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ABSTRACT We describe combined analytic and experi-
mental methods for determining reproductive statistics from
time-series data. Our computational methods derive four
fundamental measures from laboratory experiments: (i) av-
erage number of viral daughters; (ii) mean viral cycle time;
(iii) standard deviation of the viral cycling time; and (iv) viral
doubling time. Taken together, these four reproductive sta-
tistics characterize ‘‘age-specific fertility,’’ a quantity that
provides complete information on the reproduction of the
average viral particle. In this paper, we emphasize applica-
tions relating to HIV and experiments for assessing cellular
tropism, viral phenotypes, antiviral drugs, humoral immu-
nity, and cytotoxic cellular immunity. Nevertheless, our
method is quite f lexible and applicable to the evaluation of
drugs against bacterial, fungal, and parasitic infections, an-
tineoplastic agents against cancer cells, and perturbations
involving pest and wildlife releases in ecosystems.

Biology is the study of reproduction, mutation, and selection
(1). Accordingly, many biological studies focus on quantifying
one of these three processes. One problem, however, is that
current methods for studying reproduction in a population
often require an investigator to associate parents with their
offspring. In a few populations (e.g., a human population), a
reproductive census easily satisfies the requirement for parent–
offspring associations. In many other populations (e.g., a viral
population), however, a census is effectively impossible, so the
requirement for parent–offspring associations cannot be met.
Accordingly, we show in this paper how to bypass the require-
ment for parent–offspring associations and present new ana-
lytic and computational methods for calculating reproductive
statistics.

The methods require adherence to three basic conditions: (i)
starting with a population that is initially synchronized; (ii)
monitoring the growth of the entire population over time; and
(iii) distinguishing the initial generation over subsequent gen-
erations that follow. Such conditions are achievable in the
laboratory when dealing with pathogens such as viruses,
bacteria, fungi, parasites, or tumor cells. They are even achiev-
able with more complicated ecological systems involving fish
and wildlife. Because of its worldwide impact, we will discuss
experiments pertaining to HIV, but minor variations on the
same procedures will also work for many other problems in
biology and medicine.

Many key questions in HIV research can be cast in terms of
reproduction. How does viral reproduction influence patho-
genicity, virulence, or person-to-person transmissibility? How
does viral reproduction pertain to cell types, culture condi-
tions, coreceptors, or definitions of tropism? How is viral

reproduction altered by antiviral drugs, humoral immunity,
and cellular immunity? With current methodologies, research-
ers are able to measure doubling times for viral assays (2), but
not much else. Without making unwarranted or unproven
assumptions about burst reproduction, researchers still cannot
determine fundamental parameters such as the average num-
ber of daughters per mother virion (3). Out of necessity,
scientific investigations have come to rely on assay methods
that generate ambiguous and incomplete data (e.g., designat-
ing HIV strains as ‘‘fast-high’’ or ‘‘slow-low’’ phenotypes) and
as a result, many important efforts cannot measure up to their
full potential (4). Thus, in many situations, what virologists
actually need are better methods for quantifying viral repro-
duction.

Each round of viral replication begins with ‘‘mother’’ virions
giving rise to ‘‘daughters,’’ which leads to a growing population
of viral particles. For retroviruses such as HIV, the ratio of
noninfectious to infectious physical particles ranges from 105:1
to 107:1 (2). Based on available technology, such findings
illustrate that the overwhelming majority of HIV particles are
somehow defective, and so reliable measures of HIV repro-
duction cannot be based solely on counting physical particles,
with quantitative HIV-RNA PCR assays, for instance. Because
we are concerned with reproduction and because only virions
that successfully infect can actually reproduce, we can depend-
ably overlook the presence of noninfectious particles and
potentially infectious virions that fail to reproduce. We there-
fore define the terms mother and daughter to refer the small
population of HIV particles that successfully infect their
cellular targets. Note that similar concepts can be applied to
the reproduction of any organism.

The organization of this paper is as follows. In Methods, we
explain the experimental and analytical procedures for deter-
mining the four reproductive statistics described in the Ab-
stract. In Results, we compare previous approaches to our
methodology and examine how experimental noise gives rise to
errors in the reproductive statistics. In the Discussion, we
consider how reproductive statistics can be used for assessing
cellular tropisms, viral phenotypes, antiviral drugs, humoral
immunity, and cytotoxic cellular immunity. Readers focused
on conducting laboratory experiments can gloss over the
mathematical subsections without losing grasp of the essential
points.

