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ABSTRACT

Genomic selection uses total breeding values for juvenile animals, predicted from a large number of
estimated marker haplotype effects across the whole genome. In this study the accuracy of predicting
breeding values is compared for four different models including a large number of markers, at different
marker densities for traits with heritabilities of 50 and 10%. The models estimated the effect of (1) each
single-marker allele ½single-nucleotide polymorphism (SNP)1�, (2) haplotypes constructed from two
adjacent marker alleles (SNP2), and (3) haplotypes constructed from 2 or 10 markers, including the
covariance between haplotypes by combining linkage disequilibrium and linkage analysis (HAP_IBD2 and
HAP_IBD10). Between 119 and 2343 polymorphic SNPs were simulated on a 3-M genome. For the trait
with a heritability of 10%, the differences between models were small and none of them yielded the
highest accuracies across all marker densities. For the trait with a heritability of 50%, the HAP_IBD10
model yielded the highest accuracies of estimated total breeding values for juvenile and phenotyped
animals at all marker densities. It was concluded that genomic selection is considerably more accurate
than traditional selection, especially for a low-heritability trait.

THE availability of many thousands of single-
nucleotide polymorphisms (SNPs) spread across

the genome for different livestock species opens up
possibilities to include genomewide marker informa-
tion in prediction of total breeding values, to perform
genomic selection. Compared to traditional breeding
practice, including genomic information yields a consid-
erable increase in selection responses for juvenile ani-
mals that do not have phenotypic records (Meuwissen

et al. 2001) and potentially can reduce the costs of a
breeding program up to 90% (Schaeffer 2006).

Genomic selection as described by Meuwissen et al.
(2001) predicts total breeding values on the basis of a
large number of marker haplotypes across the entire
genome. The underlying assumption of genomic selec-
tion is that haplotypes at some loci are in linkage dis-
equilibrium (LD) with QTL alleles that affect the traits
that are subject to selection. Different ways of deriving
haplotypes of combinations of marker alleles, and the
relationship between haplotypes at a locus, have been
described. One method (SNP1) is to consider each
different marker allele at a single locus to be a different
haplotype, considering no relationships between differ-
ent haplotypes, and thus breeding values are estimated

directly for the marker alleles (Xu 2003). A second
method is to construct haplotypes from two alleles at
adjacent markers, assuming a zero relation between
haplotypes at the same locus (SNP2) (Meuwissen et al.
2001). A third method is to construct haplotypes
(HAP_IBD) using two or more surrounding marker
alleles and derive identical-by-descent (IBD) probabili-
ties between the different haplotypes at the same locus
(Meuwissen and Goddard 2001).

The SNP1 model considers only two haplotypes at a
locus and therefore may be suited for applications in,
for instance, double-haploid populations with only two
segregating genotypes at each locus (Xu 2003). For
outbred populations, where the association between
markers and QTL might be different in different fam-
ilies, the SNP1 model is perhaps less well suited. The
advantage of the SNP1 approach is that determining
the linkage phase of the haplotypes is not required and
the markers do not need to be mapped. A disadvantage
of the SNP1 model is that no new haplotypes arise as
a result of recombination, while such an event actually
might change the linkage between the marker and the
QTL alleles. SNP1 and SNP2 do not make a distinction
between haplotypes that are alike-in-state (AIS) due to a
common ancestor (i.e., IBD) or simply due to chance.
The benefit from the HAP_IBD approach is that the
common background of haplotypes, and thus the prob-
ability that different haplotypes are associated with the
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same QTL allele, is modeled more accurately. The
HAP_IBD approach, as well as SNP2, however, does
require an accurate marker map and the determination
of the linkage phase. A disadvantage of the HAP_IBD
approach is that it likely will yield much more effects at
a single locus that need to be estimated.

The three different approaches have been compared
before for their ability to fine map a single QTL (Grapes

et al. 2004). Although it was shown that the SNP1
method was able to compete with the HAP_IBD method,
the HAP_IBD method gave more accurate results at the
same number of markers (Grapes et al. 2004). Arguably,
genomewide selection could be seen as a special appli-
cation of multiple-QTL fine mapping. The main differ-
ence is that QTL fine mapping aims at determining the
position of the QTL, whereas in genomewide selection
the aim is to predict accurate breeding values.

The objective of this study was to compare the accu-
racy of predicted breeding values used in genomic
selection for an outbred population with these three
different ways of including genomewide marker in-
formation. Since it is expected that the difference in
marker density is an important factor, these methods
are compared at five marker densities ranging from
1 marker/0.13 cM to 1 marker/2.52 cM.

