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Conformational dynamics of proteins can be interpreted as itiner-
ant motions as the protein traverses from one state to another on
a complex network in conformational space or, more generally, in
state space. Here we present a scheme to extract a multiscale state
space network (SSN) from a single-molecule time series. Analysis
by this method enables us to lift degeneracy—different physical
states having the same value for a measured observable—as much
as possible. A state or node in the network is defined not by the
value of the observable at each time but by a set of subsequences
of the observable over time. The length of the subsequence can tell
us the extent to which the memory of the system is able to predict
the next state. As an illustration, we investigate the conforma-
tional fluctutation dynamics probed by single-molecule electron
transfer (ET), detected on a photon-by-photon basis. We show that
the topographical features of the SSNs depend on the time scale of
observation; the longer the time scale, the simpler the underlying
SSN becomes, leading to a transition of the dynamics from anom-
alous diffusion to normal Brownian diffusion.

single-molecule experiment � anomalous diffusion � time series analysis

Optical single-molecule spectroscopy has provided unique
insights into both the distribution of molecular properties

and their dynamic behavior, which are inaccessible using en-
semble-averaged measurements (1–5). In principle, the com-
plexity observed in the dynamics and kinetics of a protein
originates in the underlying multidimensional energy landscape
(6–12). The dynamics can be understood as the protein travers-
ing from one state (node) to another along a complex network
in conformational space or, more generally, in state space. The
network properties of biological systems can provide a new
perspective for addressing the nature of their hierarchical orga-
nization in multidimensional state space (10, 11, 13, 14), enabling
us to ask such questions as: Is there any distinctive network
topology that is characteristic for the native basin into which a
protein folds? Are there any common network features that
biological systems may have evolved by adapting to the changes
in the environment? Motivated by questions of this nature, we
address how one can extract the state space network (SSN) of
multiscale biological systems explicitly from a single-molecule
time series, free from a priori assumptions on the underlying
physical model or rules.

Fluorescence resonance energy transfer (FRET) and electron
transfer (ET) are among the mostly widely used techniques for
measuring the dynamics of protein conformational f luctuations
(15) and folding (16–19). For example, Yang et al. (15) used a
single-molecule electron transfer experiment to reveal the com-
plexity of protein fluctuations of the NADH:flavin oxidoreduc-
tase (Fre) complex. The fluorescence lifetimes showed that the
distance between flavin adenine dinucleotide (FAD) and and a
nearby tyrosine (Tyr) in a single Fre molecule fluctuates on a
broad range of time scales (10�3 s to 1 s). Although the overall
dynamics in the distance fluctuation are non-Brownian, they

reflect normal diffusion on longer time scales. To gain further
understanding of such anomalous behavior for protein confor-
mational f luctuations, several analytical models have been pro-
posed in terms of the generalized Langevin equation with
fractional Gaussian noise (20), and the simplified discrete (21)
and continuous (22) chain models. Recently, all-atoms simula-
tions (23) were performed to extrapolate the physical origin of
the anomalous FAD-Tyr distance fluctuation observed in experi-
ment (�10�3 s) from the simulation time scales in nanoseconds.

These theoretical studies underscore the difficulties in estab-
lishing a minimal physical model for the origin of complexity in
the kinetics or dynamics of biomolecules. Instead of postulating
or constructing a physical model to characterize experimental
results, we take a different approach to “let the system speak for
itself’’ through the single-molecule time series. Such unbiased
solutions, which are data-driven instead of model-driven, have
been provided in the context of single-molecule FRET experi-
ments (24) and emission intermittency, demonstrated in resolv-
ing quantum dot blink-ing states (25), but defining the states and
the corresponding networks from a single-molecule time series
remains a challenging problem. For instance, even while the
system travels among different physical states, the values in the
measured observable can be the same (26–28), i.e., degenerate,
due to the finite resolution of the observation, noise contami-
nation, and the limited number of measurable physical observ-
ables in the experiment. Such degeneracy can give rise to
apparent long-term memory along the sequence of transitions
even when the transitions among states are Markovian (29).

