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Göteborg University, Göteborg, 41296, Sweden and ‡Mathematical Sciences, Chalmers University of
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ABSTRACT

We suggest a simple deterministic approximation for the growth of the favored-allele frequency during
a selective sweep. Using this approximation we introduce an accurate model for genetic hitchhiking. Only
when Ns , 10 (N is the population size and s denotes the selection coefficient) are discrepancies between
our approximation and direct numerical simulations of a Moran model notable. Our model describes the
gene genealogies of a contiguous segment of neutral loci close to the selected one, and it does not assume
that the selective sweep happens instantaneously. This enables us to compute SNP distributions on the
neutral segment without bias.

GENE genealogies under neutral evolution are com-
monly described by the so-called coalescent pro-

cess (Kingman 1982; Hudson 1983, 1990, 2002; Nordborg

2001), incorporating recombination and geographical
and demographical structure. An important question
is how gene genealogies are modified by deviations
from neutrality due to positive selection. The answer
to this question would help in understanding to what
extent and in which way selection has shaped the em-
pirically observed patterns of genetic variation.

Many authors have addressed this question by consid-
ering the effect of positive directional selection at a given
locus on the gene history at a neighboring neutral locus,
arising from the introduction of a new selectively favor-
able allele in the population. The dynamics of the positive
selection itself have been modeled in different ways. Most
commonly, a deterministic model of the dynamics of the
favored-allele frequency has been adopted (Stephan et al.
1992; Braverman et al. 1995; Kim and Stephan 2002;
Przeworski 2002), a notable exception being the early
work of Kaplan et al. (1989). Any deterministic model is
of course an approximation to a more appropriate model,
such as Moran or Wright–Fisher models of directional
selection, where the allele frequencies fluctuate randomly
in time. The reasons for attempting to ignore these fluc-
tuations are practical ones: the exact simulations are very
time consuming (Kaplan et al. 1989), and, in addition,
deterministic models are much more amenable to theo-
retical analysis than the stochastic models.

Several authors have investigated stochastic different
equation (SDE) approximations of Wright–Fisher and
Moran models for positive selection (Slatkin 2001; Coop

and Griffiths 2004; Innan and Kim 2004; Etheridge

et al. 2006). These models give a very accurate represen-
tation of the spread and fixation of the advantageous
allele during the selective sweep. In contrast to the exact
simulations, the SDE models can be efficiently simu-
lated (Coop and Griffiths 2004; Innan and Kim 2004),
but remain difficult to analyze.

Recently, Durrett and Schweinsberg (2004) discov-
ered an elegant asymptotic model ½referred to as the
Durrett–Schweinsberg (DS) algorithm in the following�
for the genealogy of a single neutral locus during a
selective sweep occurring in its vicinity. As the popula-
tion size N tends to infinity, their coalescent process
approximates the Moran model (Moran 1958) with
recombination and positive selection. Durrett and
Schweinsberg (2004) have argued that the fluctua-
tions of the favored-allele frequency during a selective
sweep may have a significant effect on the gene gene-
alogy of a neighboring neutral locus and hence on the
distribution of single-nucleotide polymorphisms (SNPs)
at that locus. In a range of parameters determined by
Durrett and Schweinsberg (2004), the DS algorithm
describes the effect of a selective sweep on the gene gene-
alogy of a neutral locus nearby very accurately, in close
agreement with numerical simulations of a Moran model.

In this article we suggest a deterministic model for the
spread of the favorable allelic type in the population,
which is equally accurate as the DS algorithm for the
parameters considered in Durrett and Schweinsberg

(2004), as shown in Figure 8. For practical purposes, our
algorithm has a number of advantages. First, it allows for
SNPs to occur during the selective sweep because we
do not assume that the sweep happens instantaneously
as does the paint-box construction (Schweinsberg and
Durrett 2005). This avoids a bias in the patterns of
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genetic variation at the neutral loci when the number of
lines in the sweep is not untypically small. Second, in prac-
tical applications, the question usually is how selection
affects genetic variation in a contiguous stretch of neutral
loci, whereas the DS algorithm describes the gene geneal-
ogy of a single locus. Our algorithm, by contrast, deter-
mines the ancestral recombination graph of an entire
segment of neutral loci close to a selected one. Third, our
new algorithm gives an accurate description of selective
sweeps in a much wider parameter range than the algo-
rithm proposed by Durrett and Schweinsberg (2004).
These properties together make our model suitable for
use with the method of Coop and Griffiths (2004) for
determining log-likelihood surfaces for the parameters s
and N in the Moran model of directional selection, where
an accurate and computationally efficient model of the
selective sweep is required.

On the theoretical side, we propose an efficient and
accurate method for averaging over the fluctuations of
the favored-allele frequency. Our scheme gives rise to a
deterministic approximation to the time dependence of
the favored-allele frequency during the sweep, which,
however, is very different from the commonly used lo-
gistic model. Our model is as easily implemented as the
logistic model, but much more accurate: it gives a very
good description of the genealogy of contiguous stretch
close to a selected locus provided Ns . 10, where s pa-
rameterizes the selective advantage of the favored
allele. By contrast, the DS algorithm (Schweinsberg

and Durrett 2005) requires r logð2N Þ=s & 1 in order
to be accurate, where r is the recombination rate per
individual per generation between the selected and the
neutral locus. The logistic model requires very strong
selection and large population size (see Figures 8–10).

The remainder of this article is organized as follows.
In positive selection and genetic hitchhiking, we
give a brief account of previous models of selective
sweeps and their influence on the genealogies of nearby
loci (usually referred to as ‘‘genetic hitchhiking,’’ see
below). In the moran model of positive selection,
we describe our implementation of the Moran model.
As in Durrett and Schweinsberg (2004) we employ
Moran-model simulations as a benchmark for our new
algorithm. This new algorithm rests on two parts: a
deterministic model for the favored-allele frequency
during the sweep (described in averaging over real-

izations of the sweep) and the coalescent process for
a contiguous segment of neutral loci on the same chro-
mosome as the selected locus (described in the back-

ground coalescent for neutral loci in the vicinity

of a selected one). In results and discussion, we
summarize and conclude our results.