MATERIALS AND METHODS

Simulation: Data sets with a high and a low heritability trait
at different marker densities were simulated to allow compar-
ison of the different models, in terms of accuracy of predicted
breeding values. An effective population size of 100 animals
was simulated, of which half of the animals were female and
the other half male. This structure was kept constant for 1000
generations. Mating was performed by drawing the parents
of an animal randomly from the animals of the previous
generation.

The considered genome comprised three chromosomes
of 1 M each. The positions of 300,000 marker loci and 50,000
QTL loci were randomly determined, with all possible posi-
tions on the genome having equal chance. In the first gen-
eration, all QTL and marker loci had an allele coded as 1. The
probability of having a recombination between two adjacent
loci on the same chromosome was calculated using Haldane’s
mapping function based on the distance between the loci. In
generations 1–1000, on average 300 marker and 50 QTL
mutations per generation were simulated in the population,
yielding mutated alleles coded as 2. Each locus had one
mutation during the 1000 generations in a randomly drawn
animal. The mutation rates for the markers and QTL were
determined on the basis of the number of polymorphic loci in
generation 1000 in preliminary analysis, targeting �2500
polymorphic SNPs and 75 QTL per 3 M. Simulating a whole
genome was not realistic, but the value for the markers is
comparable to a density of 25,000 SNPs on a 30-M genome.
The value of 75 QTL per 3 M was chosen to ensure that the
simulated variance would not differ too much across replicates
due to a limited number of contributing QTL. All marker loci
with a minor allele frequency in generations 1001–1003 of
,0.02 were discarded. Different marker densities were created
for each simulated data set, by at random selecting 100, 50, 20,
10, or 5% of the polymorphic markers.

All original QTL alleles were assumed to have no influence
on the considered trait. All mutated QTL alleles received an
effect drawn from a gamma distribution (with shape param-
eter 0.4 and scale parameter of 1.0), being positive or negative
with equal chance, following Meuwissen et al. (2001). After
the first 1000 generations, 3 additional generations (1001–
1003) were simulated in which no mutations occurred. The
simulated additive genetic variance at each locus i (s2

gi
) was

calculated using allele frequencies calculated from those three
additional generations, using the formula s2

gi
¼ 2pð1� pÞa2

(Falconer and Mackay 1996), where p is the allele frequency
of one of both alleles at a QTL locus, and a is the allele
substitution effect. The total simulated genetic variance (s2

g)
was obtained by summing up the variance across all QTL loci,
assuming no correlation between QTL. To obtain a heritability
of 0.50 (0.10), the residuals were drawn from a random
distribution N(0, s2

g) (N(0, 9s2
g)). All animals in generations

1001 and 1002 received one phenotypic record, obtained
by adding a random residual to the true breeding value of the
animals. All phenotypic records were scaled back, such that
the phenotypic variance was 1.0. In the 1002nd generation,
the population was expanded to 1000 animals and produced
one more generation of 1000 offspring. Thus, 1100 animals
(generations 1001 and 1002) with known phenotype and ge-
notype were simulated, as well as 1000 juvenile animals with
unknown phenotype and known genotype (generation 1003).

Models: The general model to estimate the breeding values
in the simulated data set was

yi ¼ m 1 animali 1
Xnloc

j¼1

X2

k¼1

haplotypeijk 1 ei ;

where yi is the phenotypic record of animal i, m is the average
phenotypic performance, animali is the random polygenic
effect for animal i, haplotypeijk is a random effect for a paternal
(k¼ 1) or maternal (k¼ 2) haplotype at locus j (of n loc loci) of
animal i, and ei is a random residual for animal i. Gibbs
sampling was used for the analysis, which included sampling
the presence of a QTL at each considered putative QTL
position. The presence of a QTL at locus j was sampled from a
Bernoulli distribution. It was assumed that prior knowledge
was based on QTL mapping studies where only 1 QTL was
detected per chromosome. Therefore, prior QTL probabili-
ties for the HAP_IBD models were calculated as the distance
between the two markers surrounding the putative QTL
position j, divided by the total length of the chromosome.
Prior QTL probabilities for the SNP1 (SNP2) model were
calculated as 1 divided by the number of markers on a chro-
mosome (number of markers on a chromosome� 1). Initially,
presence of a QTL was considered at each putative QTL
position. The Gibbs sampler is described in more detail by
Meuwissen and Goddard (2004).

