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Abstract

X-ray crystallographic protein structures often contain disordered regions that are observed as missing
electron density. Diffraction data may give little or no direct evidence as to the specific nature of
disordered regions. We have developed a weighted window-based disorder predictor optimized using
crystallographic data. Performance of a predictor is strongly influenced by chain termini. Optimized
score adjustment values for amino- and carboxy-terminal positions demonstrate a simple, monotonic
relationship between disorder and residue distance from termini. This optimized disorder predictor
performs similarly to DISOPRED2 on crystallographically disordered regions. Data-optimized residue
disorder propensities show strong linear correlation with experimentally determined amino acid transfer
energies between water and hydrogen-bonding organic solvents, which primarily reflect residue
hydrophobicity (exemplified by the Nozaki-Tanford hydrophobicity scale). Disorder propensities do
not correlate as well with transfer energies between water and apolar solvents, which primarily reflect a
different hydropathic property: residue hydrophilicity (also reflected by the Kyte-Doolittle hydropathy
scale). Our results suggest that while hydrophobic side-chain interactions are primarily involved in
determining stability of the folded conformation, hydrogen bonding, and similar polar interactions are
primarily involved in conformational and interaction specificity.

Keywords: X-ray crystallography; protein disorder; protein structure; hydrophobicity; hydrophilicity;
simulated annealing; predictor optimization

For over fifty years, scientists have discussed how fun-
damental physical properties of amino acids might relate
to protein structure (Waugh 1954; Kauzmann 1959). Yet
significant gaps remain in our understanding of how the
simple physical properties of amino acids dictate the
complex structural characteristics of proteins (Chandler
2005). Protein disorder, or the lack of consistent folded
structure, represents one such characteristic.

To help evaluate disorder in proteins, a number of
predictors have been developed (Galzitskaya et al. 2006a,b;
Han et al. 2006; Vullo et al. 2006; Wang and Donald 2006;
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Dosztanyi et al. 2007; Hirose et al. 2007; Shimizu et al.
2007; Sickmeier et al. 2007; Sugase et al. 2007). The
DisProt Website (Sickmeier et al. 2007), at http://www.
disprot.org, provides links to several predictors. Some
predictors utilize various predetermined residue-type char-
acteristics to make predictions (Linding et al. 2003b;
Coeytaux and Poupon 2005; Dosztanyi et al. 2005a,b;
Prilusky et al. 2005; Peng et al. 2006), while other predic-
tors use ‘‘machine learning’’ of disorder data to develop
complex networks of parameters (Romero et al. 1997;
Linding et al. 2003a; Vucetic et al. 2003; Ward et al. 2004;
Cheng et al. 2005; Yang et al. 2005) that are not easily
related to physical terms (Lise and Jones 2005). Ferron et al.
(2006) provide an informative review of disorder predictors.

We have developed data-optimized disorder predictors
that use a weighted sliding-window algorithm to calculate
position-dependent disorder scores. Using such an ap-
proach allows position-dependent predictions that can
account for local influence of adjacent residues within the
span of the window. Some predictors specifically address
disorder-prone chain-terminal regions (Li et al. 1999; Ward
et al. 2004). We use a simple method to address predictions
at termini, which reveals similar behavior of disorder at
each terminus. As opposed to predictors that utilize com-
plex networks of parameters, the optimized parameters
from our window-based predictors provide insight into
disorder. Thus, optimized disorder parameters are com-
pared with amino acid properties to provide insight into the
physical underpinnings of disorder.

Several numerical indices represent physicochemical
properties of amino acids measured either experimentally
using individual amino acids or statistically using infor-
mation available in protein structures. Many of these
indices have been assembled into an AAindex database
(Kawashima and Kanehisa 2000) and have been classified
into hierarchical clusters of similar properties (Tomii and
Kanehisa 1996). Numerical indices reflecting various
properties have been used in predicting disorder, such
as coil propensity (Linding et al. 2003b), hydropathy
(Prilusky et al. 2005), and interaction energy (Dosztanyi
et al. 2005b). Property scales may also be derived by
training predictors on disorder data (Weathers et al. 2004).

Among properties associated with disorder, ‘‘hydro-
phobicity’’ is commonly mentioned (Uversky et al. 2000;
Williams et al. 2001; Linding et al. 2003a; Dosztanyi
et al. 2005b; Peng et al. 2006). However, the term
hydrophobicity has been loosely applied to widely vary-
ing scales (Creighton 1993, 2002), such as those of Kyte
and Doolittle (1982) and Nozaki and Tanford (1971).
These scales display only marginal correlation. Thus, the
implications of associations between disorder and hydro-
phobicity are unclear. Our amino acid disorder propen-
sities demonstrate a strong linear correlation with
experimentally derived transfer energies between polar

organic and aqueous phases, while showing a weaker
correlation with transfer energies between apolar organic
solvent and water (Radzicka and Wolfenden 1988). We
therefore discriminate between two distinct amino acid
properties that describe side-chain affinities to organic
solvents.