POSITIVE SELECTION AND GENETIC HITCHHIKING

Positive selection: Consider the genetic composition
at a certain locus in a diploid population with a constant

generation size N. Suppose all 2N gene copies were of
the same form b when a new allele B appeared due to a
beneficial mutation. Let the new allele B have a fitness
advantage (parameterized by s) as compared to the wild-
type allele b. The frequency x(t) of allele B at time t is a
stochastic process that exhibits a tendency to grow, but
that may also become fixed at x¼ 0 (due to genetic drift)
corresponding to the extinction of allele B. Once x(t)
has grown sufficiently from the initial low value x(0) ¼
1/2N, the probability of reaching x ¼ 1 is high; even-
tually B takes over the population. This process is usually
referred to as a ‘‘selective sweep.’’ In the limit of infinite
population size, a selective sweep is well approximated
by the deterministic model

dx

dt
¼ sxð1� xÞ; ð1Þ

see Durrett and Schweinsberg (2004) and the ref-
erences cited therein. Equation 1 is called the ‘‘logistic-
growth equation.’’

This growth model is a deterministic approximation
to the stochastic growth of x(t). The latter is usually
modeled in terms of the Wright–Fisher model (Fisher

1930; Wright 1931) with directional selection. This is a
haploid population model with nonoverlapping gener-
ations where reproduction is described by a biased sam-
pling procedure with replacement: chromosomes are
sampled randomly, with replacement, from the previous
generation, such that the ratio of the probabilities of
choosing a chromosome with the favored allele to that
without the favored allele is 1:(1 � s). Direct numerical
simulations of the Wright–Fisher model are commonly
employed to determine strengths and weaknesses of
deterministic approximations such as Equation 1.

In the following we do not employ the Wright–Fisher
model as a reference, but a closely related model with
overlapping generations introduced by Moran (1958).
As shown by Etheridge et al. (2006) it approximates the
Wright–Fisher model when the population size is large.

Genetic hitchhiking: Consider the genetic variation at
a neutral locus on the same chromosome as the selected
locus. Clearly, the pattern of genetic variation at the
neutral locus is influenced by a selective sweep in its
vicinity—the smaller the distance is, the larger the in-
fluence. When the B allele first appears in the popula-
tion because of a favorable mutation, the corresponding
alleles at the neutral locus have more offspring com-
pared with other alleles not associated with the B allele
on the selected locus. Thus, the favored alleles at the
neutral locus are spread through the population to a
larger extent than can be explained in a neutral model.
This effect is known as genetic hitchhiking (Maynard

Smith and Haigh 1974). Far from the selected locus,
recombination will effectively eliminate linkage between
the neutral and the selected loci, so that the influence
of the selective sweep becomes negligible.
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Figure 1 illustrates the hitchhiking effect in terms of
the ancestral graph for a small hypothetical sample of
sequences taken at a neutral locus. (For the sake of clar-
ity we assume that the selected locus is located left of
the neutral locus of interest.) Most ancestral lines can
be traced back to the originator of the sweep, but some
lines exhibit recombination events allowing them to es-
cape from the subpopulation with the B allele.

It is straightforward but cumbersome to directly sim-
ulate the Wright–Fisher (or Moran) model to analyze
how patterns of genetic variation are affected by hitch-
hiking. Several authors have therefore studied approx-
imations to the growth process of the selected allele
frequency x(t). Kaplan et al. (1989) divide the selective
sweep into three phases: the early phase is modeled by
a supercritical branching process, the middle phase is
described by the deterministic logistic growth, and the
final phase is viewed as a subcritical branching process.
The probability that the sweep succeeds is approximately
given by the selective advantage s, when s is small. As a
consequence, one may need to iterate this procedure
many times to collect enough successful simulations.

This approach has been simplified by ignoring the
initial and final (stochastic) phases (see, e.g., Stephan

et al. 1992; Braverman et al. 1995; Kim and Stephan

2002; Przeworski 2002) and instead using the deter-
ministic logistic model (1) for the whole sweep. This
makes it possible to simulate the sweep backward in
time, which in turn enables one to perform computa-
tions conditional on that the sweep succeeds. This ap-
proach is significantly faster than an algorithm based on
the better approximation by Kaplan et al. (1989).

Barton (1998) (see also Otto and Barton 1997)
considered a stochastic shift between the introduction
of the favored allele and the onset of the deterministic
growth; the distribution of the shift is derived from
modeling the spread of the beneficial allele in the initial
phase of the sweep as a supercritical branching process.
The main difference to the logistic model is that the
initial growth rate of the frequency of the favorable al-
lele is increased by a factor of one over the probability
of the sweep succeeding in the unconditioned model.
This approximation captures some of the effects of the
conditioning on the success of the sweep and the sto-
chastic growth in the early stages of the sweep. The mid-
dle and late stages of the sweep are treated in the logistic
approximation. Within his model, Barton gives analyt-
ical expressions for the probability that two copies of a
neutral marker are identical by descent, assuming that
any recombination event leads to ancestral lines escap-
ing the sweep. A similar model was studied by Kim and
Nielsen (2004), where the initial phase is ignored and
instead the initial frequency of the favorable allelic type
is increased by one over the unconditioned probability
of fixation.

As argued by Durrett and Schweinsberg (2004),
the disadvantage of ignoring the fluctuations is that the
probabilities of how lines merge and recombine are not
correctly described. They consider the gene genealogy
of a selected locus and a nearby neutral locus and pro-
pose an elegant approximation to the Moran dynamics,
valid in the limit of large population size and strong
selection, which captures the stochastic aspects of the
sweep and correctly models the partitioning of the neu-
tral lines as a consequence of the selective sweep.

THE MORAN MODEL OF POSITIVE SELECTION

In this section we describe the Moran model (Moran

1958) for the evolution of a diploid population of N
individuals. The Moran model is used as a benchmark to
test the accuracy of our coalescent model described
below in averaging over realizations of the sweep

and in the background coalescent for neutral

loci in the vicinity of a selected one.
We consider a chromosome with a locus subject to

positive selection and determine the evolution of this
selected locus, as well as genealogies of neutral loci in its
vicinity. In Spread of the advantageous allele during the sweep
we describe the growth of the favored-allele frequency
in the population. In Conditioning on the fixation of allele B
we explain how to condition this process on the success
of the selective sweep. This is necessary because in trying
to deduce the effect of a sweep on neutral loci nearby we
assume that the sweep actually took place. In Gene gene-
alogies of the neutral loci during the sweep we summarize how
gene genealogies of such neutral loci are calculated
within the Moran model.