Four different variants of this general model were used for
the estimation of genomic selection breeding values. A fifth
model was used to estimate traditional breeding values using a
polygenic model without haplotype effects. Animals without
phenotypic information (i.e., the 1003rd generation) were
included in all analyses and obtained their estimated breeding
values through the mixed-model equations based on esti-
mated breeding values of related animals and haplotypes. The
differences between the four genomic selection models, SNP1,
SNP2, HAP_IBD2, and HAP_IBD10, lie in the putative QTL
positions, the definition of the haplotype effects, and the
assumed relation between haplotypes at the same locus. For
models SNP2, HAP_IBD2, and HAP_IBD10, estimated haplo-
type effects applied to the midpoint of a marker bracket, while
for SNP1 the estimated haplotype effects applied to the
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marker loci. In the SNP1 model, a haplotype was defined as a
marker allele on a single locus, yielding two random haplotype
effects per locus. In the SNP2 model, a haplotype was defined
as a combination of marker alleles of two adjacent loci, yield-
ing four possible haplotypes per locus (i.e., 1_1, 1_2, 2_1, and
2_2). The SNP1 model is a model applicable in a practical
situation where the linkage phases of the animals cannot be
reconstructed. For SNP2, it was assumed that the linkage
phase was known without error, to resemble the procedure
applied by Meuwissen et al. (2001). In models SNP1 and SNP2
all haplotypes within loci that were not AIS were assumed to be
unrelated. In the HAP_IBD models, linkage phases were as-
sumed to be unknown and were reconstructed using the
procedure described by Windig and Meuwissen (2004), re-
sembling a practical situation where linkage phases can be
reconstructed. A haplotype in the HAP_IBD2 (HAP_IBD10)
model was defined as a combination of marker alleles of one
(five) loci to the ‘‘left’’ of the midpoint of a marker bracket and
marker alleles of one (five) loci to the ‘‘right’’ of the midpoint
of a marker bracket. Between all haplotypes at the same locus,
the probability of being IBD was calculated, combining link-
age disequilibrium and linkage analysis information. The IBD
probabilities between haplotypes of the first generation of
genotyped animals were predicted using a simplified coales-
cence process, with the assumptions that 100 generations were
between the current and base population and that the effec-
tive population size during those 100 generations was 100. The
number of generations since the base population, i.e., the
number of generations since the first marker mutation caused
segregation of haplotypes at a locus, was generally >1000
generations for any of the loci. Since the applied method to
calculate IBD matrices proved to be quite robust for the
assumption of the number of generations since the base
generations (Meuwissen and Goddard 2000), we used 100
for each situation. Haplotypes of animals in later generations
were added to the IBD matrices using the recursive formulas as
described by Fernando and Grossman (1989). A full de-
scription of the method to predict the IBD probabilities is
given by Meuwissen and Goddard (2001). All pairs of
haplotypes that had an IBD probability .0.95 were assumed
to contain the same QTL allele and were therefore clustered,
which reduced the number of haplotypes. The IBD matrix was
used to model the covariances between haplotypes. As men-
tioned, in the SNP1 and SNP2 models the covariance between
different haplotypes was considered to be zero.

The polygenic effects and variances were estimated in each
of the four alternative models, using an inverse relationship
matrix based on the pedigree of the last four generations of
animals. Haplotype variances were estimated for each alterna-
tive per locus. Therefore, the number of QTL variances
estimated was equal to the number of marker loci for model
SNP1 and equal to the number of marker brackets for models
HAP_IBD2, HAP_IBD10, and SNP2. The estimated haplotype
variance at each locus was calculated as the heterozygosity of
the haplotypes at that locus multiplied by the estimated vari-
ance of the effects at a locus. The heterozygosity was calculated
as the frequency of heterozygote animals for each locus in
models SNP1 and SNP2. The haplotype variance at a locus for
the HAP_IBD models was calculated analogous to estimating
the additive genetic variance in a polygenic model, relative to a
base population of unrelated animals. In that case, the additive
genetic variance is calculated as (1 � F ) 3 ŝ2

a, where ŝ2
a is the

estimated additive genetic variance in the base population,
and F is the inbreeding in the current population (Falconer

and Mackay 1996). We calculated the haplotype variance at a
bracket as heterozygosity 3 ŝ2

h, where heterozygosity is the
heterozygosity in the analyzed population and ŝ2

h is the esti-
mated haplotype variance for the base population. In our

situation we assume that the animals were unrelated in the
base population considered in the prediction of the IBD
probabilities (100 generations ago), meaning that the hetero-
zygosity was assumed to be 1.0 and that the IBD probability
between paternal and maternal haplotypes at a locus was 0.0.
Across generations, animals became related, and some IBD
probabilities between paternal and maternal haplotypes at a
locus became .0.0. Following this reasoning, the heterozy-
gosity for the HAP_IBD models at a locus was estimated as
follows:

1. The probability that an animal was heterozygous at a locus
was equal to the probability that the paternal and maternal
allele were non-IBD.