The first property is characterized by the transfer
energies between water and polar organics, for example,
alcohols. In this case, both solvents offer hydrogen-
bonding interactions, but only the organic phase offers
hydrophobic protection. Assuming that hydrogen-bond-
ing capacity is fully realized in both phases, partitioning
is driven by the hydrophobic effect, and we term this
property ‘‘hydrophobicity.’’ The second property refers to
transfer energies between water and nonpolar organics,
for example, cyclohexane. In this case, hydrogen bonds
can be formed in water but not in cyclohexane. Thus, the
dominant contribution to partitioning is hydrogen-bond
formation, and we term this property ‘‘hydrophilicity.’’
In our terminology, hydrophobicity and hydrophilicity
are not two polar opposites but represent two different,
although not fully uncorrelated, amino acid properties.
The two properties are distinguishable by the type of
environment that surrounds amino acids in partitioning
experiments, with the former describing partitioning
between polar solvent and water, and the latter playing
a dominant role in partitioning between nonpolar solvent
and water. We discuss how the particular pattern in our
data-optimized parameters helps clarify the relationship
between this more precisely defined property of hydro-
phobicity and disorder.

Results and Discussion

Predictor performance

Figure 1 compares performance of our predictors (includ-
ing simple sequence and profile-based predictors, with
and without tail adjustments) with DISOPRED2 (Ward
et al. 2004), a support vector machine (SVM)/neural
network-based predictor of disorder also developed using
crystallographic data that uses PSI-BLAST-generated
sequence alignment profiles (Altschul et al. 1997) in its
prediction. Some recent papers have compared disorder
predictor performance with probability excess measure-
ments (Yang et al. 2005; Esnouf et al. 2006; Su et al.
2006). Probability excess values typically depend on the
cutoff score used in making a binary decision, and the
probability excess reflects a single point on the receiver
operating characteristic (ROC) curve. We use traditional
full ROC curves for performance comparison.

As with DISOPRED (Jones and Ward 2003; Ward et al.
2004), use of profiles enhances overall performance com-
pared with using simple sequence (Fig. 1A). However, the
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improvement primarily occurs in the prediction of dis-
order in chain terminal regions, which make up more than
half of the disorder in data sets (see Methods). When
performance on these terminal residues is excluded from
analysis, the simple sequence-based predictor performs
comparably with the profile predictor and DISOPRED2
(Fig. 1B). Furthermore, when terminal residues are
included in performance analysis, our treatment of
sequence ends substantially narrows the performance
gaps between the simple predictor, the profile predictor,
and DISOPRED2 (Fig. 1A).

Although the predictors with tail adjustments are
similar in overall performance to DISOPRED2, variations
in performance on cross-validation data subsets reveal
that predictors behave differently (Fig. 1C). Data subset
3 appears to be substantially affected by the Structural
Classification of Proteins (SCOP) family ‘‘RNA-poly-
merase beta-prime’’ (ID ¼ 64490), which contains size-
able disordered regions. Two of the chains contain long,
imperfect repeats of the sequence, ‘‘PSTPSYS,’’ a pattern
that may be detected somehow by DISOPRED2.

Optimized parameters

Optimized predictor parameters (between 55 and 119,
depending on the predictor) include sliding window
weights, amino acid disorder propensities, and tail adjust-
ment values (Fig. 2). Parameters optimized on different
cross-validation data sets showed high consistency (data
not shown). Window weight parameters form a bell-shaped
curve, showing the relative degree to which nearer and
farther positions are appropriately taken into account
in predicting crystallographic disorder. Positions on the
C-terminal side weighted slightly more than their N-terminal
counterparts for both profile and simple sequence predictors
(Fig. 2A). The reason for this mild asymmetry is unclear.

Disorder values for the sequence- and profile-based
predictors follow different patterns (Fig. 2B), but for both
predictors, tryptophan is the most order-associated resi-
due type, and serine is the most disorder-associated
standard residue type. In the simple sequence predictors,
threonine and alanine, with disorder values close to 0,
have approximately average ordering propensity; W, C, F,

Figure 1. Performance comparison. DISOPRED2 serves as a reference. (A) Average ROC curves, including terminal residues in

performance analysis. (B) ‘‘Average’’ ROC curves, excluding 30 terminal residues in performance analysis. (C) Differences between

performance of profile with tail adjustments predictor and DISOPRED2 on individual testing data subsets. ROC scores at different

cutoffs obtained by subtracting DISOPRED2’s ROC score from the profile with tail adjustments predictor’s ROC score (see Methods

for explanation of ROC scores). (D) Average ROC curve for optimized simple sequence predictor (Sequence) compared with

performance substituting various pre-existing scales for disorder propensities (see abbreviation footnote and body of text for further

details). Areas under ROC curves: Sequence, 0.779; LOR, 0.771; Ky/Do, 0.697; Ho/Wo, 0.689; Ru/Li, 0.637; Ch/Fa, 0.621. (Area

under curve for random predictions ¼ 0.5.)
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I, Y, L, V, and M display less than average disorder
propensity; and R, H, N, G, K, D, P, Q, E, and S display
higher than average disorder propensity.

Simple sequence predictor disorder propensities (Table
1) correlate strongly with statistical residue disorder
propensities (log odds ratios; R2 ¼ 0.946; Table 2), but
a similar relationship is not seen for profiles (Table 2),
indicating that statistical derivation of parameters does
not always produce the same results as optimization. Of
note, the calculation of log odds ratios (LORs) closely
resembles that of free energy (DG ¼ lnK), and LORs are
additive (behave linearly).