METHODS
Previous methods for determining viral reproductive statistics
have made the assumption that each mother produces all of her
daughters at once, in a burst distribution. This assumption
often breaks down under experimental conditions (5–8). On
the other hand, our methods for determining viral reproduc-
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tive statistics make no a priori assumptions on the underlying
distribution.

Experimental Procedures. Fig. 1 outlines steps for deter-
mining HIV reproductive statistics from lymphocytes, mono-
cytes, macrophages, or dendritic cells. One-arm protocols are
useful for assessing cellular tropisms and viral phenotypes,
which reflects HIV’s ability to infect and multiply in certain
cell types. Two-arm protocols (i.e., control and experiment)
are useful for assessing antiviral drugs, humoral immunity, and
cytotoxic cellular immunity. At the outset, synchronized viral
infections are begun in a relatively small number of labeled
cells (designated as generation zero, Gen0) which are then
combined with a much larger number of unlabeled cells
(collectively designated as generation plus, Gen1). Subse-
quently, time-series samples are collected from the combined
cultures for at least one complete generation time, until the
initial generation (Gen0) has produced almost all of its off-
spring. To assure reproducibility, culture conditions must be
held stable over the period of entire experiment, which could
span several days (Fig. 1).

Certain strains of HIV cause cell membranes to self-adhere
and then fuse into multicellular syncytia (4). When performing
experiments with wild-type isolates, caution is therefore ad-
vised because syncytium formation can potentially interfere
with flowing and scoring of individual Gen0 and Gen1 cells. If
the fraction of infected to noninfected cells remains small in
the experiments, however, syncytial interference will likely be
negligible. It is also important to keep in mind that in vitro
determinations of age-specific fertility may not accurately
reflect in vivo reproductive statistics. In order to increase the
odds for making relevant comparisons, experimental condi-
tions should be made as physiologic as possible, and experi-
mental sensitivities to changes in the conditions should always
be examined.

Basic Quantities. A reproductive census determines when
mothers have daughters and how many daughters they produce
(Table 1). The census results can be presented as a histogram
that plots the number of births (y axis) against the mother’s age
at childbirth (x axis). This birth histogram is equivalent to the
age-specific fertility curve that we now describe for viruses.

Let us consider an arbitrary viral population. Next, select
any reference point in the viral life cycle that a virus must pass
through before it replicates (e.g., release from a cell, attach-
ment to another cell, the start of replication, etc.). To be
specific, let us select viral attachment as the reference point.
Now, choose any successfully infecting virus from the popu-
lation and let t be its age, with t 5 0 being its attachment to
a cell. Define i(t)dt as the average number of successfully
infecting daughter virions that stem from this mother virion
and go on to attach to cells in the short time interval from t to
t 1 dt. We call i(t) the age-specific fertility curve for the
population.

Age-specific fertility describes the reproduction of an ‘‘av-
erage’’ virion. The average number of viral daughters is
therefore

m 5 E
0

`

i~x!dx. [1]

Dividing i(t) by m gives a probability density: p(t) 5 m21i(t),
where *0

` p(x)dx 5 1. The probability distribution has mean

m 5 E
0

`

xp~x!dx. [2]

Eq. 2 gives the mean cycle time between the attachment of a
mother virus and the attachments of its daughters. The
probability distribution has a standard deviation s:

s2 5 E
0

`

x2p~x!dx 2 m2. [3]

If s 5 0, viral reproduction occurs in a burst distribution. A key
improvement of our methods over previous ones is that we
make no a priori assumptions that s 5 0 (3).

Viral infection results in the intracellular manufacture of
proteins and nucleic acids, which can serve as markers of
infection. As illustrated in Fig. 1, laboratory experiments can
follow the growth of a viral population by measuring the
manufactured markers. Accordingly, let the amount of marker
at time t be M(t).

On inoculation into cell cultures, most viruses soon settle
into a pattern of exponential growth, M(t) ' Cert for some
parameters C and r. The parameter r quantifies the population
fertility. The age-specific fertility i(t) determines r through a
characteristic fertility equation (9, p. 230, Problem 2),

E
0

`

e2rxi~x!dx 5 1. [4]

The population doubling time during exponentially growth is
t 5 r21 ln2, where ln denotes a natural logarithm, to the base
e > 2.718 . . . . The age-specific fertility i(t) therefore deter-
mines the four fundamental reproductive statistics (m, m, s,
and t) that summarize the reproduction of the average virus.
(The biologically inclined reader may wish to skip to the
Results at this point.)

