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Abstract

Dividing protein structures into domains is proven useful for more accurate structural and functional
characterization of proteins. Here, we develop a method, called DDOMAIN, that divides structure into
DOMAINs using a normalized contact-based domain–domain interaction profile. Results of DDOMAIN are
compared to AUTHORS annotations (domain definitions are given by the authors who solved protein
structures), as well as to popular SCOP and CATH annotations by human experts and automatic programs.
DDOMAIN’s automatic annotations are most consistent with the AUTHORS annotations (90% agreement in
number of domains and 88% agreement in both number of domains and at least 85% overlap in domain
assignment of residues) if its three adjustable parameters are trained by the AUTHORS annotations. By
comparison, the agreement is 83% (81% with at least 85% overlap criterion) between SCOP-trained
DDOMAIN and SCOP annotations and 77% (73%) between CATH-trained DDOMAIN and CATH
annotations. The agreement between DDOMAIN and AUTHORS annotations goes beyond single-domain
proteins (97%, 82%, and 56% for single-, two-, and three-domain proteins, respectively). For an ‘‘easy’’ data
set of proteins whose CATH and SCOP annotations agree with each other in number of domains, the
agreement is 90% (89%) between ‘‘easy-set’’-trained DDOMAIN and CATH/SCOP annotations. The
consistency between SCOP-trained DDOMAIN and SCOP annotations is superior to two other recently
developed, SCOP-trained, automatic methods PDP (protein domain parser), and DomainParser 2. We also
tested a simple consensus method made of PDP, DomainParser 2, and DDOMAIN and a different version of
DDOMAIN based on a more sophisticated statistical energy function. The DDOMAIN server and its
executable are available in the services section on http://sparks.informatics.iupui.edu.
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Proteins are made of single or multiple functional domains
that can fold and function independently. Dividing a protein
into domains is useful for more accurate function and
structure determination because the methods for phyloge-
netic analysis and protein modeling usually work best for
single domains (Ponting and Russell 2002). Both sequence-

based (Chivian et al. 2003; Heger and Holm 2003; Linding
et al. 2003; Bateman et al. 2004; Letunic et al. 2004; Liu
and Rost 2004; Nagarajan and Yona 2004; von Ohsen et al.
2004; Sim et al. 2005) and structure-based methods (Holm
and Sander 1994; Siddiqui and Barton 1995; Sowdhamini
and Blundell 1995; Swindells 1995; Holm and Sander 1998;
Taylor 1999; Xu et al. 2000; Alexandrov and Shindyalov
2003; Guo et al. 2003; Kundu et al. 2004) have been
developed for identification of protein domains.

The problem of dividing a protein structure into
domains is not yet solved. This is in part due to the lack
of an unambiguous definition of domains. In general,
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structural domains can be defined as spatially separable,
independent folding units. However, how to implement
this qualitative definition is proven mathematically chal-
lenging. As a result, widely used databases of structural
domains such as SCOP (Murzin et al. 1995) and CATH
(Orengo et al. 1997) rely on human experts to make
all (SCOP) or most (CATH) decisions on domain anno-
tations. However, as the number of solved structures
increases rapidly, there is an urgent need for the develop-
ment of accurate methods for automatic domain identi-
fication of protein structures.

The commonly used principle in automatic domain
parsing is that the interdomain interaction under a correct
domain assignment is weaker than the intradomain inter-
action. Examples are PUU (Holm and Sander 1994),
DOMARK (Siddiqui and Barton 1995), DETECTIVE
(Swindells 1995), DALI (Holm and Sander 1998),
STRUDL (Wernisch et al. 1999), DomainParser (Xu et al.
2000; Guo et al. 2003), and protein domain parser (PDP)
(Alexandrov and Shindyalov 2003). Others (Sowdhamini
and Blundell 1995; Pugalenthi et al. 2005) define domains
by clustering substructures based on their spatial distances.
A new approach based on decoupled domain motions
obtained from a Gaussian network model was also pro-
posed recently (Kundu et al. 2004). In all these approaches,
residue–residue interaction is described by either the
number of contacts based on a distance cutoff (Crippen
1978) or contact surface area (Wodak and Janin 1981).