In this article, we present a method to extract the hierarchical
SSN spanning several decades of time scales from a single-
molecule time series. Within the limited information available
from a scalar time series, this method lifts degeneracy as much
as possible. The SSN is expected to capture the manner in which
the network is organized, which may be relevant to some
functions of biological systems. The crux of our approach is the
combination of computational mechanics (CM) developed by
Crutchfield et al. (30, 31) in information theory and Wavelet
decomposition for single-molecule time series. The states are
defined not only in terms of the value of the observable at each
time but also the historical information of a set of the multiscale
Wavelet components along the course of time evolution. Using
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the single-molecule ET time series of Fre/FAD complex, we
demonstrate that the multiscale SSNs provide analytical expres-
sions for the multi-time correlation function with the physical basis
for the long-term conformational fluctuations.

Results and Discussion
SSN: One-Dimensional Brownian Motion on a Harmonic Well. We
briefly describe how the original CM (31) defines ‘‘states’’and
constructs their network from scalar time series [see the detailed
descriptions in supporting information (SI) Text. For a given
time series x � (x(t1), x(t2) . . ., x(tN)) of the physical observable
x, which is continuous in value and could be the intramolecular
distance reported by fluorescent probes, we first discretize it to
the symbolic sequence s � (s(t1), s(t2). . ., s(tN)) where s(ti)
denotes the symbolized observable at time ti (see Fig. 1). An
upper bound for the number of symbols may be determined by
the experimental resolution. As we will see below, CM requires
a statistical sampling of the subsequences in the symbolic time
series s. Therefore, the choice of discretization scheme should
depend not only on the experimental resolution but also on the
statistical properties of the time series. A reasonable discretiza-
tion is such that the topological properties of the constructed
network are insensitive to the increase in the number of parti-
tions. Second, we trace along the time series s for each time step
ti to record which subsequence of length Lfuture, (sA

future � {s(ti�1),
. . ., s(ti�Lfuture

)}), follows consecutively after the subsequence of
length Lpast, (sB

past � {s(ti�Lpast�1
,. . ., s(ti))}). Here A, B, . . .

represent different symbolic subsequences that appear in s (see
Fig. 1). The transition probability from sB

past to
sA

future [denoted by P(A�B)] can then be obtained for the time
series s.

Third, we define ‘‘state’’ (denoted by Si herein) by the set
of past subsequences {sB�

past, sB�
past, . . .} with length Lpast, which

make transition to the future subsequences sA
future with the same

transition probabilities (i.e., P(A�B�) � P(A�B�) � P(A�B�) � . . .
for all A). A directed link (i.e., transition) from a state Si to
another state Sj can be drawn to represent the transition
probability P(sA

future�Si) if the subsequence sA
future is generated

from a transition from Si to Sj along the time series s. The
extraction of all states and transitions among them yields a SSN
associated with the time series s. The most attractive feature of
the CM is that it extracts (instead of postulating) the underlying
SSN from time series: the length of memory Lpast is chosen so as
to make all transitions among the states Markovian; namely, the
next state to visit is solely determined by the current state. The

inferred SSN is, hence, regarded as a kind of hidden Markovian
model extracted from the data. It has been established mathe-
matically that such a SSN inferred from the time series, with
memory effect automatically included, provides us with a min-
imal and optimally predictive machinery that can best reproduce
the time series s in a statistical sense (31) (see also SI Text for
more details).

As an example, Fig. 2 illustrates the actual SSNs constructed
from the time series x(t) of a one-dimensional normal Brownian
trajectory in a harmonic well. Here we discretize x using the
equal probability partition with 12 symbols, i.e. each symbol has
the same occurrence probability. The symbolic time series s is
resampled every m time steps from which the SSN is constructed.
Each node represents the state composed of the set of symbolic
subsequences, which have the same transition probability as
described above. The area of the node is proportional to the
resident probability of the state along the time series s. The
directed links connecting the nodes represent the transitions
between the states. The abscissa of the circle (state) center
corresponds to the average value of x over the set of symbolic
subsequences assigned to that state, and the ordinate denotes the
average distribution–distribution (D–D) distance Ddistrib (i),
which measures on average how different from the others the
transition probability of the ith state is (the detailed definition
will be given later).