Analysis Based on Burst Reproduction. Clearly, burst re-
production is a biologically unrealistic assumption, and the
Results section shows that when analyzing real data, it leads to
unrealistic conclusions. In this paragraph only, we assume that

Table 1. Reproductive statistics and the doubling time

Family name

Reproductive statistics

m m s t

Big 8 3 0 1
Small 4 2 0 1
Wide 4 3 1.9 1

Examples demonstrating how the mean number of daughter m,
mean cycle time m, and standard deviation of cycle time s interact to
influence the doubling time, t. All four population-based measures
(m, m, s, and t) characterize the age-specific fertility curve.

Age-specific Fertility. In the Big family, each mother virion produces
eight daughters at age 3 days, in a burst. In the Small family, each
mother virion produces four daughters at age 2 days, also in a burst.
By contrast, in the Wide family, each mother virion produces two early
daughters at age 1.1 days and another 2 late daughters at age 4.9 days,
in a doubled burst.

Distinctions. The Smalls and Wides produce half as many daughters
as the Bigs (m 5 4 vs. m 5 8). The Smalls have a shorter mean cycle
time than the Bigs and Wides (m 5 2 vs. m 5 3). The Bigs and Smalls
produce their daughters all at once in a burst (s 5 0), whereas the
Wides produce early and late daughters and so have a variation in their
cycle time (s 5 1.9).

Outcomes. All three families have exactly the same fertility, as
indicated by the same doubling time (t 5 1). This occurs despite the
fact that the Bigs produce twice as many daughters as the Smalls or the
Wides.

Explanations. Table 1 clearly demonstrates that early daughters are
a major force that drives viral fertility. In general, any spread in the
cycle time that permits the production of more early daughters will
lead to shorter doubling times. s therefore has a profound impact on
viral fertility. Also notice that the Bigs and Wides have identical values
for the mean cycle time (m 5 3) and the doubling time (t 5 1), yet they
show very different values for the average number of daughters (m 5
4 vs. m 5 8). It is obvious that by themselves, the mean cycle time m
and the doubling time t do not determine the average number of
daughters m.
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each mother virion produces an average of m0 daughter virions
in a single burst (3). We also assume that the daughters then
go on to attach to their cellular targets at time m later than the
mother attached. These assumptions correspond to an age-
specific fertility that is a burst distribution i(t) 5 m0d(t 2 m),
where d(t) is the Dirac delta function (10). The fertility
equation then becomes *0

` e2rxi(x)dx 5 m0e2rm 5 1 and yields
a population fertility of r 5 m21 lnm0. The population doubling
time t 5 r21 ln2 can be derived in accordance with previous
results (3).

Analysis Based on Age-Specific Fertility. We now show that
the age-specific fertility i(t) can be extracted from time-series
experiments measuring almost any type of manufactured viral
marker. For viruses such as HIV, the marker could be reverse
transcriptase, nucleic acids, or cell-associated proteins like
p24, gp41, and gp120. Recall that M(t) denotes the total
amount of marker in a growing viral culture at time t, and
define M0(t) to be the amount associated with the initial
generation, Gen0. The following renewal equation applies (9):

M~t! 5 M0~t! 1 E
0

t

i~x!M~t 2 x!dx. [5]

We can now prove Eq. 5 as follows. Eq. 5 is linear in both M(t)
and M0(t), so both sides can be divided by the total number of
viruses in Gen0. The division in effect focuses the equation on
a single progenitor virus in Gen0, and after this reduction, Eq.
5 can be interpreted as follows. At time t, the marker M(t) is
associated either with the progenitor virus [corresponding to
the term M0(t)] or with a virus somewhere in Gen1 (i.e., Gen1,
Gen2, etc.), with Gen1 being represented by the integral in Eq.
5. Every virus in Gen1, however, has a lineage that can be
traced back to a specific viral daughter in Gen1. In Gen1, the
average number of successfully infecting daughters attaching
between x and x 1 dx is given by i(x)dx. From time x to time
t 2 x, each daughter and its progeny then give rise on average
to the amount of marker M(t 2 x). This concludes our proof.

Eq. 5 makes the physical assumption that every successfully
infecting virion gives rise to the same amount of marker on
average, regardless of its generation. This assumption is rea-
sonable as long as experimental conditions remain constant
over time and as long as factors such as mutation and selection
do not appreciably perturb the age-specific fertility i(t). The
marker does not even have to be a conserved quantity. For
example, it can serve as a carbon source in supporting cell
metabolism or be incorporated into the cell genome over time.
In fact, the marker can even rise or fall in any pattern. All such
complexities do not matter as long as they remain constant
across all generations, Gen0, Gen1, Gen2, etc. The foregoing
concludes our analysis of the forward problem.