Here, we propose the method DDOMAIN—an automatic
method that divides domains by using a normalized
domain–domain interaction profile. With appropriate train-
ing of three adjustable parameters, the new method has the
best agreement (89.7% in number of domains) with protein
domains annotated by the authors who solved the structures
(AUTHORS annotations). This is followed by SCOP
(82.6%) and CATH (76.6%) annotations. The same trend
with slightly smaller success rates is observed when both the
number of domains and at least 85% overlap in domain
assignment of residues are used as a criterion for agreement
between DDOMAIN and expert annotations. Comparing to
two other recent SCOP-trained methods (PDP and Domain-
Parser 2), SCOP-trained DDOMAIN has the highest agree-
ment with SCOP annotations in number of domains.

Materials and Methods

The DDOMAIN algorithm

We establish an automatic domain-parsing procedure
based on the assumption that each structural domain
corresponds to a continuous segment of its amino acid
sequence, and the interaction between the domains is the
weakest under a correct domain assignment. To estimate
domain–domain interactions, we use the number of

contacts between the domains. To reduce computing time,
a contact is defined by the distance between two residue
side-chain centers of mass within a distance cutoff. The
detail procedure for domain parsing is as follows.

(1) For a given structure, all residues with coordinates are
considered as continuous from 1 to Nr. The structure is
divided into two candidate domains—residues from 1 to i
and from i + 1 to Nr. The contact energy between the two
candidate domains, E1:i,i+1:Nr, can be calculated as below:

E1:i;i + 1:Nr
= S

i

j = 1
S
Nr

k = i + 1
EcontðrSCM

jk Þ; (1)

where EcontðrSCM
jk Þ is the contact interaction energy

between residues j and k whose side chain centers of
mass are at distance rSCM

jk apart. A contact is defined when
rSCM

jk # rcut with rcut ¼ 6.5 Å and EcontðrSCM
jk Þ= �1

regardless of contacting residue types. To facilitate the
comparison among domain candidates, the interdomain
interaction energy E1:i,i+1:Nr is first ‘‘normalized’’ by the
sizes of individual domains.

Enorm
1:i;i + 1:Nr

=
E1:i;i + 1:Nr

½ðNr � iÞ�a : (2)

This normalization is similar to the normalization of
the number of interdomain contacts used in the PDP
(protein domain parser) method (Alexandrov and Shin-
dyalov 2003). As in PDP, we let a ¼ 0.43. Unlike PDP,
we further normalize Enorm

1:i;i+1:Nr
so that the average nor-

malized energy is 1.That is,

EProfile ðiÞ= ðNr � 1Þ
+

Nr�1

k = 1 Enorm
1:k;k + 1:Nr

Enorm
1:i;i + 1:Nr

: (3)

The final energy is called the interaction profile
between two domain candidates with residues i and i + 1
as the domain boundary. The interaction profile has a
positive value because of normalization. The purposes of
the first and second normalizations are to facilitate the
comparison between domains and proteins in different
sizes, respectively.

(2) Once the interaction profile for a given protein
structure is constructed for all residues, we locate the lowest
value of the profile EProfile(Imin). (The lowest interaction-
profile value means the weakest interaction because the inter-
action profile, unlike interaction energy, is positive.) Imin is
the location for two separated domains if (a) 40 < Imin <
Nr � 40, (b) EProfileðIminÞ# Elow

cutoff , and (c) EProfileð jÞ�
EProfileðIminÞ$ Eexcess

cutoff for a continuous segment of length
>Lcut in both proposed domains (1: Imin and Imin + 1: Nr).
Here, Elow

cutoff is the maximum allowed profile energy for a
residue to be designated as a domain boundary, Eexcess

cutoff is the
minimum profile energy that is above the profile energy at
the domain boundary, and Lcut is the minimum length of a
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continuous segment that satisfies the above condition. An
example of the interaction profile with the locations of three
parameters is shown in Figure 1. This protein (PDB ID 1gg3,
chain A) belongs to one of the proteins in the easy bench-
mark set in which SCOP and CATH annotations give the
same number of domains (see below).

(3) If two domains are found, each domain is subject to
steps 1 and 2 in order to see if each domain can be further
divided into smaller domains. The domain-parsing pro-
cedure ends when no additional domains can be found.

The above procedure assumes that a domain must be 40
residues or longer. It also has three to-be-determined param-
eters. These parameters will be Elow

cutoff; Eexcess
cutoff ; and Lcut

determined by using a training data set described below.