Figure 1.—Illustration of the hitchhiking effect on the ances-
tral lines of a neutral locus. The shaded area corresponds to indi-
viduals with the advantageous allele B at the selected locus in the
population. Close to the selected locus, most lines are identical by
descent to the originator of the sweep (line iii). Recombination
(shown as dashed lines) can cause a line to escape the sweep; i.e.,
the originator does not belong to the ancestral line, because at
some stage a recombination event causes the allele at the neutral
locus to be inherited from an ancestral line that has not yet been
caught by the sweep (line i). Much less likely, but still possible, is
for the line to first escape but later recombine back into the path
of the sweep (line ii) (after Durrett and Schweinsberg 2004).
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Spread of the advantageous allele during the sweep:
As in the previous section we assume that there is a fa-
vored allele at the selected locus, B say, and a set of
selectively equivalent variants (unfavorable relative to B),
which we refer to collectively as b. The lifetime of each
individual is taken to be an independent exponentially
distributed variable with expected value of one gener-
ation. When an individual dies, it is replaced with a copy
of an individual chosen with replacement with uniform
probability from the whole population, except that re-
placement of an individual with the B allele with an
individual with the b allele is rejected with probability s;
this is what constitutes selection in this model. Instead, a
parent is chosen with uniform probability from the set
of individuals with the B allele. Thus, s ¼ 0 corresponds
to neutral evolution and s ¼ 1 is the strongest possible
selection. In short, the population evolves according to
a time-continuous Markov process where the different
events occur with rates

wb/b ¼ 2N 3 1� k

2N

� �
3 1� k

2N

� �
;

wb/B ¼ 2N 3
k

2N
3 1� k

2N

� �
;

wB/b ¼ 2N 3
k

2N
3 1� k

2N

� �
ð1� sÞ;

wB/B ¼ 2N 3
k

2N
3

k

2N
1 2N 3

k

2N
3 1� k

2N

� �
s: ð2Þ

The three factors in the rates wa/b, where a and b stand
for either b or B, have the following interpretations:
the first factor is the total rate of replacement events in
the population per generation; the second factor is the
probability that the line that dies has the allelic type a;
the final factor is the probability that the replacing line
has the allelic type b. The second term in the rate wB/B

corresponds to the rejected B -to-b replacements. It
follows from Equation 2 that the sum of events is 2N
per generation for all values of s.

Durrett and Schweinsberg (2004) use a slightly
different version of the Moran model with positive se-
lection. In their model, the rejected B -to-b transitions
are ignored, whereas we take them to be B -to-B tran-
sitions. This difference does not affect the trajectory of
the number of copies of the advantageous allelic type.
Yet other versions are conceivable: the corresponding
modifications of Equation 2 would require minor changes
to the background coalescent described in the back-

ground coalescent for neutral loci in the vicin-

ity of a selected one, but we do not discuss these here.
Conditioning on the fixation of allele B: In each re-

placement, the number of copies k of allele B in the
population is increased by one (corresponding to a b/B
event), decreased by one (corresponding to a B/b
event), or left unchanged (corresponding to a B/B or
a b/b event). Consider the number ki of copies of the
advantageous allelic type in the population after the ith

change in k. The sequence k1, k2, . . . , then follows a
Markov chain, where the probability that k is increased
by one after a replacement where k changes is

wb/B

wb/B 1 wB/b
¼ 1

2� s
: ð3Þ

The probability hk of fixation of the B allele in the popu-
lation, given that there are k copies at present, equals the
probability of fixation after a change in k. With the prob-
ability that k increases in (3), one obtains the recursion

hk ¼
1

2� s
hk11 1 1� 1

2� s

� �
hk�1; ð4Þ

where k is between 1 and 2N� 1. If k is zero, there are no
copies of B that can reproduce; hence, h0¼ 0. Similarly,
when k¼ 2N all individuals in the population have the B
allele, corresponding to h2N ¼ 1. With these two con-
ditions the recursion has a unique solution, given by

hk ¼
1� ð1� sÞk

1� ð1� sÞ2N ð5Þ

(see, e.g., Durrett 2002 and references therein).
Usually, the population size is large and the selection
parameter is small. If in addition 2Ns is large, we obtain
the well-known result that the probability h1 that the
sweep succeeds from a single copy of the B allele is
approximately s. This means that if the sweep is initiated
with a single copy of the B allele, and the rates are given
by (2), in most cases the B allele will become extinct in a
few generations because of the fluctuations in the early
stage of the sweep. When k reaches a critical level (where
ks is relatively large), the probability that the fluctua-
tions will cause B to become extinct becomes exponen-
tially small; thus, a sweep that escapes this level will
almost certainly continue to increase in abundance and
eventually become fixed in the population.

In this article, we consider only sweeps that succeed. It
is thus necessary to consider the Markov chain condi-
tioned on the success of the sweep. The conditioning
does not change the rate of events replacing an indi-
vidual for one of the same kind, since they do not affect
the success of the sweep. The new rates become

w̃b/BðkÞ ¼ wb/BðkÞ
hk11

hk
¼ kð2N � kÞ

2N

1� vk11

1� vk

w̃B/bðkÞ ¼ wb/BðkÞ
hk�1

hk
¼ kð2N � kÞ

2N

v� vk

1� vk ;

w̃B/BðkÞ ¼ wB/BðkÞ;
w̃b/bðkÞ ¼ wb/bðkÞ ð6Þ

(Durrett and Schweinsberg 2004), where v ¼ 1 � s.
Thus, we can simulate the embedded Markov chain of
the changes in k, conditioned on the success of the
sweep if we take the probability p1(k) of going from k to
k 1 1 copies of the B allele as
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p1ðkÞ ¼
w̃b/B

w̃b/B 1 w̃B/b
¼ 1� vk11

ð1 1 vÞð1� vkÞ: ð7Þ

The probability that the number of alleles decreases
from k to k � 1 is p�(k) ¼ 1 � p1(k).

Figure 2 shows four realizations of the favored-allele
frequency x(t) generated with the algorithm described
above. Also shown is the logistic model for x(t) (dashed
line), which is not a good approximation, as well as our
new model described in averaging over realizations

of the sweep (solid line).
Gene genealogies of the neutral loci during the

sweep: Here we describe our implementation of the Moran
model for simulating the gene genealogies of neutral loci
in the neighborhood of a selected locus. The algorithm is
divided into a forward and a backward phase.