Prepare for solving the inverse problem by defining

M1~t! 5 M~t! 2 M0~t! [6]

to be the amount of marker associated with Gen1. Also,
change the variable of integration in Eq. 5 from x to t 2 x,
yielding the following equation

E
0

t

i~t 2 x!@M0~x! 1 M1~x!#dx 5 M1~t!. [7]

FIG. 1. Time-series experiment for determining HIV age-specific
fertility. The figure shows two groups of cells, Gen0 (fluorescent) and
Gen1 (nonfluorescent), along with the various steps for preparing and
using these cells. The figure also shows stylized plots of the time-series
data from Gen0 (E) and Gen1 cells (F), which are derived from
hypothetical f low-cytometry measurements. In general, experiments
are performed under conditions that limit the number of doubly
infected cells, because such events fail to reflect in vivo conditions.
Initially, such conditions require a relatively low multiplicity of infec-
tion for Gen0 cells [multiplicity of infection (moi) , 0.1] and through-
out the assay, a relatively low moi for the combined Gen0 and Gen1

cells (moi , 0.5). The step-by-step procedures are as follows. (i) Before
assays, cell cultures are grown under conditions that ensure constant
susceptibility to infection. (ii) Cell cultures are partitioned into two
unequal portions, one for preparing cells for generation zero (Gen0)
and the other for preparing cells for generations one, two, three, etc.
(designated collectively as Gen1). (iii) Gen0 cells are labeled with
fluorescent dye and (iv) washed to remove excess dye from the
surrounding medium. For such steps, several dyes are available that
form stable associations with cytoskeletal proteins but, at low con-
centrations, do not appear to interfere with cell growth and metab-
olism (21). (v) Labeled Gen0 cells are infected with cell-free HIV for
a period of 1–2 hours and (vi) washed again to remove excess virions
from the surrounding medium. After the second wash, cell-free virions
must be absent, because their presence can corrupt numerical deter-
minations of age-specific fertility. (vii) Labeled and infected Gen0 cells
are then combined with unlabeled and uninfected Gen1 cells. In order
to ensure that the growing infection propagates into Gen1 cells and
not Gen0 cells, the ratio between Gen0 and Gen1 cells should be
relatively large (e.g., .1:30). Such a large ratio also helps to keep the
moi low throughout the assay. (viii) Cells are incubated under constant
culture conditions (5% CO2 and 37°C) with gentle mixing to prevent
clumping. (ix) Over a period of several days, cells mixtures are sampled
periodically (for example, every 3–6 hours), washed, and fixed with
preservative to halt viral reproduction. To reduce perturbations from
sampling procedures, the total volume of cells removed should be a
fraction (,50%) of the culture’s starting volume. (x) Multilaser flow
cytometry is used to score for cell generation and markers of infection.
Cells are stained with fluorescent mAbs against viral markers appear-
ing very early within the cytoplasm (anti-p10, anti-p32, etc.) or
somewhat later on the cell surface (anti-p24, anti-p41, etc.). Gen0 and
Gen1 cells are distinguished by the presence or absence of fluorescent
cytoskeletal labels, respectively. Cellular markers of infection can be
scored by threshold and continuous counting procedures: as infected
(1) and noninfected (2) according to cutoff immunofluoresence
values; or as infected according to the actual amount of immunoflu-
oresence detected. In principle, both counting procedures should yield
comparable data and offer cross-checks of experimental consistency.
At the start of the experiment, Gen0 and Gen1 cells will express
relatively few markers of viral infection. Such sparse data will therefore
demand the counting of more cells to collect reliable statistics and

reduce experimental noise. (xi) Analysis of the data is carried out by
mathematical procedures as described in Methods. The appearance of
the marker in Gen0 cells together with the age-specific fertility curve
determines the appearance of the marker in Gen1 cells. Thus,
age-specific fertility can be viewed as a mapping between the marker
on Gen0 cells and Gen1 cells (dashed line).
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The Naive Method. Eq. 7 furnishes a mathematical formula
for determining the age-specific fertility i(t). Its continuous
form, however, is poorly suited to experimental time-series
data, which are inherently discrete. Let us now examine the
effects of discretization and random experimental noise on the
solution of Eq. 7.