2. The heterozygosity per locus was calculated as the average
probability (across animals) that an animal was heterozy-
gous at this locus.

The four models were compared by the accuracy of the
estimated breeding values for animals with (generations 1001
and 1002) and without a phenotypic record (generation 1003)
and by regression of the simulated breeding values on the
estimated breeding values for the animals of generation 1003.
Accuracies were calculated as the correlation between simu-
lated and estimated breeding values. Each simulated data set
and model analysis were replicated 10 times.

RESULTS

Simulated data: After 10 replicates of each 1000
simulated generations, for the low- and high-heritability
trait, on average 78.3 QTL were segregating in gener-
ations 1001, 1002, and 1003. The different marker den-
sities yielded on average 2343.0, 1166.4, 463.9, 232.1,
and 119.0 polymorphic markers across the 3-M genome
with distances between adjacent markers averaging
from 0.128 to 2.590 cM (Table 1). Average linkage dis-
equilibrium between adjacent markers, measured by
calculated r 2-values, decreased from 0.211 to 0.101 with
increasing average distance between markers (Table 1).
The number of haplotypes across the different marker
densities was �25–500 times higher for the HAP_IBD
models compared to the SNP1 and SNP2 models (Table
2). The number of haplotypes decreased nearly linearly

TABLE 1

Average statistics of the markers of the simulated data sets
across the 20 replicates

Marker
density

Average
no. of

markers/3 Ma

Average distances
between adjacent
marker loci (cM)

Average r 2

between adjacent
marker loci

1 2343.0 0.128 0.211
2 1166.4 0.258 0.190
3 463.9 0.651 0.149
4 232.1 1.310 0.122
5 119.0 2.590 0.101

a The average number of simulated QTL across the 20
replicates was 78.3.
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with decreasing total number of markers for models
SNP1 and SNP2. The number of haplotypes for the
HAP_IBD models decreased relatively less with increas-
ing total number of markers.

For each of the considered models, a Gibbs chain was
run for 600,000 iterations for one of the replicates of the
low-heritability trait using the SNP1, SNP2, and HAP_
IBD10 models. The correlation between predicted
breeding values for juvenile animals after 30,000 and
600,000 iterations was .0.99. For further analysis 30,000
iterations of the Gibbs sampler were considered to be
sufficient, of which 3000 were discarded as burn-in.

Comparison of simulated and estimated total breeding
values: The accuracies of the estimated total breeding
values were plotted as a function of r 2-values between
adjacent markers (Figures 1 and 2). The accuracies of
the estimated breeding values for the high- (low-) her-
itability trait using any of the genomic selection models
compared to the polygenic model were between 0.03
and 0.10 (0.09 and 0.29) higher for animals with

phenotypes and between 0.10 and 0.29 (0.22 and
0.34) higher for juvenile animals (Figures 1 and 2).
Differences in accuracies of estimated breeding values
for the high- (low-) heritability trait for phenotyped
animals between the different genomic selection mod-
els ranged from 0.0 to 0.05 (0.03 to 0.04), whereas for
juvenile animals the differences ranged from 0.01 to
0.11 (0.01 to 0.04).

Accuracies of estimated breeding values for the high-
heritability trait were across all marker densities, for
both phenotyped and juvenile animals, highest for the
HAP_IBD10 model and lowest for SNP1 (Figure 1). The
differences in accuracies between HAP_IBD and SNP1
were lowest at the highest marker density and were
largest at around an r 2-value of 0.125 between adjacent
markers. When LD between markers decreased, the
differences in accuracies between the models increased
until an r 2-value of �0.12 was reached. For the low-
heritability trait, the HAP_IBD10 model yielded the
highest accuracies at lower marker densities, but at the
highest marker density the accuracy of the SNP1 model
was slightly better (Figure 2). Differences between the
models were, however, small at all marker densities.