It was found that past subsequences with only one symbol
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Fig. 1. Example for a discrete-symbol time series s obtained by discretizing a
time series of continuous observable. Here a particular past subsequence
(s9s8s8 shown by the red dots) with Lpast � 3 can be followed by different future
subsequences (the open circles) with Lfuture � 1. Going over the entire time
series to build up the frequency distribution that a certain past–future se-
quence occurs allows us to evaluate the transition probabilities P(s��s9s8s8) with
s� � s1, s2, . . . for the transition from s9 s8s8 to the next subsequence with
Lfuture � 1. Transition probabilities for the other past subsequences are ob-
tained accordingly.
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Fig. 2. The SSNs constructed from the time series x obeying the overdamped
Langevin equation on a harmonic well, dx(t)/dt � ��x(t) � R(t). Here � � �2/�
is the drift coefficient that characterizes the correlation time of the stochastic
variable x with � being the friction coefficient (� is the frequency of the
harmonic well, �1/2�2x2). R(t) is a Gaussian random force exerted on x with
mean 	R(t)
 � 0 and variance 	R(t) R(t0)
 � 2���(t � t0), where � characterizes
the magnitude of the fluctuation at a given temperature. Here, � and � are set
to be 0.19 Å2 and 1.73 s�1, respectively, by referring to the mean force
potential along the ‘‘FAD-Tyr distance’’and the autocorrelation of the lifetime
fluctuation of the excited state of FAD (35). We discretize x into 12 symbols
with variable width �xk such that the resident probability P(xk � x(t) � xk �
�xk) of kth symbol sk is the same for all k. (A) The normalized aut ocorrelation
function 	x(t)x(0)
/	x2
 (�exp(��t) ) as a function of log10 t. (B) The SSNs
constructed by recording every m step from the symbolic time series s with m �
1/�, 3/�, and 5/�, respectively.
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(Lpast � 1) are sufficient to construct the underlying SSN for the
case of m � 1/� and m � 3/� (where 1/� characterizes the
correlation time scale of x) such that a further increase of Lpast
does not change the network topology. This is due to the
Markovian nature of Brownian motion that only requires the
present value of the observable to ‘‘predict’’the future. When
the step size m � 1/�, the system cannot jump over to all the
accessible regime of s and thus there are 12 states (no identical
transition probability exists). The states extracted from s at such
a short time scale just mimic a ‘‘trajectory’’ of a stochastic
variable in the discretized space.

As m increases, some of the nearby states start to merge and
eventually only a single state is obtained at m � 5/� as the
autocorrelation decays to almost zero, where the required Lpast
is found to be zero. This manifests that it does not require any
information of the current value to predict the future when the
correlation is negligible. The time series recorded in every 5/�
time steps or longer is statistically equivalent to the dodecahe-
dron’s dice toss. Moreover, one can see from the Langevin case
that the subsequences contained in a state are localized in the
physical observable space (e.g., the x) for time scale shorter than
the correlation time scale (e.g., at 1/�). However, such localiza-
tion is lost for much longer time scales (e.g., at 5/�). A more
general discussion of the connection between the changes of
localization properties of the states in the physical observable
space as a function of time scale and its relation to the state
transition probability similarity is given in SI Text.

One can expect that CM is able to extract the time scale on
which the system loses memory in the observable. It also reveals
how the system smears out the fine structure of the state space
in terms of the time scale-dependent SSN. Such a ‘‘model-
free’’approach is crucial in capturing the complexity in the
kinetics and dynamics observed in single-molecule experiments.
However, there are several practical drawbacks in the standard
form of CM, especially for systems with hierarchical time and
space scales.

First, the number of possible past subsequences sA
past grows

exponentially with Lpast and the sampling of sA
past becomes worse

rapidly due to the finite length of the time series. So it is difficult
to properly resolve the SSN when long-term memories exist.
Although the CM discussed above using skipping time steps
works well for the Markovian Brownian dynamics, it skips and
so neglects the information between consecutive sampling steps
that may contains important non-Markovian properties in real
single-molecule time series. Second, CM relies on the concept of
stationarity for the underlying processes. This implies that the
statistical properties of the system changes slowly within the
length of the time series from which the SSN is constructed.
However, this is not necessarily the case for real systems where
the existence of hierarchical time and space scales provides a
diverse dynamical properties over different scales. Therefore, a
decomposition of the observable time series into a set of
hierarchical, stationary (and nonstationary) processes with dif-
ferent time scales is highly desirable for the prescription of CM.