The DFIRE-based statistical potential

To examine the effect of interaction energy on the accu-
racy of domain prediction, we also employed a distance-
dependent, pairwise statistical potential EDFIRE(rjk)
based on a Distance-scaled, Finite, Ideal-gas REference
(DFIRE) state (Zhou and Zhou 2002). For a residue-based
DFIRE-energy function, the equation for deriving the
DFIRE potential is (Zhang et al. 2004)

EDFIREðrSCM
jk Þ

= 0; r $ rcut RT ln
Nobsð j;k;rÞ

r
rcut

� �1:61
Dr

Drcut
Nobs j;k;rcutð Þ

8><
>:

; r < rcut

(4)

where Nobs( j,k,r) is the number of observed pairs of
residues j and k at distance r apart (based on side-chain
centers of mass), R is the gas constant, T is temperature,

and Drcut is the width of distance bin Dr at r ¼ rcut.
The DFIRE-based energy function was generated with rcut¼
14.5 Å, Dr ¼ 2 Å for r < 2 Å, Dr ¼ 0.5 Å for 2 Å < r <
8 Å, and Dr ¼ 1 Å for 8 Å < r < 15 Å. The value
of Nobs( j,k,r) was obtained from a structural database of
1011 nonhomologous (<30% homology) proteins with reso-
lution <2 Å (http://chaos.fccc.edu/research/labs/dunbrack/
culledpdb.html) (Wang and Dunbrack Jr. 2003). This
residue-level potential is found to be one of the best statis-
tical energy functions in structure discrimination (Zhang
et al. 2004).

The overall procedure for a DFIRE-based domain parser
is the same as DDOMAIN except that EcontðrSCM

jk Þ used in
Equation 1 is now replaced by EDFIREðrSCM

jk Þ. This method
will be labeled as DDOMAIN-DFIRE. The three parame-
ters for DDOMAIN-DFIRE are trained independently from
DDOMAIN.

The training and test data sets

To optimize the three parameters used in DDOMAIN (or
DDOMAIN-DFIRE) and test its performance, we use the
following data sets.

(1) The AUTHORS set. We downloaded the AUTHORS
domain data set in which domain annotations are from
the authors who solved structures. The AUTHORS
domain data set is collected by Islam et al. (1995)
(http://bmm.cancerresearchuk.org/;domains/). It con-
tains 2240 protein structures from a non-redundant
representative set of the April 1996 Brookhaven protein
data bank (PDB). The set is randomly divided into two
groups with 1101 structures for training and 1139
structures for testing, respectively.

(2) The SCOP-CATH set. We built a set of proteins
annotated by both SCOP (Murzin et al. 1995) and
CATH (Orengo et al. 1997). We started with the
representative protein structures of SCOP 1.61 at a
maximal sequence identity of 25%. This set has 2889
structures and is labeled as the SCOP set. Within this
set, there are 2301 structures that have CATH annota-
tions. The set is randomly divided into two groups with
1157 structures for training and 1144 structures for
testing, respectively.

(3) The SCOP-CATH easy set. We found that 81% of the
structures (1853 out of 2301 proteins) in the SCOP-
CATH set have the same number of domains according
to either SCOP or CATH domain database. The 1853
structures can be viewed as an ‘‘easy’’ set for domain
parsing because two expert-based domain databases
agree with each other. The easy set is randomly divided
into two groups with 941 and 912 structures, respec-
tively. We labeled them as easy-1 and easy-2 sets,
respectively.

Figure 1. The contact-based interaction profile of chain A of protein 1gg3

is shown along with the domains identified by DDOMAIN (solid line),

SCOP (dashed line), and CATH (dash dotted line). The residue index here

is different from the actual residue number in the PDB structure file

because only residues with coordinates are numbered.
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(4) The SCOP-CATH hard set. We further made a corre-
sponding ‘‘hard’’ set by removing the proteins con-
tained in easy sets from the 2301 data set that has both
SCOP and CATH annotations. The hard set contains
448 proteins.

(5) The DomainParser set. We downloaded the test data set
used by DomainParser 2 (Guo et al. 2003). It contains
1317 chains whose domains were assigned by SCOP
1.59. This set is based on a 25% sequence identity
cutoff. We excluded some proteins whose structures
contain only Ca atoms. The number of protein chains
in this DomainParser set is 1224, in which 195, 210,
and 107 proteins are in the easy-1, easy-2, and hard
sets, respectively. We removed the proteins from easy-1
that was used in training. The final data set contains
1029 proteins.