TABLE 2

Number of haplotypes per locus for model HAP_IBD, and average total number of haplotypes for all
four models, averaged across the 20 combined replicates of the low- and high-heritability trait

No. of
markers

Total no. of haplotypes Average no. of haplotypes per locus

SNP1 SNP2 HAP_IBD2 HAP_IBD10 SNP1 SNP2 HAP_IBD2 HAP_IBD10

2,343.0 4,685 8,022 620,316 192,926 2.0 3.4 264.8 77.0
1,166.4 2,313 4,031 365,231 154,675 2.0 3.5 313.1 123.9
463.9 935 1,652 229,324 128,171 2.0 3.5 494.4 258.8
232.1 474 841 156,443 124,348 2.0 3.6 674.1 491.3
119.0 249 443 129,035 110,574 2.0 3.6 1,085.6 918.7

Figure 1.—Accuracies of total estimated breeding values
for the high-heritability trait of phenotyped and juvenile ani-
mals estimated with the four different genomic selection
models, displayed as a function of different r 2-values for adja-
cent marker loci. Standard deviations across replicates ranged
from 0.01 to 0.03 for phenotyped animals and from 0.03 to
0.08 for juvenile animals. Coordinates on the x-axis of inter-
sections between the model curves and the solid lines indicate
the required SNP LD for the different models to obtain accu-
racies of 0.75 and 0.78.

Figure 2.—Accuracies of total estimated breeding values
for the low-heritability trait of phenotyped and juvenile ani-
mals estimated with the four different genomic selection
models, displayed as a function of different r 2-values for adja-
cent marker loci. Standard deviations across replicates ranged
from 0.01 to 0.03 for phenotyped animals and from 0.03 to
0.08 for juvenile animals.
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The coefficients of the regression of simulated on
estimated breeding values were for the high-heritability
trait in nearly all cases close to 1.0 for the HAP_IBD
model and .1.0 for the SNP1 and SNP2 models (Table
3). This indicates that the SNP models overestimated the
total genetic variance when many markers were included,

which is in agreement with the estimated variances
(discussed below). The coefficients of the regression of
simulated on estimated breeding values were for the low-
heritability trait in all cases and for all models ,1.0 (Table
3), which is in agreement with the generally overesti-
mated total genetic variances (discussed below).

Posterior genetic parameters and QTL probabilities:
Estimated haplotype variances in general increased
with increasing marker density for both traits (Tables 4
and 5). For the high-heritability trait, the differences in
explained haplotype variance between the models were
generally small, and none of the models explained most
haplotype variance at all marker densities (Table 4).
Estimated haplotype variances for the low-heritability
trait were for the HAP_IBD models for all marker den-
sities higher than those for the SNP1 and SNP2 models
(Table 5). Estimated polygenic variances for both traits
tended to be lowest for HAP_IBD2 and highest for
SNP1. Estimated residual variances were for both traits
and all models close to the simulated value. Standard
errors of the estimated variances were for the high-
heritability trait at all marker densities smaller for the
HAP_IBD models compared to the SNP models, while
for the low-heritability trait none of the models had
clearly lower standard errors (results not shown).

TABLE 3

Coefficients of regression of simulated on estimated
breeding values for animals without phenotypic

records, averaged across 10 replicates with
increasing r2 between adjacent markers

Heritability LD SNP SNP1 SNP2 HAP_IBD2 HAP_IBD10

50% 0.099 1.085 1.107 1.009 0.986
0.123 1.127 1.146 1.017 1.003
0.147 1.144 1.140 1.013 0.973
0.191 1.146 1.093 0.993 0.937
0.213 1.137 1.038 0.976 0.896

10% 0.103 0.964 0.971 0.960 0.834
0.120 0.940 0.937 0.950 0.934
0.152 0.922 0.984 0.886 0.894
0.189 0.946 0.974 0.884 0.859
0.210 0.983 0.983 0.920 0.900

SE ranged from 0.009 to 0.053.

TABLE 4

Estimated haplotype, polygenic, total genetic (6SE), and residual (6SE) variances and heritabilities at
different values of r 2 between adjacent markers for the high-heritability trait

Analysis r 2 SNP Haplotype Polygenic Total genetica,b Residuala h2

Simulatedc 0.50 0.50 0.50
Polygenic 0.485 0.455 0.516
SNP1 0.099 0.220 0.412 0.632 0.481 0.543

0.123 0.103 0.379 0.482 0.490 0.491
0.147 0.163 0.274 0.437 0.501 0.454
0.191 0.353 0.150 0.503 0.517 0.463
0.213 0.303 0.090 0.393 0.524 0.420