In the forward phase, we generate the sequence of the
number k of B alleles, forward in time, according to the
conditioned Markov process described in the previous
section: starting from k ¼ 1, k is incremented with
probability p1(k) or decremented with probability 1 �
p1(k), until k ¼ 2N. Because we either increase or
decrease k, each value in the sequence is different from
the previous one.

In the backward phase, the population is divided into
two subpopulations with B or b alleles at the selected
locus. At the end of the sweep, all ancestral lines are in
the B population; this is the starting point for the back-
ward phase. We trace the genealogies of the neutral loci
backward in time by traversing the sequence of k values
(obtained in the forward pass) in reverse; this guaran-
tees that the time reversal of the Moran process is cor-
rect. Each time k changes, we generate a b/B event

if the new value of k is smaller than the old one.
Correspondingly, we generate a B/b event if k in-
creases. Between each change in k, we generate the
B/B and b/b events of the Moran chain (these events
do not change k). The number m of such events has a
geometric distribution, qk(1� qk)m , where

qk ¼ ð2� sÞ k

2N
1� k

2N

� �
: ð8Þ

The probability that the event is a b/b replacement is

w̃b/b

w̃B/B 1 w̃b/b
¼ ð2N � kÞ2
ð2N Þ2 � ð2� sÞkð2N � kÞ; ð9Þ

and, correspondingly, the B/B replacements occur
with probability w̃B/B=ðw̃B/B 1 w̃b/bÞ. Finally, the time
between each event is exponentially distributed with
expected value (2N)�1 in units of generations.

We now describe the effect of the events generated
during the sweep on the gene genealogies of the neutral
loci. In each event, we choose the line to die and the line
to replace it randomly from the appropriate subpopu-
lations. As we proceed backward in time, the dying line
coalesces with its parent line (e.g., in a B/b event, we
pick the line to coalesce from the b subpopulation).
With probability r, recombination occurs between the
selected locus and the rightmost locus during the coales-
cent. In this case, the region between the selected locus
and the recombination point coalesces with the chosen
parent, and the second part of the neutral region, be-
tween the recombination point and the rightmost locus,
coalesces with a parent chosen with uniform probability
from the whole population. We assume that the neutral
locus of interest is sufficiently small so that there is at
most one crossover event in the region in each meiosis
(the deterministic coalescent models, however, are not
subject to this limitation since in these models the re-
combination rate can be arbitrarily high). For the values
of r considered in this article this approximation is
good. If necessary, it is straightforward to improve it, for
instance, by simulating an explicit recombination pro-
cess instead of simply assuming that no or one crossover
occurs in the interval in each meiosis. One may also
implement more realistic models of recombination, e.g.,
models that capture crossover interference (see, e.g.,
McPeek and Speed 1995, for a review); for the purpose
of this article, however, the simplest model is sufficient.

When the simulation has reached the beginning of
the sweep, there is exactly one line carrying the B allele,
and the genetic material of this individual is ancestral to
all genetic material trapped in the sweep. In addition,
there may be a set of lines that have escaped the sweep
because of recombination as explained in positive

selection and genetic hitchhiking. We then follow
the lines carrying genetic material from the sample back
in time until the most recent common ancestor of each

Figure 2.—Growth of the favored-allele frequency in the
population (time is measured in generations). The popula-
tion size is N ¼ 104, and the selection parameter is s ¼
0.01. Shown are four samples of the Moran process (gray
lines), the logistic model (dashed red line), and our new de-
terministic model described in A deterministic model for x(t)
(solid black line). The new deterministic approximation
(Equation 26) is much closer to the Moran curves than the
logistic approximation.
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locus has been found for the sample. Since there is no
selection in this part of the history, the Moran process is
a coalescent where the rate (in units of events per gen-
eration) of two lines coalescing is n(n� 1)/2N, where n
is the number of lines in the population, and the rate of
recombination is r.

AVERAGING OVER REALIZATIONS OF THE SWEEP

Durrett and Schweinsberg (2004) have convinc-
ingly shown that it is necessary to consider the fluc-
tuations of the favored-allele frequency (displayed in
Figure 2) to accurately represent effects of the sweep on
nearby loci.

We now explain how to efficiently and accurately
average over such fluctuations. We motivate our method
by an example: how to compute the probability that the
first recombination event, if it occurs during the sweep,
occurs with an individual not carrying the favored allele
at the selected locus. In the background coalescent

for neutral loci in the vicinity of a selected one

we describe a coalescent process that makes use of the
ideas described in this section.

An example: We illustrate our approach by consider-
ing the conditional probability Q(r) that the first re-
combination event, if it occurs during the sweep, occurs
with an individual not carrying the favored allele at the
selected locus:

Q ðr Þ ¼
ðt

0
dt re�rt ½1� xðtÞ�: ð10Þ

Q(r) depends on the realization of x(t) of the sweep of
duration t. For small values of r, it is unlikely that a given
line experiences more than one recombination event
during the sweep, and in this case Q(r) is approximately
the probability that the line escapes the sweep.

Figure 3 shows the average ÆQ ðr Þæ over realizations of
x(t) as a function of r, obtained from Moran-model
simulations (circles). Also shown are the results from

the logistic model (dashed line), derived as follows.
Inserting the solution of (1),

xðtÞ ¼ 1

1 1 e�sðt�t=2Þ ð11Þ

(where t¼ 2 ln(2N� 1)/s is the duration of the sweep in
the logistic model), into (10) and expanding the inte-
grand in (10), we obtain

ÆQ ðrÞæ ¼ 1� e�rt=2 1
X‘

n¼1

ð�1Þn2r 2 e�rt=2 � e�nst=2

s2n2 � r 2 :

ð12Þ

As can be seen in Figure 3, the result (12) deviates
significantly from the Moran-model results.

We now show how to obtain a much more accurate
approximation (solid line in Figure 3).