Tail adjustments are optimized in conjunction with
composition-based disorder scoring and with the exclu-
sion of polyhistidine tag influence (see Methods), thus
removing confounding effects that might result from
sequence bias at termini. The tail adjustments thus pro-
duced demonstrate that disorder approximately follows a
simple, monotonic function of distance from the terminus
that is equal for N- and C-termini (Fig. 2C), which may
be the result of decreased constraint at chain termini. Tail
adjustment values for the first three positions are neg-
atively displaced because of the exclusion of disordered
stretches shorter than four residues from optimization
performance measures (see Methods).

Disorder propensity and hydrophobicity

Table 1 lists disorder propensities for the simple sequence
predictor. Other groups have found similar scales in
association with disorder (Williams et al. 2001; Linding
et al. 2003a; Weathers et al. 2004). Substituting optimized
parameters with rationally selected parameter scales in
the simple disorder predictor allows comparison of differ-
ent indices in predicting crystallographically disordered
regions (Fig. 1D), including some indices utilized by
available disorder predictors (Linding et al. 2003b;
Prilusky et al. 2005; Peng et al. 2006). When substituted

Figure 2. Predictor parameters. (A) Optimized weights are depicted for

each position in the sliding window as open diamonds. The calculated

disorder score is assigned to the residue position (0) indicated by a vertical

line. (B) Simple sequence predictor disorder values are in black bars,

and profile predictor values are in gray bars. Negative values indicate more

order than average, and positive values indicate more disorder than

average. LORs are based on residue frequency in disorder data sets. (C)

Tail adjustment values, which are added to disorder scores at positions near

amino and carboxy termini when the tail adjustment option is used.

Table 1. Simple sequence predictor disorder values for common
residue types, selenomethionine (sM), and N-terminal
methionine (nM)

Residue type Optimized disorder value

W �1.00739

C �0.540732

F �0.540414

I �0.514274

Y �0.513589

L �0.418184

sM �0.373603

V �0.358167

M �0.216377

T 0.0333232

A 0.0642762

R 0.176914

H 0.18568

N 0.221683

G 0.241088

K 0.300523

D 0.313504

P 0.32731

Q 0.336406

E 0.33729

S 0.400289

nM 0/0.502239a

a 0 for predictor without tail adjustments, 0.502239 for predictor with tail
adjustments. All other types of residues receive a disorder value of 0.
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for optimized disorder propensities, predetermined coil
propensity scales (Ru/Li: Russell-Linding propensity
scale) (Linding et al. 2003b) (Ch/Fa: Chou-Fasman coil
propensity scale) (Chou and Fasman 1974) do not
perform as well in our sliding-window predictor at
discriminating crystallographically disordered regions
(Fig. 1D, purple- and olive-colored ROC curves). The
Kyte-Doolittle scale (Ky/Do) (Kyte and Doolittle 1982)
and the Hopp-Woods scale (Ho/Wo; derived from the
Levitt scale) (Levitt 1976; Hopp and Woods 1981) yield
better, but still suboptimal, performance (Fig. 1D, orange-
and cyan-colored ROC curves). Predictions using LORs
approach those of the optimized disorder propensities. In
agreement with this observation, calculated LORs display
strong correlation to optimized disorder propensities
(R2 ¼ 0.946, Table 2).

Several structure-derived scales show strong correla-
tions to disorder propensity (Table 2). A residue ‘‘buri-
ability’’ scale (Z bur) (Zhou and Zhou 2004) displays the
highest correlation to disorder (Z bur, R2 ¼ 0.924), while
a residue interactivity scale (Bastolla et al. 2005) is
ranked second (R2 ¼ 0.909). Other high-ranked scales
measure contacts within a 14 Å sphere (Nishikawa and
Ooi 1986) (14 Å cont, R2 ¼ 0.840) and nonbonded
interactions for residues well separated in sequence
(Oobatake and Ooi 1977) (R2 ¼ 0.837). Another amino
acid stability scale (Vihinen et al. 1994), which was opti-
mized on crystal structure temperature factor data using a
sliding-window averaging technique, displays good cor-
relation (R2 ¼ 0.865). Finally, structure-based hydro-
phobicity scales calculated for different protein classes
(Cid et al. 1992) correlate with our optimized disorder
values (R2 ¼ 0.839 for a/b, R2 ¼ 0.834 for b, and R2 ¼
0.831 for all averaged). Overall, these scales suggest a
relationship between order and the degree to which a
residue tends to come into contact with other residues in
existing protein structures (Williams et al. 2001; Dosztanyi
et al. 2005b). Of note, our disorder propensities
also correlate reasonably well with statistical disorder
propensities calculated from the DisProt database (Sick-
meier et al. 2007), with R2 ¼ 0.747 for all residues.

Among experimentally derived scales, disorder values
correlate with polar organic solvent to water side-chain
transfer energies (oct/wat; Fig. 3A, R2 ¼ 0.788) (Guy
1985; Radzicka and Wolfenden 1988). Because of sat-
isfied hydrogen-bonding potential in both partitions,
these transfer energies reflect the strength of the hydro-
phobic effect. In contrast, cyclohexane to water transfer
energies (chx/wat) (Radzicka and Wolfenden 1988) show
a weaker relationship to disorder propensities (Fig. 3B,
R2 ¼ 0.496). Because of an absence of hydrogen-bonding
potential in one partition (chx), such a scale tends to
reflect the preference of an amino acid to form hydrogen
bonds with water or to ‘‘like’’ water (hydrophilicity). The

transfer energy scales show that the relative hydrophobic-
ity of an amino acid residue depends on the nonaqueous
reference solvent, and they reflect the general diversity of
scales that can be considered to be hydrophobic.