Most importantly, after one extracts the underlying dynamics
for each characteristic time scale associated with the long
memory process, there may exist ‘‘mutual correlation’’or ‘‘non-
adiabatic coupling’’across different hierarchies of different time
scales. Hence, the incorporation of the mutual correlation across
the decomposed hierarchies is important for establishing the
correct SSN hidden in the time series for multiscale complex
systems.

Below we propose a scheme of multiscale CM based on the
discrete wavelet decomposition, which can not only overcome
the existing difficulties in the current form of CM but also resolve
the cumbersome degeneracy problem in single-molecule mea-
surements as much as possible. Here, we apply our method to the
delay-time time series of the Fre/FAD complex (15) in the ET

experiment. We note, however, that our method is general and
should be applicable to any time series.

Hierarchical SSN: Anomalous Conformational Fluctuation in Fre/FAD
Complex. The protein structure of the Fre/FAD complex and the
position of the tyrosin residue Tyr35, relative to the FAD
substrate are shown in Fig. 4A. Fig. 3 illustrates the multiscale
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Fig. 3. Construction of multiscale SSNs. (A) A portion of the delay-time time
series of ET single-molecule measurement for the Fre/FAD complex [15] and its
wavelet decomposition with n � 3 (c.f. Eq. 1). (B and C) The sub-SSNs of A(3) and
D(3). Note that a jump from one state to another in both �A(3) and �D(3)

corresponds to 23 time steps in the time series. A directed arrow is drawn
between two states (gray circles) if the transition probability among the states
is not zero. The size of the circle is proportional to the resident probability of
the state, and the number of inferred states for �A(3) and �D(3) and NA(3) and ND(3)

are nine and three, respectively. (D) A multiscale SSN combining the sub-SSNs
in B and C (see text for details). Note that the number of state in the combined
SSN �A(3),D(3) is lesser than NA(3)

� ND(3), implying that �A(3) and �D(3) are mutually
correlated. (E) Some data points in the delay-time time series, indicated by
arrows, where the system visited at the state in the dash box of D. The
ensemble of such data points provides a unique delay-time probability density
function P(	) for each state, as shown in D.
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CM scheme based on the discrete wavelet decomposition of the
delay-time time series. The delay time of the fluorescence
photons are recorded with respect to the excitation pulse as a
function of the chronological arrival time of the detected photon
(15). Discrete wavelet decomposition (33) produces a family of
hierarchically organized decompositions from a scalar time
series 	 � (	1,. . .,	N),

	 
 An� � Dn� � Dn�1� � · · · � D1�,n � 1, [1]

where A( j) � (A1
( j), . . ., AN

( j)) and D( j) � (D1
( j), . . ., DN

( j)) are called
as j-level approximation and detail, respectively. In the case of
dyadic decomposition, which is applied in this paper, A( j) ap-
proximates 	 with a time resolution of 2 j time steps by discarding
fluctuations with time scale smaller than 2 j time steps, and D( j)

captures the fluctuation of 	 over the time scale of 2 j time steps.
The time series can be reconstructed by adding back all f luctu-
ations with timescales smaller than or equal to those of the
approximation. Moreover, approximations of different time
scales are related by A( j) � A( j�1) � D( j�1) with j � 0. In this
paper, the Haar wavelet is adopted for its simple interpreta-
tion: Ai

( j) and Di
( j) of the Haar wavelet are the mean and the mean

fluctuation over a bin of 2 j time steps, respectively (see SI Text
for details).

Fig. 3A exemplifies the discrete wavelet decomposition with
n � 3 using the delay-time time series (denoted here by 	). The
sub-SSNs, denoted by � A(n)

and �D( j)
, are constructed from the

time series of A(n) and from that of D( j) ( j � n) by the same
algorithm used in Fig. 2, respectively. Fig. 3 B and C present � A(3)

and �D(3)
extracted from the time series of A(3) and D(3), both with

the time steps 23. Due to the nature of A(n) (the binned average),
the constructed sub-SSN � A(n)

averages out the information
contained in each bin. This suppresses the noise from photon
statistics but on the other hand suffers from information loss
inside the bins (24). Therefore, a combined SSN should be
constructed by incorporating the SSNs of fluctuations inside the
bin (the details) and the correlations among them into � A(n)

. For
instance, the incorporation of �D(n)

and �D(n � 1)
into � A(n)

gives the
SSN that describes dynamics with time scale 2n by taking account
of fluctuations down to the bin size of 2n � 1.