The problem in averaging (10) over different reali-
zations of the stochastic Moran sweep lies in that both
the upper bound t of the integral and the integrand
fluctuate. In the following we describe an approximate
method of averaging (10) that gives accurate results
and motivates a new deterministic model for selective
sweeps. To begin with, note that x(t) is a piecewise con-
stant function of time in the Moran model. A realization
of the growth of the B allele is determined by a sequence
of M pairs (ki, ti), where ki is the number of copies of
B in time interval i, and ti is the duration of this interval
(the latter begins at ti ¼

Pi�1
j¼1 tj ). The sweep begins with

k1 ¼ 1 at time t1 ¼ 0 and ends with kM ¼ 2N at time tM.
Thus, we have

Q ðr Þ ¼
XM�1

i¼1

e�rti � e�rti11½ � 2N � ki

2N
: ð13Þ

The number M of steps in the growth process fluctu-
ates and is usually ?2N � 1 since ki is usually not an
increasing function of i.

We construct an increasing growth curve from the
sequence (ki, ti) as follows. First, consider the sequence
obtained by sorting the intervals such that ki # ki11.
Second, merging all intervals with the same value of
ki into one contiguous segment, we obtain a sequence
of 2N � 1 segments, ðk̃i ¼ i; t̃i ¼

P
j :kj¼i tjÞ, with t̃i ¼Pi�1

j¼1 t̃j so that t̃2N is the duration of the sweep. Note
that t̃i may also be written as

P
j :kj , i tj , which implies

t̃2N ¼ t2N . This ‘‘sorted’’ sweep is monotonous: there are
i copies of allele B in the population during the time
interval ½t̃i ; t̃i11�, and at time t̃i11 the number of copies of
B increases by one. Figure 4 shows that this results in a
surprisingly accurate representation of the original tra-
jectory x(t). This is so because of the conditioning on
the success of the sweep: large downward fluctuations of
ki are rare.

In terms of the sorted sweep, Equation 13 can be
written as

Figure 3.—Comparison of ÆQ ðrÞæ as a function of r for the
different models: Moran simulations (circles), the determin-
istic logistic model (dashed red line), and the new determin-
istic model (solid blue line). The population size is N ¼ 104

and the selection parameter is s ¼ 0.01.
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Q ðr Þ �
X2N�1

k¼1

e�r t̃k � e�r t̃k11
� �2N � k

2N
: ð14Þ

Averaging (14) over the realizations of the sweep is
straightforward. Assuming that Æexp(�rt̃k)æ can be ap-
proximated by expð�r Æt̃kæÞ, we find

ÆQ ðrÞæ �
X2N�1

k¼1

e�r Æt̃k æ � e�r Æt̃k11æ� � 2N � k

2N
: ð15Þ

The expectation values Æt̃kæ can be calculated analytically
as shown in The expected value of t̃k below. In Figure 3,
ÆQ ðr Þæ according to (15) is shown as a blue line, in very
good agreement with the numerical data (circles).

A deterministic model for x(t): Our result (15) can be
written in the form (10) by introducing a deterministic
model for the sweep. Let �kðtÞ be the solution of Æt̃kæ¼t
for k. In Figure 2, �kðtÞ is shown as a solid black line.
Let �xðtÞ ¼ �kðtÞ=ð2N Þ. Then

ÆQ ðrÞæ �
ð�t

0
dt re�rt 1� �xðtÞ½ �; ð16Þ

where �t¼Æt̃2Næ is the expected duration of the sweep.
In practice, �kðtÞ is obtained as follows: we pick 103

linearly spaced values for t in the interval ½0, Æt̃2Næ�. For
each value of t, we find the k such that Æt̃kæ # t # Æt̃k11æ,
using Equation 26 to calculate the values of Æt̃kæ. To find
the value of �k corresponding to t, we use linear inter-
polation between the endpoints of this interval.

Results of coalescent processes based on the model
�xðtÞ for the selective sweep are summarized in the
Conclusions. As expected the results obtained exhibit
equally good agreement with our Moran-model simula-
tion as does Figure 3.

The expected value of t̃k: In this section, we derive an
analytical expression for Æt̃k11æ, the total time during the
whole sweep when there are k copies of B or less, starting
from a single copy. More generally, let Ti

(k) be the corre-

sponding time, measured during the remaining parts
of the sweep starting from i copies of B. Thus, we have
Æt̃kæ ¼ ÆT1

(k�1)æ.
The value of ÆT ðkÞi æ equals the expected time until the

next event, plus the expected time spent in states with k
copies of B or less from the next state. Thus, we have the
recursion

ÆT ðkÞi æ ¼ Ætiæuk�i 1 p1ðiÞÆT ðkÞi11æ 1 p�ðiÞÆT ðkÞi�1æ; ð17Þ

where ui is one if i $ 0 and is zero otherwise, and p6(i)
is the probability of going from i to i 6 1 copies of B;
cf. Equation 7. To find a unique solution to (17), we
need to provide boundary conditions. First, we note
that the transition from i¼ 1 to i¼ 0 is forbidden (this is
known as a ‘‘natural boundary condition’’). Second, if
the sweep is started at i ¼ 2N it stops immediately; thus,
we must take

ÆT ðkÞ2N æ ¼ 0 ð18Þ

for all k. In the following it turns out to be convenient to
introduce

f
ðkÞ
i ¼ ð1� viÞÆT ðkÞi æ: ð19Þ

Writing (17) in terms of f
ðkÞ
i leads to a recursion with

constant coefficients:

f
ðkÞ
i11 � ð1 1 vÞfðkÞi 1 vf

ðkÞ
i�1 ¼ �ð1 1 vÞð1� viÞÆtiæuk�i :

ð20Þ

We solve (20) as follows. First, from (20) we obtain a
recursion for the difference D

ðkÞ
i ¼ f

ðkÞ
i11 � f

ðkÞ
i :

D
ðkÞ
i ¼ vD

ðkÞ
i�1 � ð1 1 vÞð1� viÞÆtiæuk�i : ð21Þ

By telescoping from zero to i, we find the solution

D
ðkÞ
i ¼ viD

ðkÞ
0 �

Xi

j¼1

vi�jð1� v jÞð1 1 vÞÆtj æuk�j : ð22Þ

At i ¼ 0, (19) implies f
ðkÞ
0 ¼ 0, which leads to D0 ¼ f

ðkÞ
1 .