Scales comparable to the oct/wat transfer energies
display similar tight correlations to disorder. For exam-
ple, the incomplete hydrophobicity scale of Nozaki
and Tanford (1971) (No/Ta), which reflects calculated
side-chain free energies of transfer primarily between
ethanol and water, is strongly correlated with disorder
(Fig. 3C, R2 ¼ 0.977, missing 8 residues). The No/Ta
scale excludes several side-chain types that might be
expected to display special behavior, such as ionic
residues, proline, and cysteine. However, a more com-
plete (and inverted) version of this scale (Ho/Wo) used to
predict protein epitopes also exhibits a linear correlation
(Fig. 3E, R2 ¼ 0.649). In fact, this scale shows a clear
linear relationship with disorder values for uncharged
residues (R2 ¼ 0.910, excluding R, K, D, and E). Other
scales reflective of the chx/wat transfer energies, such as
Kyte-Doolittle (Ky/Do) hydropathies for predicting trans-
membrane segments, correlate weakly with our disorder
parameters (Fig. 3D, R2 ¼ 0.424).

As previously described (Linding et al. 2003a), opti-
mized disorder values are not well correlated with coil
propensity: The strongest association found for this scale
type being the Russell-Linding (Ru/Li) scale (Linding et al.
2003b) (R2 ¼ 0.326, Table 2). One might hypothesize that
disorder is related to backbone flexibility and that glycine
and perhaps small, nonbulky residues such as alanine
promote disorder through their decreased steric hindrance
of backbone motion. However, backbone flexibility does
not appear to be a significant causal factor. Proline is
conformationally limited yet is relatively disorder promot-
ing. Glycine, on the other hand, is highly flexible but does
not deviate substantially from the hydrophobicity trend.

Ionic residues do not consistently follow a linear rela-
tionship in hydrophobicity/disorder plots (e.g., Fig. 3A,E).
Such residues pose specific problems for effectively mea-
suring hydrophobicity in experimental settings. Partitioning
experiments may not yield accurate hydrophobicities for
ionic residues: Water has a stronger dielectric constant
than polar organic solvents and is better able to accom-
modate charge; additionally, transfer energies depend on
the solution pH (which affects solute charge) and on
any special adjustments (Radzicka and Wolfenden 1988)
made in calculations. In contrast to relatively long-range
ionic interactions with surrounding solvent, hydrogen
bonding and other polar solvent–solute interactions primar-
ily involve close contacts. It is reasonable to conclude that
aqueous and polar organic phases each offer interactions of
approximately equivalent strength to the hydrogen-bonding
moieties on amino acid side chains and that the predom-
inant difference between solvation energies in aqueous and
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polar organic solution for nonionic amino acid side chains
comes specifically from the hydrophobic effect.

Proline and cysteine also pose as special cases in
considering hydrophobicity/disorder distributions. Cys-
teine and proline are not included in the oct/wat transfer
energies. Wimley et al. (1996) offer values for all 20
standard amino acid types based on experiments using
AcWL-X-LL pentapeptide constructs, but intramolecular
interactions with large, hydrophobic side chains present a
confounding factor in these experiments. The Levitt scale
(Levitt 1976) (on which the Hopp-Woods scale is based)
(Hopp and Woods 1981) provides interpolated hydro-
phobicities for nonionic residues not found in the Nozaki-
Tanford scale (Nozaki and Tanford 1971). In the Levitt
scale, the only nonionic residues that substantially deviate
from the disorder/hydrophobicity trend are proline and
cysteine. Proline has a higher disorder propensity than
expected from its hydrophobicity, and cysteine has a
lower than expected disorder propensity. Proline lacks
the primary amine found in all other residues because of
its cyclic side-chain binding the backbone nitrogen. This
distinction makes proline less polar and restricts rotation
about the f torsion angle in protein structures. The rigid
proline backbone often acts as a secondary structure
disruptor for a-helices (Richardson 1981) and as a b-turn
promoter (Chou and Fasman 1974), preventing it from

occurring in the middle of secondary structures. The
sulfhydryl group of cysteine can form stabilizing disul-
fide bonds with other cysteine residues and forms rela-
tively weak hydrogen bonds with water.

A hydropathic spectrum reflects protein
structure characteristics

Amino acid scales often represent a difference between
two states. For example, disorder propensities compare
the incidences of amino acid residue types in the dis-
ordered state versus the ordered state. The hydrophobic
effect and hydrogen-bonding interactions make separate
contributions to energetic differences between two states.
Certain scales (such as disorder propensities) that quan-
tify the difference between two structural states may be
broken down into energetic components that are specif-
ically attributable to the hydrophobic effect (‘‘hydro-
phobic component’’) and/or specifically attributable to
polar, hydrogen bonding, or ionic interactions (‘‘hydro-
philic component’’).

Whereas polar organic phases (such as wet octanol,
ethanol, or methanol) and water largely differ because
of the hydrophobic effect (for nonionic residues, as
explained above), cyclohexane and octanol differ primarily
in polar and hydrogen-bonding interactions. (Subtracting

Figure 3. Comparison of optimized disorder values with selected amino acid indices. Numerical values reported for each amino acid

(labeled according to residue type) in various scales. (A) Octanol to water transfer energies (Guy 1985; Radzicka and Wolfenden 1988).