Fig. 3D demonstrates how �A(3)
and �D(3)

can form the combined
SSN �A(3),D(3)

. By tracing A(3) and D(3) time series, one can identify
which state the system visited at each time step in �A(3)

and
�D(3)

, respectively. The possible states of the combined SSN �A(3),D(3)

are given by the product set {Si
A(3)

,Sj
D(3)

} (� Sij), where Si
A(3)

and Sj
D(3)

denote the ith and jth state in �A(3)
, and �D(3)

(where i � 1, . . .,
NA(3)

and j � 1, . . ., ND(3)
). The resident probability of the Sij

denoted by PA(3),D(3)(Sij) can then be computed as follows:

PA3�,D3�Sij� 
 NSij�/N, [2]

where N(Sij) is the number of simultaneous occurrence at the states
Si

A(3)
and Sj

D(3)
along the time series, and N is the number of

data points of the series. In general PA(3),D(3) (Sij) � PA(3) (Si
A(3)

)
PD(3) (Sj

D(3)
) because the two time series A(3) and D(3) are

statistically correlated. On the other hand, the transition prob-
ability from Sij to Si�j� can also be obtained by

PA3�,D3�Si�j��Sij� 
 NSi�j�,Sij�/NSij�, [3]

where N(Si�j�, Sij) is the number of visiting Si�j� at 23 time steps
passed after visiting Sij. In general, a transition from one state to
another in �A(n),D(n)

takes 2n time steps as in � A(n)
.

The combined SSN �A(n),D(n)
corresponds to a “splitting” of the

states Si
A(n)

of the approximation to Sij with 1 � j � ND(n)
by

incorporating the fluctuation inside the bins. Similarly, other
sub-SSNs (�D(2)

, �D(1)
) can be incorporated into �A(3),D(3)

one by
one, depending on how fine the fluctuations one wishes to see.

Moreover, because the original 	 is decomposed into a vector
time series with approximation and details as components,
degeneracy is expected to be further lifted by this multiscale CM
compared with the original CM in terms of scalar time series 	.
The stationarity of the approximation and details can be in-
spected by evaluating their autocorrelations. The autocorrela-
tion of D(j) decays rapidly on a timescale of 2j time steps with
small oscillations for longer time. Therefore, the D(j)’s are
‘approximately’ stationary with time scale of 2j. On the other
hand, the autocorrelation of A(j) remains approximately constant
for 2j steps and shows similar behavior to those of 	 for time
scales longer than 2j. This indicates that A(j) capture all the
nonstationarity of 	 with time scales longer than 2j (see also SI
Text for more details). Hence, Eq. 1 enables us to naturally
decompose the original time series into a set of hierarchical
stationary processes (the details) at different time scales and
their nonstationary counterpart (the approximation).

Lifetime Spectrum and the Average Interdye Distance Associated with
a State in the Multiscale SSN. Once the multiscale SSN is extracted
up to the desired level by combining the sub-SSNs, one can then
build up an unique delay-time distribution for each state in the
network as shown in the inset of Fig. 3D. The delay-time
probability density function P(	) is related to the spectrum of
lifetime (��1) by (see SI Text for details)

P	� 


�d��1��1���1��1e�	/��1

�d��1��1�

, [4]

with � d	P(	) � 1. The conformational information of a state can
be obtained from (��1) and ��1(t) � [�0 � kET(t)]�1 � kET

�1(t)
[�0 is the fluorescence decay rate in the ab sence of quencher(s)
and kET the ET rate] as follows: The average rate (inverse of
lifetime) of the Ith combined state, �I, can be calculated easily
from its lifetime spectrum I(��1) and delay-time probability
density function PI(	) as

�I 


�d��1��1��1I�
�1�

�d��1I�
�1�


 PI	 
 0�. [5]

The averaged donor(D)–acceptor(A) distance R associated with
the Ith state, RI, can, then, be evaluated by RI � R0 � ��1 log
�I under the assumption of kET(t) � exp[��R(t)] with � �
1.4 Å�1 for proteins (34).