SNP2 0.099 0.155 0.361 0.516 0.489 0.502
0.123 0.111 0.328 0.439 0.499 0.464
0.147 0.193 0.216 0.409 0.507 0.436
0.191 0.347 0.100 0.447 0.521 0.440
0.213 0.315 0.046 0.361 0.514 0.398

HAP_IBD2 0.099 0.165 0.088 0.253 0.472 0.347
0.123 0.200 0.077 0.276 0.463 0.370
0.147 0.195 0.049 0.244 0.464 0.340
0.191 0.195 0.028 0.222 0.452 0.328
0.213 0.228 0.019 0.247 0.442 0.356

HAP_IBD10 0.099 0.178 0.100 0.278 0.471 0.370
0.123 0.214 0.086 0.299 0.468 0.387
0.147 0.223 0.045 0.268 0.476 0.357
0.191 0.233 0.037 0.269 0.472 0.362
0.213 0.262 0.028 0.290 0.462 0.383

a Standard errors across replicates were calculated as the standard deviation of the estimated variances di-
vided by

ffiffiffiffiffi
10
p

and ranged from 0.013 to 0.102 for the total genetic variance and from 0.009 to 0.020 for the
residual variance.

b The sum of estimated QTL and polygenic variances.
c The average simulated QTL and residual variances across replicates.
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Estimated heritabilities for the high-heritability trait
were especially underestimated by the HAP_IBD models.
The heritability estimates of the SNP1 and SNP2 models
were closer to the simulated variance, but decreased
with increasing marker density. For the low-heritability
trait, all models slightly overestimated the heritability.

In Figure 3, the ratio of cumulated estimated haplo-
type variance to total simulated QTL variance, across
loci with decreasing estimated haplotype variance, is
plotted against the cumulative number of loci for marker
densities with r 2 between markers of 0.15 (Figure 3, A
and C) and 0.21 (Figure 3, B and D). The points of the
curves at the largest number of loci indicate the pro-
portion of the simulated QTL variance that is explained
by the total estimated haplotype variance across all loci;
i.e., at marker densities with r 2 between markers of 0.15
and 0.21, respectively, the estimated haplotype variances
explained across models on average 38 (Figure 3A) and
54% (Figure 3B) of the simulated QTL variance for the
trait with high heritability and 41 (Figure 3C) and 71%
(Figure 3D) of the simulated QTL variance for the trait
with low heritability. The initial steep progression of the
curves indicates that at low marker density in all models
a large proportion of the total estimated haplotype
variance is fitted on a limited number of loci (Figure 3, A

and C). At high marker density, still a few loci have a
large estimated variance, but the contribution of these
loci to the total explained haplotype variance is less
(Figure 3, B and D). The linear progression of the
curves for the HAP_IBD models in Figure 3, following
the steep initial progression, indicates that for all
situations most of the loci in the HAP_IBD models
explain more or less the same amount of variance.
The curvilinear progression of the curves for the SNP
models, following the steep initial progression, indi-
cates that the contribution of loci to the total estimated
haplotype variance for the SNP models eventually be-
comes smaller. The average posterior probabilities that
a QTL was sampled at a locus, for 30 loci with the highest
posterior probabilities, are plotted in Figure 4. These
results show that for the high-heritability trait the
HAP_IBD models sampled QTL with a high posterior
probability at a few loci, while the SNP models had much
lower posterior probabilities on the loci with the largest
estimated haplotype variance (Figure 4A). For the low-
heritability trait, average posterior probabilities were
much lower for the loci that had the largest estimated
haplotype variance, and the highest average posterior
probability was actually found for the SNP1 model
(Figure 4B).

TABLE 5

Estimated haplotype, polygenic, total genetic (6SE), and residual (6SE) variances and heritabilities at
different values of r 2 between adjacent markers for the low-heritability trait

Analysis r 2 SNP Haplotype Polygenic Total genetica,b Residuala h2

Simulatedc 0.10 0.90 0.10
Polygenic 0.143 0.873 0.140
SNP1 0.103 0.016 0.128 0.144 0.869 0.141

0.120 0.020 0.109 0.129 0.872 0.128
0.152 0.029 0.089 0.118 0.874 0.119
0.189 0.043 0.070 0.113 0.863 0.116
0.210 0.054 0.053 0.107 0.863 0.110

SNP2 0.103 0.021 0.125 0.146 0.867 0.143
0.120 0.027 0.108 0.134 0.868 0.133
0.152 0.037 0.080 0.117 0.871 0.119
0.189 0.053 0.058 0.111 0.864 0.113
0.210 0.065 0.048 0.113 0.859 0.117