Criterion for domain comparison

Here, we use a simple criterion based on the number of
domains to judge if there is an agreement between the
domains assigned by DDOMAIN and the domains anno-
tated by other methods. That is, two methods are in
agreement if they give an identical number of domains for
a given structure.

We also use an additional constraint of at least 85%
overlap in domain assignment of residues (Jones et al.
1998) to ensure the agreement in actual sequence loca-
tions of domains.

The three parameters in DDOMAIN are obtained by
optimizing the agreement between number of domains
predicted and annotated in a given training set. Optimi-
zation is performed by a simple grid search in step size of
0.01 for Elow

cutoff and Eexcess
cutoff and 1 for Lcut. We have also

optimized the parameters by optimizing the agreement in
both number of domains and at least 85% overlap. We

found that the additional constraint does not make a
significant change in percent of agreement reported here,
as found by Alexandrov and Shindyalov (2003) (see
Results). Thus, we report most results using the criterion
based on the number of domains for simplicity, unless it is
indicated otherwise.

DomainParser 2, PDP, and consensus prediction

DomainParser 2 and PDP are obtained from their respec-
tive authors. They are tested locally with the default
setting on the same test sets listed above. The same
criterion is used for measuring the agreement between the
domains predicted from the automatic domain parsers
(DomainParser 2 and PDP) and that from the expert-
annotated domain databases.

We also make a consensus prediction based on the pre-
dictions made by PDP, DomainParser 2, and DDOMAIN.
The number of domains predicted by the consensus
method is the number of domains predicted by the majority
of the three methods (i.e., two of the three methods). If all
three methods disagree in the number of domains, the result
from DDOMAIN is used.

Results

To compare DDOMAIN’s automatic domain annotations
with the annotations made by human experts, DDOMAINs
are trained and tested by AUTHORS, SCOP, and CATH
annotations, respectively. Two criteria are used. One is based
on the number of domains only and the other one is based
on the number of domains and at least 85% overlap. The per-
formance of DDOMAIN that is trained and tested for differ-
ent expert annotations with both criteria is shown in Table 1.
The success rate in which the number of expert-annotated

Table 1. Success rates for the agreement between DDOMAIN and expert annotations for the training and independent test sets

% Agreement Optimized parameters

Training Test All Elow
cutoff Eexcess

cutoff Lcut

AUTHORSa 90.4b (87.9c) 89.7 (88.3) 90.0 (88.1) 0.81 (0.60) 0.18 (0.38) 38 (32)

# Proteins 1101 (974d) 1139 (1015) 2240 (1989)

SCOPe 84.8 (83.9) 82.6 (81.1) 83.7 (82.5) 0.53 (0.53) 0.36 (0.36) 34 (34)

# Proteins 1157 (1157) 1144 (1144) 2301 (2301)

CATHe 79.6 (76.6) 76.6 (73.4) 78.1 (75.0) 0.67 (0.66) 0.30 (0.20) 36 (32)

# Proteins 1157 (1124) 1144 (1106) 2301 (2230)

a The AUTHORS set of 2240 proteins.
b The values in each cell are percent of agreement or optimized parameters or number of proteins when number of domains is used as a criterion for
agreement between DDOMAIN and expert annotations.
c The values in parentheses are percent of agreement, optimized parameters, or number of proteins when both number of domain and at least 85% overlap in
domain assignment are used as a criterion for agreement between DDOMAIN and expert annotations.
d Not all proteins in this set have a detailed domain assignment of residues. Thus, the number of proteins, sometimes, is smaller when both number of
domain and at least 85% overlap in domain assignment are used as a criterion for agreement.
e The SCOP and CATH set of 2301 proteins.
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domains agrees with the number of domains given by
DDOMAIN in independent test sets is 89.7% bet-
ween AUTHORS-trained DDOMAIN and AUTHORS,
82.6% between SCOP-trained DDOMAIN and SCOP,
and 76.6% between CATH-trained DDOMAIN and
CATH annotations. In all three cases, the difference
between the success rates in training and testing is small
(#3%). This indicates the robustness of the success rates
obtained.