The Autocorrelation of Lifetime Fluctuation. What kinds of physical
quantities can be extracted from such multiscale SSNs? For
instance, the autocorrelation function of lifetime fluctuation
C(t) � ���1(t)���1(0), where ���1(t) � ��1(t) � ��1 is readily
elucidated from the inferred SSNs: The autocorrelation function
C(t � 2n) is represented from the multiscale SSN with transition
step of 2n as

Ct 
 2n� 
 �
I,J

�J
�1 �I

�1P2nSJ,SI� � PSJ�PSI��, [6]

where P2(n)(SJ, SI) � P2n(SJ�SI)P(SI) is the joint probability of
visiting SI followed by SJ after 2n steps; the higher-order corre-
lation functions can be also derived straightforwardly (see SI Text
for details). Fig. 4B shows that the multiscale SSN can naturally
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produce the autocorrelation function which agrees well with the
photon-by-photon based calculation (15, 35). The physical origin
of anomaly presented in the autocorrelation function C(t) of the
fluorescence lifetime fluctuation was conjectured as follows
(15): the conformational states corresponding to local minima
on the multidimensional energy landscape have vastly different
trapping times because the energy barrier heights for the inter-
conversion among local minima are expected to be broadly
distributed. Such a broad distribution of trapping time at a
particular D–A distance R should give rise to a rugged “tran-
sient” potential for short time scales, resulting in subdiffusion
and the stretched exponential in C(t). However, for longer time
scales, the apparent potential becomes a smooth harmonic mean
force potential and converges to a single state. In the following,
we will show that our multiscale SSN naturally reveals such
time-dependent topographical features of the underlying net-
work in the state space.

Time Scale-Dependent Topographical Features of the SSN. Fig. 5
illustrates how the SSN topography depends on the time scale by
projecting the network onto a two-dimensional plane composed
of the average FAD-Tyr distance RI � R0 and the average D–D
distance of the state from the others, where a state is represented
by a circle as in Fig. 2. Here, three combined SSNs are shown
with transition time steps of 24, 26, and 28, approximately
corresponding to 30, 120, and 500 ms, respectively. The average
D–D distance of the Ith state to all other states in the network
is defined by Ddistrib(I) � ¥J�1

NS P(SJ)dH(I, J), where P(SJ) and NS
denote the resident probability of the Jth state, SJ, and the total
number of states, respectively. dH(I, J) is the distance between
two distributions in terms of the Hellinger distance (36) [���

�

(PI(�)1/2 � PJ(�)1/2)2d�]1/2, where PI(�) and PJ(�) are the
transition probability P(�future�SI) and P(�future�SJ). The smaller
the value of Ddistrib(I), the closer the Ith state is located to the
center of the network. Furthermore, the variance of Ddistrib(I)
over the set of states in the network (see the black arrows in Fig.
5) measures how diverse the transition probabilities of the states
is. One can see in Fig. 5 that, as the time scale increases from 24

to 28 steps, the variance of Ddistrib(I) decreases and the network
becomes more compact. This indicates the trend for the states to
merge together for longer time scales.

The radius of the circles reflects the stability of the corre-
sponding states. One can see that, as �RI � R0�3 0, the states in
the networks tend to be more stabilized, implying that R0
corresponds to the equilibrium FAD-Tyr distance of the mean
force potential with respect to R. The more striking feature is
that the number of states can be more than one at a given value
of the FAD-Tyr distance R, and there exists a broad distribution
in the size of the states especially around R0 at the short time
scale of 24 steps. The latter is in big contrast to Fig. 2, where only
a single state presents at a given value of x (no degeneracy)
because of the one dimensional nature of the system. This clearly
indicates the degeneracy lifting properties that the multiscale
SSN can differentiate states having almost the same value in the
observable and therefore reflects the multidimensional nature of
the underlying landscape. Furthermore, compared with longer
time steps like 28, some “isolated” states with larger circles
(weighted more) exist in regions that are far away from R0 at 24

steps (note the time scale of m � 1/� � 580 ms in Fig. 2 is
expected to be close to 28 steps here). This is a manifestation of
frustration on the multidimensional energy landscape resulting
in a vast number of different trapping times at short time scale
as inferred in ref. 15.