(B) Cyclohexane to water transfer energies (Radzicka and Wolfenden 1988). (C) Nozaki-Tanford (Nozaki and Tanford 1971) side-chain

transfer energies; glycine, as the reference amino acid, is given a value of 0. (D) Kyte-Doolittle hydropathy (Kyte and Doolittle 1982).

(E) Hopp-Woods scale (Hopp and Woods 1983) (derived, in part, from Nozaki-Tanford scale). (F) Russell-Linding coil propensities

(Linding et al. 2003b) are plotted against optimized disorder values. Ionic residues, Cys and Pro, are marked by open diamonds.
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oct/wat energies from chx/wat energies produces the chx/
oct scale [cyclohexane to octanol transfer energies])
(Radzicka and Wolfenden 1988.) Oct/wat hydrophobicities
and chx/oct hydrophilicities correlate in part because of
polar moieties that both reduce hydrophobicity and increase
hydrophilicity. Despite some similarity, however, the oct/
wat and chx/oct scales show that residue hydrophobicities
and hydrophilicities follow distinct patterns (and that the
absolute variance in hydrophilicities is larger than that of
hydrophobicities).

Correlations with the oct/wat and chx/oct scale were
calculated for various structural propensity scales.
Excluding ionic residues, C and P, the oct/wat scale
contains neither C nor P (Guy 1985; Radzicka and
Wolfenden 1988). The curved line in Figure 4A repre-
sents correlations for all perfect, positive linear combi-
nations of oct/wat and chx/oct. The proximity of a scale
to this line reflects how well the property can be
explained by a combination of the hydrophobic and hydro-
philic patterns. Different positions along the spectrum are
associated with different protein structural aspects: the
hydrophobic end with crystallographic disorder and
residue ‘‘buriability’’ (Zhou and Zhou 2004) (opt dis
and Z bur, respectively, Fig. 4A), the middle with trans-
membrane helix potential (MPS: Punta-Maritan non-
X-ray diffraction/NMR experiment transmembrane scale;
Fig. 4A) (Punta and Maritan 2003), and the hydrophilic
end with deep residue burial (Chothia 1976; Radzicka and
Wolfenden 1988) (95% bur: free energies calculated from
Chothia’s statistics [Chothia 1976] on whether residues
are buried or not; Fig. 4A). Kyte and Doolittle (1982)
used water-vapor transfer energies and residue burial
results of Chothia (1976) as well as some manual adjust-
ment to develop their well-known hydropathy scale,
which falls at the hydrophilic end of the spectrum. For
predictions utilizing hydrophilicity (e.g., transmembrane
predictions), the experimental chx/oct scale may offer
improvement over Ky/Do.

The hydropathic spectrum suggests that statistics dis-
cerning between fully (or almost fully) buried residues
and residues that are more surface exposed reflect a
strong influence from hydrophilic tendencies (95% bur
vs. chx/wat, R2 ¼ 0.790, Table 2) (Radzicka and
Wolfenden 1988) not the hydrophobic tendencies (95%
bur vs. oct/wat, R2 ¼ 0.472, Table 2). This preference is
illustrated in the position of the 95% burial scale near the
extreme hydrophilic portion of the spectrum (95% bur,
Fig. 4B). This position suggests that the environment in
the extreme interior of a protein resembles cyclohexane,
while the surface environment resembles an amphipathic
solvent. Williams et al. (2001) found another scale related
to surface proximity (14 Å cont) to be the best among
several scales in discriminating between disorder and
order. Indeed, comparing this scale with our disorder

propensities yields a good correlation (R2 ¼ 0.840,
Table 2), and the contact scale falls relatively close to
our disorder propensities on the hydropathic spectrum
(14 Å cont, Fig. 4). The contact number scale somewhat
resembles the residue buriability scale, which falls the
closest to disorder on the hydropathic spectrum scale
(Z bur, Fig. 4).

Propensities to form secondary structures such as
a-helices (P helix: Palau helix propensity scale) (Fig. 4A;
Palau et al. 1982), b-strands (P sheet: Palau sheet propensity
scale) (Fig. 4A; Palau et al. 1982), or coils (Ch/Fa and
Ru/Li, Fig. 4A) do not appear to be explained well by
hydropathy. Williams et al. (2001) found b-strand propensity

Figure 4. Hydropathy spectrum. (See abbreviation footnote and body of

text for explanation of abbreviations.) (A) The relative degree of hydro-

phobic and hydrophilic components of various scales are approximated by

calculating R2 values (calculated excluding C, P, H, R, K, D, E) against

octanol/water (oct/wat) partitioning energies (Guy 1985; Radzicka and

Wolfenden 1988) on the Y-axis and cyclohexane/octanol (chx/oct) parti-

tioning energies (Radzicka and Wolfenden 1988) on the X-axis, respec-

tively. The curved line represents correlations for perfect, positive linear

combinations of the oct/wat and chx/oct scales. Values for scales that can

be largely explained by hydropathy fall near the curve and are represented

by black diamonds. Values for the remaining scales are represented by

open diamonds. (B) Locations of different scales along the hydropathy

spectrum are represented by a linear combination of the oct/wat scale (M)