Typical laboratory experiments start at time t0 5 0 and
collect samples at a discrete number of time points t0, t1,
t2, . . . tk (Fig. 1). These samples yield a series of marker values,
designated as M0(t0), M0(t1), M0(t2), . . . M0(tk) for Gen0 and
M1(t0), M1(t1), M1(t2), . . . M1(tk) for Gen1. These discrete
marker values are associated with respective errors s0(t0),
s0(t1), s0(t2), . . . s0(tk) and s1(t0), s1(t1), s1(t2), . . . s1(tk).
The error estimates s0 and s1 will play a crucial role in our
solutions.

In principle, there are many possible ways to estimate
age-specific fertility from time-series data (e.g., parametric
curve fitting). Yet after carefully considering the various
possibilities, we elected to discretize the age-specific fertility
i(t) in accordance with the time series: i(t0), i(t1), . . . i(tk). We
chose this method of solution by discretization for its f lexibil-
ity, primarily because it does not restrict the shape of the
age-specific fertility curve.

The first step in our solution is to approximate the contin-
uous integral in Eq. 7 with discrete values corresponding to the
time points from the experimental data. Accordingly, let us
define

y~tj! 5 i~ta 2 tj!@M0~tj! 1 M1~tj!# 5 i~ta 2 tj!M~tj!. [8]

If the Trapezoidal rule is applied to Eq. 7 at each of the
experimental time points t 5 ta (where a 5 1, . . . k), we derive
k equations:

E
t0

ta

y~x!dx > y~t0!
1
2

~t1 2 t0! 1 O
j51

a21

y~tj!
1
2

~tj11 2 tj21!

1 y~ta!
1
2

~ta 2 ta21!. [9]

Because mother virions do not produce daughters immedi-
ately, we have i(t0) 5 i(0) 5 0. For convenience, let us define

Xa 5 i~ta!M~0! 1
2

~t1 2 t0! 1 O
j51

a21

i~ta 2 tj!M~tj!
1
2

~tj11 2 tj21!

2 M1~ta!. [10]

In view of Eqs. 8 and 9, we can approximate Eq. 7 by setting
Xa 5 0 for a 5 1, 2, . . . k. After the linear interpolation

i~t! > i~ti21!
ti 2 t

ti 2 ti21
1 i~ti!

t 2 ti21

ti 2 ti21
[11]

for ti21 # t # ti is applied to Eq. 10, we can use the
experimental time-series data to determine Xa (a 5 1, 2, . . .
k) as a function of i(ta) (where a 5 1, 2, . . . k) in Eq. 10.

The discretized set of simultaneous equations Xa 5 0 for a 5
1, 2, . . . k approximate the continuous convolution in Eq. 7.
Naively, one might expect that the solutions to these linear
equations would approximate the unknowns i(t1), i(t2), . . .
i(tk). Unfortunately, these naive solutions are unstable and
oscillate wildly in response to any combination of discretiza-
tion errors and random experimental noise (Fig. 2). Therefore,
another method of solution must be sought.

Tikhonov Method. The quantity Xa 5 0, if there is no
random experimental noise and if there are no numerical
errors due to the Trapezoidal rule and linear interpolation.
Clearly, such conditions are highly improbable. Our immediate

objective is therefore to calculate the random distribution of X
5 (X1, X2, X3, . . . Xk).

Each coordinate of the vector X is a linear combination of
M0(tj) and M1(tj) for j 5 0, 1, 2, . . . k. The quantities M0(tj)
and M1(tj) contain random errors and can be viewed as
random variables, with variances s0

2(tj) 5 var[M0(tj)] and
s1

2 (tj) 5 var[M1(tj)]. Because experimental errors in M0(tj)
and M1(tj) are independent, all of their covariances are zero.
From Eq. 6, it follows that the error in M(tj) is s2(tj) 5
var[M0(tj) 1 M1(tj)] 5 s0

2(tj) 1 s1
2 (tj), and thus the covari-

ance matrix C of the 1 3 k row vector X is a k 3 k matrix, with
entries

Cab 5 cov~Xa, Xb!