HAP_IBD2 0.103 0.036 0.079 0.114 0.866 0.116
0.120 0.044 0.063 0.107 0.862 0.110
0.152 0.048 0.050 0.099 0.855 0.103
0.189 0.069 0.037 0.106 0.847 0.111
0.210 0.085 0.034 0.119 0.835 0.125

HAP_IBD10 0.103 0.031 0.094 0.125 0.865 0.126
0.120 0.042 0.077 0.119 0.861 0.121
0.152 0.051 0.055 0.106 0.865 0.110
0.189 0.068 0.045 0.112 0.855 0.116
0.210 0.084 0.045 0.129 0.847 0.132

a Standard errors across replicates were calculated as the standard deviation of the estimated variances di-
vided by

ffiffiffiffiffi
10
p

and ranged from 0.003 to 0.010 for the total genetic variance and from 0.002 to 0.008 for the
residual variance.

b The sum of estimated QTL and polygenic variances.
c The average simulated QTL and residual variances across replicates.
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DISCUSSION

The aim of this study was to compare the accuracy of
predicted breeding values using four different models
to estimate total breeding values for genomic selection.
The results confirmed that genomic selection, com-
pared to traditional selection based solely on pedigree
information, is especially for a trait with low heritability
considerably more accurate for juvenile animals, even at
an average r 2-value between adjacent markers of 0.10
and when using relatively simple models. The benefit is
such that accuracies of total genomic breeding values
for juvenile animals were actually in most cases higher
than those of traditional breeding values for animals
with known phenotypic information. Although esti-
mated haplotype variance at a few loci explained a rela-
tively large part of the simulated QTL variance, a large
part of the total estimated haplotype variance was ex-
plained by loci that had an average posterior QTL prob-
ability ,0.01. This suggests that parts of the genome, for
which no clear evidence exists for the presence of a
QTL, still explain an important part of the genetic
variance in applications of genomic selection.

Meuwissen et al. (2001) discussed that their simu-
lated microsatellite markers, spaced at 1-cM distances,
resembled approximately three to five SNP markers.
Thus, their marker distance of 1 cM would be compa-
rable to the average distance between SNP markers of
0.26 cM in our study. The correlation between simulated
and estimated breeding values of 0.82 for the high-
heritability trait using model SNP2 in our study was
comparable to the correlation of 0.79 reported by
Meuwissen et al. (2001) when their breeding values
were estimated on the basis of 1000 animals with phe-
notypes for a trait with heritability of 50%. Solberg et al.
(2006) applied genomic selection to simulated data,
estimating effects of single-marker alleles comparable to
our SNP1 model for a trait with heritability of 50%. At
marker distances of 1 and 0.5 cM the accuracies of their
estimated breeding values were respectively 0.66 and
0.72, comparable to accuracies in our study of 0.67 and
0.75 at marker distances of respectively 1.3 and 0.65 cM.
It should be noted that in our study polygenic effects
were included in the model, whereas they were not in
the studies by Meuwissen et al. (2001) and Solberg

et al. (2006). Reported r 2-values between markers of
$0.3 in, for instance, dairy and beef cattle (Hayes et al.
2006) are comparable to the r 2-values in our simulations
and indicate a large potential benefit of applying ge-
nomic selection. It should, however, be noted that our
simulated markers were relatively uniformly distributed,
while commercially available SNPs might be less uni-

Figure 3.—Cumulative estimated haplotype variances, ex-
pressed as proportion of total simulated QTL variance, across loci
with decreasing estimated haplotype variance for the trait with h2¼
50% and the low (A) and high (B) SNP density and for the trait
with h2 ¼ 10% and the low (C) and high (D) SNP density.
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formly distributed. This implies that next to the LD
between adjacent markers, also the distribution of the
markers along the genome has to be taken into account
to predict the potential benefit of genomic selection.

Four different models were compared in this study.
The HAP_IBD2 and SNP2 models both used two
markers to construct haplotypes, with the difference
that the HAP_IBD2 model included IBD probabilities
between different haplotypes. Thus, in the HAP_IBD2
model different linkage phases between marker hap-
lotypes and QTL are considered in different (families
of) animals, while the SNP2 approach assumes that a
certain marker haplotype is always linked to the same
QTL allele. The differences found in this study indicate
that including linkage analysis information in the
model considerably increases the accuracy of breeding
values for a high-heritability trait. For the low-heritability
trait, there was little difference between the models
across the range of marker densities.