An additional requirement of at least 85% overlap in
domain assignment of residues leads to small changes in
success rates. Table 1 shows that the success rates become
88.3% between AUTHORS-trained DDOMAIN and
AUTHORS, 81.1% between SCOP-trained DDOMAIN and
SCOP, and 73.4% between CATH-trained DDOMAIN
and CATH annotations. Thus, the requirement of at least
85% overlap leads to #3% changes in percent of agree-
ment. The values of the three optimized parameters,
however, change dramatically in AUTHORS, less so in
CATH, and no change in SCOP when different criteria are
used in training. We found that this is mostly because of the
existence of multiple solutions to achieve a similar level
of agreement with a given expert annotation. Because
there is only minor change in success rates from the
requirement of at least 85% overlap, we will report the
results based on the agreement in number of domains only
in the remaining paper, unless it is explicitly indicated
otherwise.

It is of interest to know how success rates change as a
function of adjustable parameters. Figure 2 shows how
the success rate of predicting the number of domains
varies as one of the three parameters changes. This figure
is based on the SCOP set. As one can see, the change of
success rate is relatively small across a wide range of
values of three adjustable parameters around the opti-
mized values (0.53, 0.36, and 34 for Elow

cutoff ; Eexcess
cutoff ; and

Lcut, respectively). The variation of the success rates is
<1% for almost the entire range of the parameter values
tested. The small variation of the success rates further
demonstrates that the optimized parameters obtained for
a given annotation are robust.

In domain annotations, domain boundaries are clear for
some proteins but are more subjective in others. Thus, we
divide the SCOP-CATH set into easy and hard sets. In the
easy set, SCOP and CATH annotations agree in number of
domains while, in the hard set, they disagree. One
interesting question is: If DDOMAIN is trained by the
easy set, which expert annotation (SCOP or CATH) will
DDOMAIN be more consistent with?

To address this question, DDOMAIN was trained by
the SCOP-CATH easy-1 set of 941 proteins. The rate of
agreement between the DDOMAIN prediction and the
SCOP/CATH annotation for the training is 90.8%. The
optimal values of Elow

cutoff ; Eexcess
cutoff ; and Lcut are 0.66, 0.36,

and 32, respectively. A similar success rate (89.7%) is
obtained for an independent easy-2 test set of 912
proteins. Surprisingly, as Table 2 shows, for the hard set
of 448 proteins (where SCOP and CATH disagree in the
number of domains) DDOMAIN’s annotations are sig-
nificantly more consistent with SCOP annotations in
number of domains. The agreement is 56.9% with SCOP
but only 26.3% with CATH. This large 30% difference is
surprising considering that DDOMAIN was not trained to
favor either SCOP or CATH annotations. The overall
success rate in agreeing with SCOP annotations for all
training (easy-1) and test sets (easy-2 and hard sets) is
83.8%. This success rate is essentially the same as the
success rate of 83.7% in agreeing with SCOP annotations
for the whole SCOP-CATH set when DDOMAIN was
trained by SCOP annotations (Table 1). Similarly, we
found that the success rates in agreeing with CATH
annotations for the whole SCOP-CATH set are 78.1% when
DDOMAIN is trained by CATH annotations and 78.1%
when DDOMAIN is trained with the easy-1 set. Thus,
overall success rates are mostly independent of training sets
(whether from the easy set or a mix of easy and hard sets)
although trained parameters are somewhat dependent on
training sets. Again, this indicates that there are multiple
solutions to achieve a similar level of agreement with a
given expert annotation. DDOMAIN is intrinsically biased
toward SCOP annotation (compared to CATH annotation)
no matter which subset of SCOP or CATH annotations is

Figure 2. The success rates for the SCOP set as a function of one of the

three parameters (Elow
cutoff ; Eexcess

cutoff ; and Lcut) in DDOMAIN with two other

parameters fixed. For Eexcess
cutoff (dashed curve in the top figure), Elow

cutoff and

Lcut are fixed at 0.53 and 34, respectively. For Elow
cutoff (solid curve in the

top figure), Eexcess
cutoff and Lcut are fixed at 0.36 and 34, respectively. For Lcut

(solid curve at the bottom figure), Elow
cutoff and Eexcess

cutoff are fixed at 0.53

and 0.36, respectively. This figure explores the variation of the parameters

around the optimized values (0.53, 0.36, and 34 for Elow
cutoff ; Eexcess

cutoff ;

and Lcut, respectively).
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used. It should be mentioned that, when at least 85%
overlap is used as an additional criterion to measure success
rate, easy-set-trained DDOMAIN yields a success rate of
89.5% for the easy-1 set, 88.2% for the easy-2 set, and
52.0% for the hard set. The reduction with the additional
criterion is the largest (5%) for the hard set.