5 i~ta!i~tb!s2~0! 1
4

~t1 2 t0!
2

1 O
j51

cp21

i~ta 2 tj!i~tb 2 tj!s2~tj!
1
4

~tj11 2 tj21!
2

FIG. 2. A critical comparison of the naive and Tikhonov methods.
The figure illustrates our numerical analysis of simulated experimental
data that contain various levels of random noise. A and C are based
on 1% random noise whereas B and D are based on 10% random noise.
A and B plot cellular markers of infection that are scored from
fluorescent Gen0 (E) and nonfluorescent Gen1 (F) cells. On the other
hand, C and D plot our numerical analysis of the data from A and B,
respectively, using the naive (Œ) and Tikhonov methods (‚). Note that
the solid line in C and D represents the true age-specific fertility curve,
which is the actual mapping between markers of infection in Gen0 and
Gen1 cells (E and F). First, to generate noiseless data for Gen1 cells,
M1(t), Eq. 7 was used to combine the true age-specific fertility, i(t),
with the true time-dependent appearance of markers of infection in
Gen0 cells, M0(t). Next, 1% and 10% levels of random noise were
added to generate the noise-containing data plotted in A and B,
respectively, for Gen0 and Gen1 (E and F). Subsequently, we used the
naive and Tikhonov methods to estimate age-specific fertility from
these noise-containing data. In the presence of small levels of random
noise (1%), the naive method, based on least-squares fitting is
unexpectedly unstable and produces unusable solutions, whereas the
Tikhonov method based on multidimensional minimization yields a
good approximation to the true age-specific fertility curve. In the
presence of moderate levels of random noise (10%), the naive method
fails completely, whereas the Tikhonov method yields a somewhat
looser approximation but still works (Table 2). In virological experi-
ments utilizing flow cytometry, we expect that actual data will contain
;10% random noise. Hence, the Tikhonov method should perform
well in laboratory applications.
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1 dabs1
2 ~ta! 2 ~1 2 dab!i~tc* 2 tcp

!s1
2 ~tcp

!

3
1
2

~tcp11 2 tcp21!, [12]

where the Kronecker’s delta dab 5 1 if a 5 b, and dab 5 0
otherwise. In Eq. 12, the definitions cp 5 min(a, b) and c* 5
max(a, b) apply.

If the errors in M0(tj) and M1(tj) are normally distributed,
the random variable x2(i) 5 XC21XT is usually chi-square-
distributed with k degrees of freedom (11), regardless of the
values in the vector i 5 [i(t1), i(t2), . . . i(tk)] that it depends
upon. Thus, the overall experimental error is about x2(i) 5 k,
because k is the mean of the underlying chi-square distribution.
Because X 5 0 implies x2(i) 5 0, it should not be surprising that
the naive solution failed.

In contrast to the naive method, which assumes x2(i) 5 0, the
Tikhonov method selects the smoothest curve i(t1), i(t2), . . .
i(tk) that is consistent with the overall experimental error
x2(i) 5 k. The Tikhonov method is a good choice for solving
our problem, because the age-specific fertility i(t) is an average
over the viral population and therefore must be a smooth
function of the age t.

The Tikhonov method requires the use of a smoothing
functional. The functional we have selected is

V~i! 5 2 O
j52

k21 H ln@i~tj11!yi~tj!#

tj11 2 tj
2

ln@i~tj!yi~tj21!#

tj 2 tj21
J 2

3 ~tj11 2 tj21!
2. [13]

Eq. 13 approximates the integral *[(ln i)0]2dt and therefore
quantifies how much the age-specific fertility i(t) oscillates.
The particular form of Eq. 13 was chosen because at large
times, we expect the age-specific fertility i(t) to decline expo-
nentially, giving lni(t) 5 at 1 b and (ln i)0 5 0. Other
smoothing functionals V(i) were also examined, but Eq. 13
produced the most accurate estimates of the reproductive
statistics m, m, s, and t in repeated computer simulations.

The Tikhonov method is well recognized as an inversion
method for many ill-posed problems like the one we address
here (12). In our case, the Tikhonov method chooses values
i(t1), i(t2), . . . i(tk) that minimize V(i) subject to the constraint
that the overall experimental error is x2(i) 5 k. The Tikhonov
method can be implemented with a Lagrange multiplier [which
is determined by the constraint x2(i) 5 k] and the Powell
multivariable minimization method (12).

RESULTS
The main results of our paper are summarized in Fig. 2 as well
as Table 1 and Table 2. The results show that our methodology
is able to derive reproductive statistics for viruses such as HIV.
In contrast to previous methodologies (3), our approach makes
no a priori assumptions regarding burst reproduction, and its
validity is reflected in the results that follow.