and the chx/oct scale (N) that produces a near-maximum correlation with

the scale, thus estimating the relative degrees to which the hydrophilic and

hydrophobic components are present, respectively (the general magnitude

of N is greater than that of M). Below the name of each scale, in italics, is

the strength of association (R2) of that scale with the respective linear

combination of M and N noted above it.
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to be somewhat useful in predicting disorder. However, our
optimized disorder parameters do not display as strong a
strong correlation with this characteristic (R2 ¼ 0.639,
Table 2) as they do with hydrophobicity or residue burial.
Disorder and strand propensity seem to be indirectly linked
by a common association with hydrophobicity (R2 ¼ 0.594
for P sheet and oct/wat, Table 2), which might explain this
relative degree of correlation. Positioning of b-strand
propensity and a-helix propensity scales near coil propen-
sity scales on the hydropathy spectrum (Fig. 4A) suggests
that the capacity for a residue to form secondary structure
is substantially affected by nonhydropathic influences. For
example, side-chain branching tends to dictate presence in
strands (Street and Mayo 1999; Pal and Chakrabarti 2000).
Thus, secondary structure is more influenced by the
specific size and shape of residues, while disorder is mainly
influenced by the degree to which a residue tends to avoid
interaction with water.

Rose et al. (1985) showed that average areas buried for
different side chains in folded structures are associated
with Nozaki-Tanford hydrophobicities, a simplified inter-
pretation being that hydrophobic parts of side chains tend
to be protected and hydrophilic parts exposed to water
during folding. This interpretation helps explain the
correlation of disorder propensities with various structur-
ally derived scales (Oobatake and Ooi 1977; Nishikawa
and Ooi 1986; Zhou and Zhou 2004; Bastolla et al. 2005).
The tight disorder/surface burial/hydrophobicity correl-
ations relate disorder propensity to both the structural
property of surface burial and the physicochemical
property of hydrophobicity. This relationship suggests
that residues partition from an ordered state at the protein
surface (octanol like) to a disordered state in the surround-
ing solution (water like). With relatively equal hydrogen-
bonding potentials in the two states, a residue can
transition into solution when a decrease in the entropy
of water (due to exposed hydrophobic surface) (Butler
1937) is overcome with an increase in entropy from
becoming disordered. In this case, a residue’s hydro-
phobicity drives partitioning between surface (ordered)
and solution (disordered).

Conclusions

Our sequence and profile disorder predictors with tail
adjustments perform comparably with DISOPRED2.
Although other predictors may yield better predictions
in certain circumstances, our sequence-based predictor
offers a simple, well-optimized predictor that avoids
unknown bias toward special cases and may be useful as
a step in a larger bioinformatic sequence analysis. It is
useful to know how predictors perform on both internal and
chain-terminal sequence regions (Fig. 1).

The disorder that commonly occurs at chain termini
(see Table 3) is explained by lack of chain constraint
(cysteine, on the other hand, increases constraint through
disulfide bonding). Disorder tendency monotonically
decreases as position moves away from the terminus in
a manner that is essentially independent of whether the
amino or carboxyl terminus is involved (Fig. 2C).

Prior research has discussed patterns in disordered protein
sequences (Vucetic et al. 2003; Lise and Jones 2005). Others
have characterized amino acids in subsets (Li et al. 2000;
Weathers et al. 2004; Ferron et al. 2006; Han et al. 2006;
Su et al. 2006), for example, disorder-promoting, order-
promoting, disorder-neutral. However, our data suggest that
much of the variance in disorder behavior among different
types of amino acids is reduced quantitatively, at a more
fundamental level, by the hydrophobic effect (Butler 1937)
alone, and that the transfer of a residue from an amphipathic
environment to an aqueous environment (oct/wat) mimics
the transfer of a residue from a position offering both
hydrophobic and, if needed, hydrogen-bonding interactions
(e.g., the protein surface) to a more solvated state (order/
disorder transition). Residues with less hydrophobic char-
acter have a greater tendency to partition away from the
protein and into the surrounding solvent.

In contrast with the hydrophobic effect, our data do not
demonstrate a strong direct relationship with hydrogen-
bonding interactions, secondary structure, or intrinsic
backbone flexibility. Scales that are moderately associ-
ated with hydrophobicity (such as the Kyte-Doolittle
scale) (Kyte and Doolittle 1982) may be used to predict
disorder, but their discriminatory power is not always
optimal (Fig. 1D). Other sequence determinants of dis-
order include cysteine, which forms disulfide bonds, and
proline, with a backbone structure that enforces an
extended conformation. The degree to which independent
positive or negative charges affect disorder is not known,
although our data suggest it is relatively small.

