—with (open circles) the actual proportion of successful
drug targets per tissue. The plot indicates that there are tissues that are significantly over- and under-
targeted.

Yao and Rzhetsky

210 Genome Research
www.genome.org



were experimentally shown to result in lethal phenotypes when
knocked out (Blake et al. 2003), of which 798 have been mapped
to the GeneWays human gene network. The drug revenue data
are borrowed from a study by Zambrowicz and Sands (2003). We
converted the revenue per drug to revenue per drug target by
distributing revenue values for a drug uniformly among corre-
sponding drug targets.

Tissue ontology
The Brenda Tissue Ontology (Schomburg et al. 2004) provides
hierarchical controlled vocabularies to describe organism-organ-
tissue hierarchies for multiple organisms. The ontology has a
directed-acyclic-graph structure, where Level 1 represents species
names, Level 2 is the whole body, Level 3 is a body-system clas-
sification, Level 4 is an organ-system hierarchy, and Level 5 is a
tissue-system tree. We measure the nonrandomness of drug-
target tissue coverage using the statistic

�k =
1
M �

i=1

M

�ik, (1)

where M is the total number of genes, and �ik is the relative
expression of the ith gene (potential drug target) in the kth tissue.
Tissue-specific gene expression levels, �ik’s, are normalized in
such a way that

�
k=1

T

�ik = 1, (2)

where T is the total number of tissues assayed for expression of
the ith gene. (To qualify as a potential drug target, a gene must
be expressed in the target tissue; tissues in which a larger number
of genes are expressed therefore have a larger number of potential
drug targets. Instead of introducing an artificial expression level
cutoff to distinguish an active gene from an inactive one, we
introduce a statistic that incorporates the entire continuum of
expression values for each gene. The statistic represents the prob-
ability of randomly picking a gene as a drug target for a specific
tissue, where the likelihood of picking the gene is proportional to
its level of expression in the tissue.)

Claude E. Shannon’s entropy (with respect to expression of
the ith gene in T tissues) is defined in the following way (Shan-
non and Weaver 1949):

Hi = −�
k=1

T

�ik log2��ik�, (3)

SNPs
We used only validated coding-region nonsynonymous and syn-
onymous SNPs obtained from dbSNP (Sherry et al. 2001), leaving
us with a sample of 16,462 human genes, of which 344 are targets
for FDA-approved drugs. Cratio is defined in the following way:

Cratio =
Nns + �

Ns + �
, (4)

where Nns and Ns stand for the numbers of nonsynonymous and
synonymous SNPs reported for a given gene, respectively, and �

is a small pseudo-count intended to eliminate statistical aberra-
tions caused by relatively small sample sizes. In our analysis, we
set � equal to 0.01.

Significance of overlap of gene sets
To assess the significance of the observed overlap between sets of
genes, we used a hypergeometric distribution (Johnson and Kotz
1969):

Figure 4. Receiver operating characteristic (ROC) curves for the four
classification algorithms that we used in this study. The shape of each
curve indicates the quality of the corresponding method. The closer an
ROC curve is to the diagonal of the plot, the worse is the corresponding
method. A hypothetical perfect method would have an ROC curve that is
a constant function with true positive value 1 and false positive value 0.
All four methods that we tested performed significantly better than base-
line (ROC score of 0.5, corresponding to a random-guess method) (see
Table 4). The logistic regression performed best.

Table 3. Analysis of systemic properties of genes in the HPRD2 data set for different functional categories of proteins

Connectivity Betweenness Expression entropy SNP: Cratio

All DT P All DT P All DT P All DT P

Sample size 7349 299 7349 299 9076 319 9323 329

Enzymes 1941 87 0.0892 1941 87 0.0612 2639 113 0.9674 2688 115 0.7895
Immune proteins 191 11 0.0633 191 11 0.5241 197 10 0.62445 2,28 11 0.5029
Muscle contraction and mobility proteins 369 3 0.56925 369 3 0.52865 375 2 0.9617 422 3 0.5383
Non-proteins 370 9 0.0894 370 9 0.1562 381 8 0.7866 331 7 0.9194
Other proteins 1414 10 0.0628 1414 10 0.0921 1606 10 0.61445 1622 9 0.5983
Regulatory and receptor protein 2197 104 0.0118 2197 104 0.1546 2676 94 0.9998 2810 102 0.58515
Structural protein 214 8 0.0011 214 8 0.0098 273 7 0.8765 289 8 0.435
Transport and storage protein 653 67 0.1002 653 67 0.1948 929 75 0.99835 933 74 0.9387

Statistically significant differences are shown in bold. (All) All human genes in the sample; (DT) drug targets; (P) two-sided P-value.
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P�m|n,n1,n2� =
�n1

m�� n − n1

n2 − m�
� n

n2
� , (5)

where m is the observed number of genes overlapping between
two sets, n is the total number of genes in our model of the
molecular network, and n1 and n2 are the numbers of genes in the
two sets of genes (such as disease genes and drug targets). Equa-
tion 5 gives us the probability of observing exactly m genes over-
lapping between two independently sampled sets (of size n1 and
n2, respectively) without replacement from a gene population of
size n. We used the following equation to compute a P-value
associated with each quadruplet of numbers (m, n, n1, n2):

p = �
l=m

min�n1,n2�

P�l|n,n1,n2�. (6)

Statistical testing
We used the following bootstrap-based (Efron 1982) testing of
significance for connectivity, betweenness, clustering coefficient,
Cratio, and tissue-expression entropy analyses. Let n be the total
number of human genes in our analysis, of which m are listed as
successful drug targets. To test whether the drug targets are sig-
nificantly different from the rest of genes, for the statistic of
focus, we obtain a background distribution for the statistic’s
mean for m genes randomly sampled with replacement out of the
total collection of n genes, using 20,000 bootstrap samples. We
then calculate an empirical two-sided P-value by computing the
proportion of bootstrap samples for which the statistic for the
randomly sampled genes is more extreme than the statistic’s
value for the successful drug targets.

Predictive modeling
The four classifiers that we applied in this study were imple-
mented by the developers of a specialized software package,
Weka (Witten and Frank 2005). We used Weka version 3.5.6 for
Windows with the default values of parameters. In this applica-
tion, we had only five features (properties that are used to classify
objects) for each node. Four of the features are numerical: con-
nectivity and betweenness (both computed using HPRD2 data), tis-
sue expression entropy, and SNP-based Cratio; one feature, functional
family assignment, is categorical. We were able to use 5274 genes
(237 of them drug targets) with all five features defined for every
node.
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