Further insight into the nature of the conformational dynam-
ics can be acquired by considering how different states are
connected in the SSN. The simplest measure of connectivity
among the nodes is the degree of node kI, that is, the number of
transitions or links from the Ith node to the others. In Fig. 5,
the color of the states (the circles) indicates the value of the
normalized degree kI/kmax where kmax � max{k1, . . ., kNS
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Fig. 4. Visualization of the chromophore in protein and its fluctuation
correlation. (A) The protein structure of Fre/FAD complex. The tyrosine residue
Tyr35 and the FAD substrate, which are responsible for the fluorescence
quenching, are shown in the dash circles. (B) The autocorrelation function of
fluorescence lifetime fluctuation 	���1 (t)���1 (0)
 evaluated by Eq. 6 with the
transition time of 2n (n � 3, 4, . . ., 8) (denoted by the circles) in linear-
logarithmic plot. For comparison, the previous numerical result from a pho-
ton-by-photon-based calculation is also depicted (the solid line) together with
the normal Brownian diffusion model (gray dashed line) represented by the
overdamped Langevin equation on a harmonic potential well presented in
Fig. 2. � and � are set to be 0.19 Å2 and 1.73 s�1, respectively, with � � 1.4 Å�1

(15). The arrows indicate the time scales at which 	���1 (t)���1 (0)
 is evaluated
according to the multiscale SSNs shown in Fig. 5. The results indicate that the
SSN indeed captures the system’s multiscale dynamics.
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degeneracy (cf. Fig. 2 where there is no degeneracy). See text for more detail.
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the maximum degree among all states in the chosen SSN. As
indicated by the color bar in the figure, more links or transitions
from a state is denoted by color towards the red end of the
spectrum. The saturating red color signifies that the state
connects or communicates to almost all of the states in the
network. As the time scale increases, say, from 24 to 28, the nodes
tend to acquire more connections on average, indicated by the
shift of color to the red end. This reflects the fact that the system,
given more time, can explore more thoroughly the remote
regions on the energy landscape.

On the other hand, one can see from the degree dependence
on the stability of states in the multiscale SSNs (SI Fig. 9) that
the greater the degree of the node, the larger the node size. This
can be regarded as the first experimental manifestation so far
observed in the network of multidimensional conformational
space of biomolecules (10, 11); that is, the state tends to be more
stabilized when there exist more transition paths from the state.
Moreover, a large diversity of degrees for a given state size (or
stability) is observed for short time scales (e.g., 24 and 26), which
provided us with the evidence of heterogeneity in the state
connectivity. Its implication and the degree dependence of the
stability of states will be discussd in more detail in SI Text.

As a summary, at a typical time scale of ‘‘subdiffusion,’’ e.g.,
24 steps as shown in Fig. 5A, the underlying network exhibits
strong diversity in the transition and morphological features of
the state space, which should arise from the frustration of the
multidimensional energy landscape. However, on the time scale
of 28 steps, which can be regarded as a turning point from the
subdiffusion regime to the Brownian diffusion regime, the
topographical feature of the underlying network becomes rela-
tively compact, leading to the consolidation of all states so that
the number of links from each state become uniformly close to
maximum.

Conclusion
In this article, we have presented a method to extract the
multiscale network in state space from a single-molecule time

series, with the ability to lift the degeneracy inherent to finite
scalar time series. In contrast to models that are postulated for
the underlying physical mechanism, the multiscale SSN can
objectively provide us with rules about the underlying dynamics
that one can learn ‘‘directly’’ from the experimental single-
molecule time series. The network topography depends on the
time scale of observation; in general, the longer the observation,
the less complex the underlying network appears.

Our method also provides a means to introduce several
concepts of complex networks into single-molecule studies,
which have been developed extensively in different fields sharing
similar organization such as biology, technology, or sociology
(13). For instance, modules or communities and ‘‘small-
world’’concepts in biological networks are expected to be rele-
vant to specific functions and hierarchical organization of the
systems. This multiscale SSN can also examine the time scale on
which the concept of a Markovian process is valid. Most impor-
tantly, it provides a natural way of investigating how multiscale
systems evolve in time with mutual interference across the
hierarchical dynamics in different time scales.

As for the future works, a rigorous connection of the concepts
in the multiscale SSNs and those in the context of dynamical
theory can further enhance our understanding of the multiscale
dynamics of complex systems. Moreover, we expect that, by
monitoring the change of multiscale SSN that is locally con-
structed from a set of finite consecutive periods along the course
of time (37), it will be possible to shed light on how the system
adapts to time-dependent external stimuli under thermal
fluctuation.
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