The easy-set-trained DDOMAIN is further tested in the
DomainParser 2 set annotated by SCOP (Table 2). The
success rate is 80.9%. Considering the fact that most
disagreement between DDOMAIN and SCOP annotations
is in the hard set of proteins, a slightly lower success rate
(;81%) in the DomainParser 2 set than in the SCOP-
CATH set (;84%) is due to removal of proteins contained
in the easy-1 set from the DomainParser 2 set.

Results on the AUTHORS set given by DDOMAIN
trained by the easy-1 set are also shown in Table 2. The
success rate is 81.5%. This success rate is comparable to
the success rates of 83.7% in SCOP annotations and
78.1% in CATH annotations for the SCOP-CATH set but
is a drastic reduction from 90% if trained by AUTHORS
annotation. Similarly, Table 2 shows that DDOMAIN
trained by AUTHORS annotation gives a significantly
lower agreement (4.3%–6.4%) with the SCOP annota-
tions in easy-2, hard, and DomainParser 2 sets. Again,
this highlights the difference among different expert
annotations.

We tested the effect of energy functions for domain–
domain interactions on automatic domain annotation. This is
done by using the more realistic, distance-dependent, resi-
due-level DFIRE statistical potential (DDOMAIN-DFIRE)
rather than the residue-independent contact interaction
(DDOMAIN). The results of DDOMAIN-DFIRE trained

by the easy-1 set are shown in Table 2. There is no essential
difference between the success rates given by DDOMAIN-
DFIRE and by DDOMAIN on the easy set or on the
DomainParser 2 set. DDOMAIN-DFIRE gives a lower
success rate in agreeing with SCOP but a higher success
rate in agreeing with CATH than DDOMAIN in the hard
set. DDOMAIN-DFIRE trained by the easy-1 set also gives
a slightly higher success rate (82.8%) than DDOMAIN
(81.5%) in agreeing with AUTHORS annotations. This
is likely due to the fact that the former has a higher success
rate in agreeing with CATH annotations which allow more
cuts than SCOP for domain annotations (Veretnik et al.
2004). The overall similarity between the performance of
DDOMAIN-DFIRE and that of DDOMAIN indicates that a
better energy function for estimating the domain–domain
interaction is not necessarily useful for generating more consis-
tent domain annotations with other expert-based annotations.

DDOMAIN is compared to two recently developed
methods, PDP and DomainParser 2, both of which were
trained by SCOP annotations. We also developed a
consensus method based on PDP, DomainParser 2, and
DDOMAIN. We did not make any attempt to remove
proteins used in training PDP and DomainParser 2. This
allows us to compare the best performance of the two
methods. DomainParser 2 makes a similar level of success
(90%) as DDOMAIN in the easy-2 set whereas PDP is not
too far behind (84%). The consensus prediction from PDP,
DomainParser 2, and DDOMAIN makes a noticeable
improvement with a success rate of 92.3%.

For the hard set (where SCOP and CATH disagree in
the number of domains), success rates of various auto-
matic programs obviously depend on which annotation is

Table 2. Success rates in which the number of expert annotated domains agrees with the number of domains given by PDP,
DomainParser 2, DDOMAIN, and the consensus prediction

SCOP-CATH set

Easy-1a Easy-2a Hardb Alla DP2c AUTHORSd

Method (941)e (912)e (448)e (2301)e (1029)e (2240)e

DDOMAIN 90.8 89.7 56.9 (26.3) 83.8 (78.1) 80.9 81.5

DDOMAIN-AUTHORSf 84.5 85.4 41.5 (37.5) 76.5 (75.7) 74.5 90.1

DDOMAIN-DFIREg 90.8 90.2 50.4 (33.0) 82.6 (79.3) 80.2 82.8

DDOMAIN-multidomainh 88.9 89.0 48.4 (35.9) 81.1 (78.7) 77.2 86.7

PDP 81.7 84.2 29.7 (44.0) 72.6 (75.4) 69.0 81.0

DomainParser 2 86.6 90.2 43.3 (38.8) 79.6 (78.7) 76.8 86.1

Consensusi 87.6 92.3 47.8 (34.8) 81.7 (79.2) 81.0 87.0

a The set in which SCOP and CATH annotations agree on the number of domains.
b The set in which SCOP and CATH annotations disagree on the number of domains. The success rates are given with SCOP annotations. Results in
parenthesis are with CATH annotations.
c The DomainParser 2 test set (SCOP annotations).
d Proteins whose domains are annotated by the authors who solved structures.
e The number of protein structures in each test set.
f DDOMAIN optimized with the AUTHORS data set. The optimized parameters are: 0.81, 0.18, and 36 for Elow

cutoff ; Eexcess
cutoff ; and Lcut, respectively.