Similar patterns of disorder have been found by other
researchers (Linding et al. 2003b; Weathers et al. 2004),
which include noncrystallographic data sets (Williams
et al. 2001). Thus, a hydrophobicity-based model of dis-
order is probably applicable beyond crystallogra-
phic disorder. Our optimized parameters also correlate
(R2 ¼ 0.747; see Table 2) with a curated disorder data set
provided by DisProt that also includes disordered regions
from noncrystallographic data sets. However, distinct
patterns may occur in long disordered regions (Peng
et al. 2006). In fully unfolded chains, intrinsic conforma-
tion (or lack thereof) may become a more important
factor in addition to stability, which may explain, beyond
window size, why FoldIndex, which uses Kyte-Doolittle
hydropathies, performs substantially better on fully dis-
ordered sequences than on crystallographic disorder
(Esnouf et al. 2006).
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As recently noted, ‘‘stability and conformation are not
synonymous’’ (Rose et al. 2006). In contrast with hydro-
phobic groups, hydrogen-bonding groups do not play a
significant role in stability but instead in conformational
and interaction specificity, because of their requirement to
form specific interactions with other hydrogen-bonding
groups or to be exposed to an aqueous environment (Kyte
and Doolittle 1982). Some residues possess both hydrophobic
and hydrophilic character (e.g., tryptophan), and may con-
tribute both to stability and to fold or interaction specificity.

Methods

Predictor algorithm

Our weighted-window predictors generate positional disorder
scores for protein sequences, with a higher score reflecting a
higher likelihood for a residue to be disordered. Predictions are
based on the query sequence alone or a PSI-BLAST profile
generated for the query sequence. Each sequence position
receives an initial disorder value based on its content. Weighted
summation of values for positions within a surrounding window
produces a positional disorder score:

Si = +
t

j =�t

wjsi + j ½2:2�1�

where Si is the score at position i (i ¼ 0 for the amino-terminal
residue); wj is the weight at window position j, ranging from –t to
t (window tail length; t ¼ 17 for predictors described herein); and
si + j is the initial disorder value at position i + j. For the simple
sequence-based predictors, this value is assigned by residue type:

si = sri ½2:2�2�

where ri is the residue type at position i and sr is the disorder
propensity parameter residue type r. For profile-based predic-
tors, this starting value is a weighted sum of disorder values for
the different residue types, weighted according to the profile at
that position (see below on profiles):

si = +
r

vrisr ½2:2�3�

where vr is the profile weight for residue type r.
In scoring residues near sequence ends, at window positions

beyond the sequence end s is set to 0, representing the average
ordered residue (see below on parameter normalization). Since
chain termini are less constrained and more likely to be
disordered, the tail adjustments option allows scores for residues
near the termini to be adjusted upward to improve scoring
accuracy. In the amino-terminal case,

Si = +
t

j =�t

wjsi + j + tN;i ½2:2�4�

and in the carboxy-terminal case,

Si = +
t

j =�t

wjsi + j + tC;L�i�1 ½2:2�5�

where tN,k or tC,k is a constant tail adjustment value for any
residue at a distance, k, from the amino or carboxyl terminus,
respectively; L is the sequence length. Tail adjustments, if
included, are added to each of the 30 positions at either end
of the sequence.

Predictor optimization

Adjustable predictor parameters include disorder propensities
(s), window position weights (w), and N- and C-terminal tail
adjustment values (t). Predictor parameters were optimized with
crystallographic data, using a simulated annealing algorithm.
Parameter values were perturbed and accepted or rejected in a
stepwise manner to maximize a receiver operating characteristic
(ROC) score (Gribskov and Robinson 1996), calculated as
follows. Disorder scores are calculated for residues (positions)
in a set of sequences of proteins with structures. Residues are
classified as ordered or disordered based on crystallographic
data and are sorted by their predictor-assigned disorder scores.
The ROC score is calculated by:

ROC =

+
n

i = 1

ai

nA

where ai is the number of disordered residues that sort by score
above the ith ordered residue; A is the total number of
disordered residues; and n is a limiting number of ordered
residues, calculated in our case as a fraction of the total number
of ordered residues. A ROC0.5 score was used, making n one
half the total number of ordered residues. This procedure
optimizes the higher specificity half of a ROC curve, potentially
reducing the effects of anomalous behavior of low-scoring
disordered residues on optimized parameters.

Parameter perturbations were generated according to the fol-
lowing Very Fast Annealing (VFA) function (Cai and Shao 2002):

f = sgn rnd � 0:5ð ÞT 1 +
1

T

� � 2�rnd�1j j
�1

" #

where T is perturbation temperature, and rnd is a random
number (0 # rnd < 1). f is a fraction (–1 # f < 1). A parameter,
u, is perturbed (u9) by

u0 = u + f � D ; subject to umin # u0 # umax

where D is the maximum perturbation quantity. If u9 is too low
or too high, it is set to its minimum or maximum value,
respectively. Perturbed sets of parameters were accepted or
rejected essentially as follows (Metropolis et al. 1953):

If DE # 0 accept
If DE > 0 and

rnd < exp(–DE/T) accept
otherwise reject

Sequence and profile-based predictors were first optimized
without tail adjustments. Disorder propensities were normalized
to produce a score distribution that approximates a standard,
normal distribution. N-terminal methionine and miscellaneous
residue-type disorder parameters were set to 0. Scores may be
interpreted as a Z-score (difference in units of standard deviations
from the average nonterminal, ordered residue). Normalized
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disorder propensities were then held constant and tail adjustment
values were optimized for the sequence- and profile-based
predictors. For the sequence-based predictor with tail adjustments,
a separate disorder propensity was optimized for amino-terminal
methionine.