Table 1 demonstrates three key points regarding reproduc-
tive statistics. First, early daughters are a major driving force
behind viral reproduction. The Small family produces only half
as many daughters as the Big family but despite this difference,
it has the same doubling time. Second, variations in the viral
cycle time are equivalent to the production of early daughters.
The Wide family produces only half as many daughters as the
Big family but despite this difference, it also has the same
doubling time. Third, the mean cycle time m and the doubling
time t do not fix the average number of daughters m. The Wide
family has the same mean cycle time and the same doubling
time as the Big family but despite this similarity, it has only half
as many daughters. In fact, with different numbers this dis-
parity in the number of daughters could have been even more
pronounced.

Table 2 shows that the errors in the estimated reproductive
statistics generally become larger as the experimental noise
increases. Even at 10% noise, which is a biologically realistic
level of experimental error, the Tikhonov method still provides
reasonable estimates of the reproductive statistics. The Tik-
honov algorithm is therefore thoroughly practical for extract-
ing reproductive statistics from time-series data.

DISCUSSION
Researchers have lacked effective tools for measuring repro-
duction. In this paper, we present practical methods for
determining population-based reproductive statistics from
time-series experimental data when it is not possible to make
parent–offspring associations. The experiments require adher-
ence to three basic conditions that are easily satisfied when
dealing with viruses and unicellular and multicellular organ-
isms (see Introduction). Our analysis sets forth a yardstick
called age-specific fertility, which is especially powerful be-
cause we make no a priori assumptions on underlying repro-
ductive statistics. In this particular discussion, we focus on
laboratory experiments pertaining to HIV while recognizing
that the spirit of the procedures in Fig. 1 will work for many
other problems in medicine and biology.

Previous analytical methods for measuring reproduction
have relied on time-series data exhibiting exponential growth
or decay (2, 13). On the other hand, our new approach does not
rely on exponential reproduction kinetics, enabling research-
ers to work with a broader spectrum of time-series data. Our
methods in Fig. 1 will work with any data set containing
enough scored samples from the initial generation (Gen0) and
subsequent ones (Gen1).

Although the assumption of one synchronous crop of daugh-
ters (s 5 0) may help to simplify mathematical formulations
(3), it can break down when determining reproductive statistics
from simple data sets. As shown with the Big and Wide families
(Table 1), the average cycle time m and the population
doubling time t produce markedly different estimates for the
average number of daughters m when s 5 0 and s . 0. Such
outcomes illustrate that a single burst distribution is far too
constrained to work with real laboratory data, where various
patterns of synchronous or asynchronous reproduction are
going to be encountered. In contrast, the Tikhonov method

Table 2. Robustness of Tikhonov method to noise

Noise, %

Reproductive Statistics

m m s t

0 4.00 2.00 1.20 0.500
1 4.11 1.92 0.95 0.497

10 5.09 2.22 1.08 0.470

Reproductive statistics showing that the Tikhonov method is robust
against noise in simulated experimental data. The table lists true and
numerically derived values for m, m, s, and t. The true values are
derived from the solid lines in Fig. 2 C and D, which are precisely the
same. The values for 1% and 10% noise are numerically derived from
Œ in Fig. 2 C and D, respectively. As expected, the errors in the
numerically derived reproductive statistics increase as the experimen-
tal noise increases. A level of 10% random noise is a reasonable
estimate for typical laboratory data based on flow cytometry. With
such levels of noise, the table illustrates that our methods generate
useful estimates of the true reproductive statistics. Based on many
numerical simulations, we have found that t is least sensitive to random
noise, m and m are immediate in sensitivity, and s is most sensitive.
These sensitivities are reflected in the results of Table 2.

Deriving Table Quantities. The solid line in Fig. 2 C and D represents
the true age-specific fertility curve that was selected for this particular
simulation. The four true reproductive statistics were derived by
applying Eqs. 1–4 in the Methods to this solid line. The Tikhonov
method generates discrete points for the age-specific fertility curve
and, in order to derive the reproductive statistics from such points,
Eqs. 1–4 were used in conjunction with the trapezoidal rule.
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analyzes data reliably even in the presence of realistic levels of
experimental noise (Fig. 2 and Table 2).