With this, summing (22) from 0 to i � 1 leads to

ÆT ðkÞi æ ¼ 1

1� vi

Xi�1

j¼0

D
ðnÞ
j

¼ ÆT ðkÞ1 æ�
Xi�1

j¼1

ð1� vi�jÞð1� v jÞ
ð1� viÞð1� vÞ ð1 1 vÞÆtj æuk�j :

ð23Þ

Setting i¼ 2N in (23), and using ÆT ðkÞ2N æ¼ 0, we can solve
for ÆT ðkÞ1 æ :

ÆT ðkÞ1 æ ¼
Xk

j¼1

ð1� v2N�jÞð1� v jÞ
ð1� v2N Þð1� vÞ ð1 1 vÞÆtj æ: ð24Þ

Figure 4.—Comparison between the actual growth curve ki

vs. ti (red line) and the corresponding sorted curve k̃i ¼ i vs. t̃i
(black line). The parameters are N ¼ 103 and s ¼ 0.01.
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Between each change in k, there is a geometrically
distributed number of events. It follows from (8) that
the expected time between two changes in k is

Ætkæ ¼ w̃b/B 1 w̃B/b½ ��1

¼ 2N = kð2N � kÞð1 1 vÞ½ � ð25Þ

generations. Inserting the value of Ætkæ and writing the
solution in terms of Æt̃iæ, we obtain

Æt̃kæ ¼
Xk�1

i¼1

2N ð1� v2N�iÞð1� viÞ
ið2N � iÞð1� vÞð1� v2N Þ: ð26Þ

Finally, we note that higher moments of t̃k, especially the
variance, can be obtained in a similar manner.

THE BACKGROUND COALESCENT FOR NEUTRAL
LOCI IN THE VICINITY OF A SELECTED ONE

As explained in positive selection and genetic

hitchhiking, selection influences, via the hitchhiking
effect, the evolution of neutral loci on the same chro-
mosome as the selected locus. Given a particular growth
of the favorable allele frequency x(t) as a function of
time, what is the evolution of the linked neutral loci?
The standard approach is to follow Kaplan et al. (1989)
(see also Kaplan et al. 1988) in modeling the effect of
selection on the neutral loci as a form of population
structure: the selective sweep is viewed as a two-island
population with migration, where one island, with pop-
ulation size 2Nx, contains the individuals with the B
allele; the other island has population size 2N(1 � x)
and contains the individuals with the b allele. Coalescent
events can occur only between individuals on the same
island. Recombination, however, may move a line from
one island to the other, since the parent of the part of
the neutral locus to the right of the recombination
point is chosen uniformly from the whole population.

It is useful to write the total rate of coalescent and
recombination events in the sample genealogy in the
subdivided population in the form

ltot ¼ lBpB 1 lbpb ; ð27Þ

where lB and lb are the total numbers of birth–death
events per generation in the B and b subpopulations,
respectively, given by

lB ¼ 2Nx;

lb ¼ 2N ð1� xÞ; ð28Þ

and where pB and pb are the probabilities that a single
birth–death event leads to a coalescent or a recombina-
tion event (or both) involving an individual in the cor-
responding subpopulation.

Consider the probability pB. First, a birth–death event
has no effect on the gene genealogies unless the indi-
vidual born is an ancestor to a locus of an individual in

the sample. The probability that this is the case is simply
nB/(2Nx), where nB is the number of ancestral lines
currently in the B subpopulation. Second, for the gene
genealogies to change either recombination must hap-
pen during the birth—this happens with probability
r—or the parent must belong to a different ancestral
line of the sample; the probability that this happens is
(nB� 1)/(2Nx). Since one of the subpopulations can be
quite small, especially close to the ends of the sweep, we
cannot make the usual assumption (Hudson 1990) that
recombination and coalescence cannot occur in the
same event. Putting it all together, we find

pB ¼
nB

2Nx
ð1� r ÞnB � 1

2Nx
1 r

� �
: ð29Þ

The first term corresponds to two lines coalescing in the
B population with no recombination, and the second
term corresponds to all events involving recombination.

We derive the probability pb of an event in the b sub-
population in the same way as for pB. The result is

pb ¼
nb

2N ð1� xÞ ð1� r Þ nb � 1

2N ð1� xÞ1 r

� �
; ð30Þ

where, correspondingly, nb is the number of ancestral
lines currently in the b subpopulation.

When x and the other parameters are constant, the
coalescent is a Poisson process, and the time to the next
event is exponentially distributed with expected value
1/ltot; see Equation 27. In a selective sweep, however, x
changes with time; hence, the coalescent is an inhomo-
geneous Poisson process. The coalescent starts at the
end of the sweep and creates a sequence of events for
the sample genealogy at decreasing times, toward the
beginning of the sweep. Given the state of the popula-
tion at time t1, the distribution f(t2 j t1) of the time t2 of
the next event (t2 , t1) is

f ðt2 j t1Þ ¼ ltotðxðt2ÞÞexp �
ðt1

t2

ltotðxðtÞÞdt

� �
: ð31Þ

Hence, given that we have simulated the sweep from the
end of the sweep to time t1, the time t2 of the next event
is determined by solving the equation

ðt1

t2

ltotðxðtÞÞdt ¼ h ð32Þ

numerically for t2, where h is an exponentially distrib-
uted variable with expected value unity. For some simple
growth models it is possible to find explicit analytical
expressions for t2 as a function of t1 and h; mostly,
however, one must use numerical approximations of the
integral. In this article, we consider x(t) in (32) to be a
given, piecewise constant function. Also when we have
explicit expressions for x(t) it is convenient, and effi-
cient, to take a number of samples at equally spaced
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points in time. We are then able to quickly find the in-
terval containing the value of t2 that solves (32) ½if x(t) is
piecewise constant, the left-hand side of (32) is piece-
wise linear and continuous�.

This concludes our review of the standard back-
ground coalescent. There is only one problem with this
picture: the rates lB and lb do not accurately describe
the rate of birth–death events in the two subpopulations
when we compare them to simulations using the Moran-
model algorithm described in the moran model of

positive selection: we observe slight but statistically
significant deviations for large values of s (we find that
the effect is negligible for s , 0.03 and is most significant
when both s and r are relatively large).

As is shown in Figure 5, the true birth rate of B alleles
as a function of x in the Moran model is given by the
total rate of all events leading to the birth of a B allele:
combining Equations 2 and 6, we have

lB ¼ w̃B/B 1 w̃b/B

¼ 2N x 1
sxð1� xÞ

1� ð1� sÞ2Nx

� �
: ð33Þ

Hence, the birth rate of B alleles is larger than expected
from the standard model. Since the total number of
events is fixed at 2N per generation, the birth rate of the
b alleles is correspondingly smaller:

lb ¼ 2N � lB : ð34Þ

In general, we see that deviations from the standard
rates are due to the difference in the birth rates of the
two alleles. It is the selection process that causes extra
births to happen in the B subpopulation and fewer
births in the b subpopulation.