Data set

Optimization and testing data include X-ray crystallographic data
from domains in 1912 families in the first fivefold classes of the
SCOP version 1.67 (Andreeva et al. 2004) (all a, all b, a/b, a + b,
and multidomain) (Table 3). Structures dated before 2000 or with
a resolution >3.0 Å were excluded. Residues found in SEQRES
entries with missing C � a carbon coordinates (or occupancy 0)
are considered disordered, while remaining residues are consid-
ered ordered. Residues in disordered stretches less than four
residues long were excluded. Residues between domains were
assigned to a nearby domain. Domains with certain issues (e.g.,
mismatches between SEQRES sequence and structural sequence,
or atom occupancies out of the 0–1 range) were excluded.

In optimizing the disorder propensities for sequence and
profile-based predictors, residues at termini (18 from the end
of the chain or polyhistidine sequence, if present) were excluded
from ROC score calculation to avoid spurious effects from
compositional bias at sequence ends (notably for methionine
and histidine). Terminal residues were included in the ROC
score calculation when optimizing tail adjustment parameters.

Different subsets of the data were periodically selected for
measuring parameter performance during optimization. To
reduce overrepresentation of certain families or individual
structures, a data subset included one protein from each family
with more than six representatives; families with five or less
representatives were represented in proportion to family size
(i.e., one-member families represented ;1/5 of the time; two-
member families ;2/5 of the time, etc.).

Profiles

The same PSI-BLAST results were used both in developing
and testing our profile-based predictors and in testing
DISOPRED2. Profiles were built using default values (three
iterations, E-value cutoff 0.001). Final alignments included
segments from up to 1000 different sequences. Modified
COMPASS code (Sadreyev and Grishin 2003) was used to
generate final profiles. Use of position-specific independent
counts reduced overrepresentation of closely related sequences
(Sunyaev et al. 1999). Pseudo-counts (Tatusov et al. 1994) were
generated using the BLOSUM62 (Henikoff and Henikoff 1992)

matrix. At each position in a profile, the pseudo-count values for
the set of all standard residue types were normalized to an exact
sum of 1, producing fractional weights that estimate the degree
to which each residue-type characterizes that position in the
alignment.

Cross validation

To estimate the accuracy of our disorder predictions and to
evaluate the consistency of our method, a five-way cross
validation was performed. Crystallographic data was split into
five subsets. Four out of the five data subsets form a ‘‘training
set’’ for optimization of predictor parameters, and the remaining
data subset forms a ‘‘testing set’’ for assessment of performance
for each of five optimizations. The five sets of optimized
parameters were averaged to give final values. Domains were
randomly assigned into the five data subsets by SCOP family
(see Table 4) so that highly similar sequences could not be
shared by concomitant training and testing sets.

Analysis

Our optimized amino acid residue disorder propensities were
compared with several amino acid property scales. ROC curves
measure performance for the optimized predictors, for DIS-
OPRED2, and with various indices substituted for optimized
disorder parameters in the simple sequence predictor. For each
different disorder predictor, ROC curves are calculated for each
of the five data subsets (see preceding section on cross
validation); then corresponding points from the five resulting
ROC curves are averaged to produce final ROC curves. In the
case of our optimized predictors, optimized parameters are
averaged from the results of five optimization runs using five
training sets (see section on cross validation); for each of these
optimization runs, a ROC curve is calculated using the corre-
sponding testing data set, which was excluded during optimi-
zation. As during optimization, certain residues were excluded
from ROC curve calculations and other performance analyses
(see Data set section).

Additionally, squared correlation coefficients (R2) were cal-
culated for our disorder propensities and 516 published amino
acid property scales found in the AAindex database (Kawashima
and Kanehisa 2000), quantifying the degree of covariance
between our optimized parameters and each of these scales.

Table 3. Data set statistics

Data
set

No. of
SCOP

families
No. of

domains

No. of
terminal
residues
excluded

No. of
missing

(‘‘disordered’’)
residues

No. of
nonmissing
(‘‘ordered’’)

residues

Simple 1912 28128 0 183,902 5,563,922

18 85,490 4,957,018

30 66,460 4,473,062

Profile 1773 23386 0 157,195 4,496,369

18 71,792 3,958,638

30 55,243 3,531,262

Table 4. Number of SCOP families and individual domains
represented in each cross validation data subset

Data
subset

No. SCOP
families No. domains

Sequence predictor data 1 382 5629

2 382 6034

3 382 5191

4 383 5709

5 383 5565

Profile predictor data 1 359 4645

2 354 5129

3 357 4275

4 347 4615

5 356 4722
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Relationships between scales derived from structural data and
scales derived from partitioning experiments were examined.

Our optimization-derived disorder propensities were com-
pared with disorder propensities derived statistically (as LORs)
using samplings of data from the data sets used for optimization,
balanced in an equivalent fashion. LORs behave in a linear
fashion and provide a good statistical measure of relative
propensity. The disorder versus order LOR for amino acid type
i is calculated as follows:

LORi = ln

PðijdisoÞ
1� PðijdisoÞ

� �
PðijordÞ

1� PðijordÞ

� �

where P(i | diso) denotes the probability of the occurrence of
residue type i in the disordered state and P(i | ord) denotes the
probability of residue type i in the ordered state. LORs are also
calculated in a similar manner for profiles using the profile
frequencies of each amino acid type at ordered and disordered
positions. LORs were calculated from DisProt (Sickmeier et al.
2007) by considering noted residues as disordered and all other
residues as ordered. N-terminal methionines were treated as a
separate residue category.
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