We now move on to practical matters. One perplexing
problem that AIDS researchers face deals with assessing
different viral isolates, antiviral drugs, and immune activities
in a comparable manner. Our methods are an excellent way to
make such experimental comparisons. For example, most
antiviral drugs against HIV are small molecules that readily
enter the intracellular compartment and interfere with early
(reverse transcription) or late (protease cleavage) stages in
viral manufacture. Monoclonal and polyclonal immunoglobu-
lins and solubilized cellular receptors (such as soluble CD4 and
chemokines) are large molecules that remain in the extracel-
lular compartment and, among other actions, randomly block
the attachment of virions as they diffuse from cell to cell.
Cytotoxic T lymphocytes are enormous objects that migrate by
a combination of cell adhesion and chemotaxis and suppress
HIV reproduction by killing whole infected cells. It is con-
ceivable that various antiviral drugs, humoral immune activi-
ties, and cellular immune activities could alter measures of
age-specific fertility in patterns (involving m, m, s, and t) that
are somehow characteristic of underlying actions. Current
assays, which are based on a variety of experimental ap-
proaches, are not directed at discerning such patterns. On the
other hand, assays based on age-specific fertility generate a
uniform set of reproductive statistics, which provide a basis for
direct comparison.

Cellular Tropisms and Phenotypes. The value of m provides
virologists and immunologists with a fundamental measure of
tropism (14). Larger values of m reflect greater viral-cell
tropisms (i.e., a greater number of successful daughter virions
from a single infected cell) whereas smaller values reflect
lesser tropisms (15). Another fundamental indicator of tro-
pism is the population doubling time (t), which has an inverse
relationship to viral reproduction. Smaller values of t reflect
faster reproductive rates whereas larger values reflect slower
rates. Of course, m and t are merely two of the four measures
that characterize the age-specific fertility curve. In many
experimental situations, AIDS researchers will actually need
to consider all four measures (i.e., m, m, s, and t) for complete
phenotypic characterizations.

Various strains of HIV appear to require the simultaneous
expression of CD4 and chemokine receptors on the cell surface
in order to initiate successful infection (16). AIDS researchers
have thus undertaken extensive surveys of viral tropism ac-
cording to cell-surface expression of CC- and CXC-chemokine
receptors, with the expectation that tropism surveys would
offer guidance to therapeutic and vaccine development efforts.
Yet such surveys have achieved only partial success to date, in
large part because researchers have lacked reliable methods
for determining HIV reproductive statistics (17). We therefore
suggest that reliable surveys of chemokine tropism could be
achieved with experiments designed to determine age-specific
fertility under certain prescribed conditions. Key variables in
these quantitative viral reproduction assays would include (i)
choice of HIV strains; (ii) use of lymphocytes, monocytes,
macrophages, or dendritic cells; (iii) growth factors used in cell
cultures; and (iv) number of CC and CXC receptors expressed
on cell surfaces.

Antiviral Drugs and Immune Activity. Viral reproduction
assays for assessing antiviral drugs, immunoglobulins, solubi-
lized receptor proteins, and cytotoxic cellular killing would
consist of two arms (i.e., control and experiment) but, in other
respects, they would be similar to experiments just described.
The control arm would measure reproductive statistics in the
absence of antiviral agents. The corresponding experimental
arm would measure reproductive statistics in the presence of
antiviral agents, with all other conditions kept similar to
controls. The output from the two parallel arms would there-

fore consist of determinations of age-specific fertility over a
series of agent concentrations. If the agent has specific activity
against HIV, it would perturb one or more reproductive
statistics (m, m, s, and t) in a concentration-dependent pattern
that is characteristic of underlying action. If the agent has no
specific activity, reproductive statistics would demonstrate
only random fluctuations or possibly patterns attributable to
nonspecific cellular toxicity.

Previous screening and evaluation methods for antiviral
agents have often generated partial data that are incomparable
to other data sets. In many instances, it has thus proven
difficult to compare results from one infectivity assay to
another. Such problems stem from uncontrolled variations in
viral stocks (2) or arbitrary assignments regarding cutoff
points, such as reporting ID50 vs. ID90. Furthermore, most
infectivity assays are scored at a single time point only, which
provides isolated ‘‘snapshots’’ of how antiviral agents work
over time. On the other hand, our methods could produce data
that are comparable from one laboratory to another and could
also help in addressing the questions posed in the Introduction.

Further Applications. Throughout this paper, we have em-
phasized methods relating to virology and reproduction of
infectious agents. Our methods are equally applicable, how-
ever, to the screening and identification of new anticancer
drugs. In this case, time-series data and markers are based on
the cell itself and not on some cellular parasite.

Our methods require larger data sets than are customary at
present, and so they can not be conveniently produced by
humans. Fortunately, biological research is becoming auto-
mated and high-throughput research activities are becoming
commonplace. Our methods are ready to take advantage of
this trend (20).
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