In Figure 6 we illustrate the difference between choos-
ing the birth rates according to the standard method

(28) and according to (33), by measuring the proba-
bility p2inb that two ancestral lines of a neutral locus
escape the sweep separately. The parameters are N¼ 104

and s ¼ 0.1, corresponding to moderately strong selec-
tion. The background coalescent using lB from (33) is
in good agreement with the Moran simulations, while
the results using the rates (28) exhibit a small but sig-
nificant difference. Other quantities exhibit similar dif-
ferences (not shown).

RESULTS AND DISCUSSION

We have implemented the background coalescent for
a contiguous segment of neutral loci close to a selected
site (see the background coalescent for neutral

loci in the vicinity of a selected one), using the
deterministic model �xðtÞ ¼ �kðtÞ=ð2N Þ described in av-

eraging over realizations of the sweep: �kðtÞ is
obtained by solving Æt̃kæ ¼ t for k, as described in A
deterministic model for x(t).

To establish the accuracy of our algorithm, we com-
pare its results to those of Moran-model simulations.
In particular, we compute the distribution over parti-
tions at a neutral locus in the sample (Durrett and
Schweinsberg 2004) (explained below in Partitions).

Duration of the sweep: According to the results in
The expected value of t̃k , we can use (26) to obtain a closed
expression for Æt̃2N æ, the expected duration of the sweep.
Because of symmetry, we can write Æt̃2N æ in the form

Æt̃2N æ ¼
X2N�1

k¼1

2ð1� v2N�kÞð1� vkÞ
kð1� vÞð1� v2N Þ : ð35Þ

In the limit s/0, we obtain the familiar result (see, e.g.,
Ewens 1979, for a review)

Figure 5.—ThebirthrateofBalleles,lB, asa functionofx for
N ¼ 104, s ¼ 0.01, and 104 Moran simulations (white circles).
Also shown is the theory (Equation 33, solid blue line). Note
that the standard rates (Equation 28) correspond to lB¼ 2Nx.

Figure 6.—Probability p2inb that two ancestral lines of a
neutral locus escape the sweep separately, as a function of
the amount of recombination r between the neutral and
the selected locus. Shown are results of Moran-model simula-
tions (circles) and results of the background coalescent with
the growth x(t) given by sampling the Moran process for the
selected locus, using either the standard rates in the literature
(Equation 28) (red dashed line) or the new rates (Equations
33 and 34) (blue solid line). The coalescent simulations of
Durrett and Schweinsberg (2004) (triangles) are consis-
tent with the former, while our Moran model is much closer
to the latter. The parameters are N ¼ 104 and s ¼ 0.1.
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Æt̃2N æ j s¼0 ¼ 2N � 1: ð36Þ

When 2Ns is large, we approximate v2N� 0 and obtain to
leading order

Æt̃2N æ � 2
logð2NsÞ1 g

s
: ð37Þ

Here g is Euler’s constant, g � 0.577216. This ap-
proximation is excellent: as is shown in Figure 7, the
approximation breaks down only when 2Ns & 2. Except
for the g-term, (37) is also the expected duration of the
sweep one obtains in the diffusion approximation for
the sweep conditioned on success (Etheridge et al.
2006, Lemma 3.1) and in the models by Barton (1998)
and Kim and Nielsen (2004).

This result should be contrasted with the determin-
istic logistic sweep, where the duration of the sweep is 2
log(2N� 1)/s. For large values of s, the duration is close
to that of the Moran model and to the approximation
Equation 37. Thus, quantities depending primarily on
the duration of the sweep, such as the amount of recom-
bination taking place during the sweep, will be accu-
rately described in the logistic model when the selection
is strong. From (37), and in Figure 7, we see that this
happens when jlogðsÞj is small compared to log(2N).
When s is small, however, the duration of the sweep in
the logistic model is very different from that of the Moran
model, and consequently we expect a clear difference in
the effect of the sweep on the neutral loci nearby.

Partitions: Here we consider the distribution of par-
titions at a neutral locus at genetic distance r from the
selected locus in a sample of two individuals in the
population. The partitions are defined as follows
(Donnelly 1986; Durrett and Schweinsberg 2004).
Suppose we follow the ancestral lines of the neutral
locus in the two individuals back in time through the
sweep. Because of recombination, the lines may move

from the B population to the b population and (with a
rather small probability) back again. They may coalesce
in one of the populations or stay separate during the
whole sweep. For two lines, we have four distinct cases:
both lines coalesce during the sweep and the resulting
line is trapped by the sweep (the probability for this to
happen is denoted by p2cinB); one line escapes the
sweep and the other is trapped (p1B1b); both lines es-
cape the sweep but do not coalesce (p2inb); the lines
coalesce and then escape or escape separately and then
coalesce (much less likely), denoted by p2cinb.

When the genetic distance to the selected locus is
large, one expects all lines to escape independently. For
large population sizes it is unlikely that lines coalesce
during the sweep, but it becomes more common when
the population size is relatively low (e.g., for N � 103).
Close to the selected locus, nearly all lines are trapped in
the sweep. The frequency of the case where one line is
trapped and the other line escapes has a maximum for
intermediate genetic distances r.

In Figure 8 we compare the four models: the Moran
model, the logistic-sweep model, the DS algorithm, and
our own algorithm, when N ¼ 104 and s ¼ 0.1, corre-
sponding to strong selection. Also shown are the coa-
lescent simulations of Durrett and Schweinsberg

(2004). The curves in Figures 8–10 were obtained by
averaging over 10,000 samples. The plot covers the ap-
proximate range of validity quoted by Durrett and
Schweinsberg (2004) for their algorithm, r & s=ln 2N ,
which evaluates to �0.01. Over this range, all curves
except the logistic model agree. In particular, the logis-
tic model gives a higher value for p2cinb than expected;
the most likely reason for this deviation is that the
duration of the sweep is slightly too long in the logistic
model (cf. Figure 7).