Adding additional markers in the HAP_IBD model
slightly improved the accuracy for both traits at all
marker densities. For QTL mapping, it has been shown
that predictive ability of an IBD-based model was largest

for an intermediate number of markers; i.e., at some
stage additional markers led to lower predictive ability
of the model (Grapes et al. 2006). Since in our study
only two haplotype sizes were considered, it remains
unclear whether for genomic selection applications the
accuracy of IBD models also is highest at an optimal
number of markers or is not.

None of the models was clearly superior for the low-
heritability trait. The most striking observation is that
the SNP1 model yielded the lowest accuracy at low
marker density and the highest accuracy at high marker
density. To investigate this apparent inconsistency, we
compared the results between the different models at
different marker densities within replicates. Results of
all replicates for the SNP1 and HAP_IBD10 models, as
well as the average accuracy, are shown in Figure 5 for
marker densities with r 2 between adjacent markers of
0.15 and 0.21. Results in, for instance, replicates 4 and 6
appeared to be rather inconsistent, as the SNP1 model
was clearly superior at the highest marker density, while
at the other marker density (r 2¼ 0.15) the SNP1 model
was clearly inferior (see dashed lines in Figure 5). In
replicate 4, the SNP1 model found at the highest
marker density the highest posterior probability for a
QTL that explained 35% of the simulated genetic vari-
ance, while at the lower marker density the other models
found higher posterior probabilities for this QTL. In
replicate 6, at the lower SNP density a few important
SNP were lost that disabled the SNP1 model to detect a
very large QTL that explained 75% of the simulated
genetic variance. The other three models, however,
were still well able to pick up this QTL. Having a QTL
that explained such a large amount of variance, i.e., both
the simulated QTL effect and the heterozygosity (0.47)
were large, replicate 6 was rather extreme. However,
when discarding the results from replicate 6, the SNP1

Figure 4.—Average posterior probabilities for the 30 loci
with the largest (decreasing) estimated haplotype variance
for the trait with h2 ¼ 50% (A) and h2 ¼ 10% (B), both at
the highest SNP density.

Figure 5.—Accuracies of total estimated breeding values
for the low-heritability trait of juvenile animals estimated with
models SNP1 and HAP_IBD10 of all replicates with r 2 between
markers of 0.15 and 0.21. The dashed lines indicate differen-
ces in ranks of the models at the two marker densities for rep-
licates 4 and 6.
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and HAP_IBD10 models on average gave similar results.
Thus, at higher marker density, the SNP1 model may
actually yield the highest accuracy when some SNPs are
(expected to be) closely linked to some important QTL,
while the HAP_IBD models are a better choice if there
are no SNPs (expected to be) closely linked to impor-
tant QTL.

The main disadvantage of the HAP_IBD models is
that the number of effects that needs to be estimated is
considerably larger than that for the SNP models. Still,
the HAP_IBD2 model was able to accurately estimate
total breeding values, using only 1100 phenotypic re-
cords, but based on up to 2100 polygenic and 620,316
haplotype effects. The number of haplotype effects that
needs to be estimated can be reduced by including
more markers per haplotype and perhaps by clustering
of haplotypes that have an IBD probability of, for in-
stance, .0.80. Reduction of the number of haplotypes
not only improves the feasibility, but also may improve
the power of the model.

In Figure 1, the top horizontal solid line indicates that
the accuracy for juvenile animals of the HAP_IBD10
model for the high-heritability trait at r 2 between ad-
jacent markers of 0.12 was comparable to the accuracy
obtained with the SNP2 model at an r 2 between adjacent
markers of 0.15. The bottom horizontal solid line in-
dicates that the accuracy for juvenile animals of the
HAP_IBD10 model at an r 2 between markers of 0.10
was comparable to the accuracy obtained with the SNP2
model at an r 2 between markers of 0.14. Translated into
numbers of markers in our simulated data sets, in the
most extreme situations the SNP2 model needed two
to three times as many markers to yield the same results as
the HAP_IBD10 model for the high-heritability trait.

In conclusion, there is a clear advantage of genomic
selection even at low marker densities and using a sim-
ple model that uses marker alleles as haplotypes. Unless
there is an expectation that some SNPs are in high
linkage disequilibrium with large QTL, the HAP_IBD
model is the safest option. However, the results suggest
that probably a combination of using alleles of SNPs that
have a known effect in combination with reconstructed

haplotypes for the parts of the genome with unknown
effect might prove to be the best solution.
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