Figures 9 and 10 show the same quantities as Figure 8
but for s¼ 0.03 and s¼ 0.001, respectively. The range of
validity of the DS algorithm is r , s/ln 2N, which is 0.003
in Figure 9 and 10�4 in Figure 10. Within this range, all
curves except the logistic model agree approximately.

For larger values of r, the most important contribu-
tion to the difference between the Moran model and the
DS algorithm is that the latter ignores recombination
events and coalescent events during the middle and late
stages of the sweep. As can be seen in the figures, this is a
very good approximation provided r is sufficiently small
or provided the sweep is sufficiently short. The accuracy
of the logistic model quickly deteriorates as s decreases.
Again, the most important reason is that the sweep is too
long compared to the Moran model.

Our algorithm, by contrast works well also for large
values of r and small values of s, although it is clear that
the deviations from the Moran model become larger
for smaller values of s. This is to be expected since the
fluctuations of the sweep increase with decreasing s. In
addition, we emphasize that each run of our program gives
a realization for the joint gene histories of a contiguous

Figure 7.—Comparison of the exact expression (Equation
35) (symbols), for the expected duration of the sweep (in
units of 2N generations) as a function of s, to the approxima-
tion (cf. Equation 37) (solid blue lines) and the logistic model
(solid red lines), for N ¼ 103 (squares) and N ¼ 104 (circles).
As a reference, the result (Equation 36) is also shown (dotted
line).
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stretch of DNA, while the DS algorithm requires a sep-
arate simulation for each value of r.

We conclude this section by comparing our model to
the diffusion approximation of our Moran model. The
SDE corresponding to the Moran model of the growth
and fixation of the fraction x of the population with the
favorable allele, with the rates given by Equation 6, is
given by

dx ¼ 2Nsxð1� xÞ1 1 ð1� sÞ2Nx

1� ð1� sÞ2Nxdt 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� sÞxð1� xÞ

p
dW ; ð38Þ

where dW is the differential of a Wiener process W
(characterized by ÆdW æ ¼ 0 and dW 2 ¼ dt) (see, e.g.,
Gardiner 2004 for more information). We simulate
Equation 38 forward in time to obtain a trajectory x(t)
starting at x(0) ¼ 1/2N until fixation, i.e., until the first

time x(t) . 1 � 1/2N. Given a realization of the curve
x(t) we generate a sample gene genealogy using the
standard structured coalescent. Although it is possible
to time reverse the Moran process to avoid storing the
path (Coop and Griffiths 2004), we perform the simu-
lation forward in time. This allows us to use the same
coalescent code as for the other models. Figure 11 shows
the probability p2inb that both lines escape the selective
sweep separately as a function of the genetic distance r
between the neutral and the selected locus, from 10,000
samples, for three values of the selection parameter s
(the other partitions, p2cinB, p2cinb, and p1B1b, exhibit
similar differences between the models). The popula-
tion size is N¼ 104, and the selection parameters s¼ 0.1
(Figure 11A), s ¼ 0.03 (Figure 11B), and s ¼ 0.001
(Figure 11C). When selection is weak (Figure 11B), the
diffusion approximation and our model are in close
agreement with each other and with the Moran simu-
lations. For very weak selection (Figure 11C), the dif-
fusion approximation is more accurate. This is not
surprising considering that the fluctuations of the
duration of the sweep becomes increasingly important

Figure 9.—As shown in Figure 8, but for s ¼ 0.03.
Figure 8.—The distribution over the partitions as a func-

tion of the genetic distance x from the selected locus, from
10,000 samples. We show one section for each of the four par-
titions. The population size is N ¼ 104, and the selection pa-
rameter s ¼ 0.1. The data shown are Moran simulations
(circles), the logistic model (dashed black line), our own
model(solidblueline), theDSalgorithm(dash-dottedred line),
and coalescent simulations of Durrett and Schweinsberg

(2004) (triangles).
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as the selection becomes weaker (but we still condition
on the fixation of the advantageous allele). For stronger
selection, however, our method is more accurate than
the diffusion approximation that starts to show signifi-
cant differences from the Moran model (Figure 11A).

Conclusions: We have implemented a new model for
genetic hitchhiking on the basis of a deterministic ap-
proximation for the growth of the favored-allele fre-
quency during the selective sweep, in combination with
a coalescent process for a locus (or set of loci) close to
the selected locus. By comparison with direct Moran-
model simulations we could show that our new model is
very accurate. Two reasons for this success are that our
model faithfully approximates the expected duration of
the selective sweep and it is conditioned on the success
of the sweep.

Our algorithm is as easily implemented as the stan-
dard logistic model, but is far more accurate, even appli-
cable beyond the range of parameters given by Durrett

and Schweinsberg (2004) for their algorithm. We have
also shown that it compares favorably to the diffusion
approximation of the Moran process, especially when
selection is strong. For practical purposes it is impor-

tant that the sweep is not assumed to happen instanta-
neously, so mutations occurring during the sweep are
not neglected. Furthermore, the algorithm determines
the fate of a contiguous segment of neutral loci in the
vicinity of the selected locus, so that the method lends
itself to the study of multilocus associations.

Our results have implications beyond the immediate
context of this article. First, we introduced a new ap-
proximate representation of selective sweeps (the sorted
sweep) that locally averages over fluctuations in the
favored-allele frequency. We suspect that this approxi-
mation retains the fluctuations relevant for an accurate
description of the genealogies of neutral loci close to the
selected site. In which range of parameters this is true will
be the subject of a subsequent study. Second, in the
coalescent for the neutral loci, we have shown that the
standard expression for the rates (Equation 28) must
be modified. We expect that similar modifications are
necessary in other cases, e.g., Moran models with chang-
ing population sizes, as, for instance, in population ex-
pansions and bottlenecks.

Figure 10.—As shown in Figure 8, but for s ¼ 0.001.

Figure 11.—The probability p2inb that both lines escape
the selective sweep separately, as a function of the genetic dis-
tance r between the neutral and the selected locus, from
10,000 samples. The population size is N ¼ 104, and the selec-
tion parameters are s ¼ 0.1 (A), s ¼ 0.03 (B), and s ¼ 0.001
(C). The data shown are Moran simulations (circles), integra-
tion of the SDE with the standard rates (dashed black line),
our model (solid blue line), and coalescent simulations of
Durrett and Schweinsberg (2004) (triangles).
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