g DDOMAIN with the interaction profile calculated by the residue-level DFIRE statistical potential (Zhang et al. 2004).
h DDOMAIN trained by two-domain and three-domain proteins only.
i Consensus prediction made from PDP, DomainParser 2, and DDOMAIN.
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used. Based on the SCOP annotation, the success rates
are 29.7%, 43.3%, and 56.9% for PDP, DomainParser 2,
and DDOMAIN trained by the easy-1 set, respectively.
On the other hand, if the CATH annotation is used, the
corresponding success rates are 44.0%, 38.8%, and
26.3%, respectively. Thus, DDOMAIN’s annotations are
the closest to SCOP annotations. DDOMAIN also gives
the highest success rate among single methods in the
DomainParser 2 set based on the SCOP annotation. The
consensus prediction, while making noticeable improve-
ment in the easy-2 and the DomainParser 2 sets, reduces
the agreement with the SCOP annotation and increases
the agreement with the CATH annotation in the hard set.

Interestingly, PDP, although trained by the SCOP
annotation (Alexandrov and Shindyalov 2003), gives a
result that is more consistent with the CATH annotation.
Moreover, DomainParser 2, also trained by the SCOP
annotation, is only 4% more consistent with the SCOP
annotation than with the CATH annotation. In contrast,
DDOMAIN is 30% more consistent with SCOP than with
the CATH annotation and 13% more consistent with
SCOP than DomainParser 2.

Three automatic domain parsers are also tested in the
AUTHORS set. In this case, the success rate of easy-set-
trained DDOMAIN (or DDOMAIN-DFIRE) is similar to
that of PDP and smaller than that of DomainParser 2.
Consensus prediction makes a slight improvement over
DomainPaser 2 in agreeing with AUTHORS annotations.
The slightly worse performance of DDOMAIN than that
of DomainParser 2 in this benchmark is likely due to
different criteria used by different authors in dividing
domains, as shown in Table 1.

It is of interest to know how the accuracy of the
methods varies for proteins with different number of
domains. Table 3 shows the number of proteins with
correctly predicted number of domains along with the
number of proteins whose number of domains are over-
predicted or underpredicted. The results are based on the
entire SCOP set of 2301 proteins. Here, DDOMAIN is

trained by the easy set 1. It is clear that the overall
success of DDOMAIN in the SCOP set is largely due to
its highest success rate (1618/1751, 92%) in predicting
single-domain proteins (comparing to 1498/1751, 86% by
DomainParser 2 and 1328/1751, 76% by PDP). For
proteins with more than one domain, the success rate by
DDOMAIN is lower than that by either DomainParser 2
or PDP. In general, DDOMAIN tends to undercut, PDP
tends to overcut, and DomainParser 2 is somewhat in
between, according to the statistics in Table 3.

We can train DDOMAIN to ‘‘cut’’ more as illustrated
by AUTHORS-trained DDOMAIN. Table 3 shows that, if
DDOMAIN is trained by maximizing the success rate for
two-domain and three-domain proteins, the number of
correct predictions for single-domain proteins decreases
from 1618 to 1516 while the number of correct predic-
tions increases from 251 to 284 for two-domain proteins
and from 47 to 56 for three-domain proteins. The overall
success rate for 2301 proteins is 81.2%, which is only
2.5% lower than DDOMAIN trained by the full SCOP
annotations. The number of correct predictions for single-
domain and two-domain proteins is now higher than that
of either DomainParser 2 or PDP. The overall perform-
ance of this multidomain-trained DDOMAIN decreases
for the entire SCOP-CATH set (easy, hard, and DP2) but
increases for the AUTHORS set, as expected (Table 2).

The performance of AUTHORS-trained DDOMAIN
for one- to five-domain proteins for the AUTHORS set
is shown in Table 4. DDOMAIN agrees with the AUTHORS
set well for one- (96.8%), two- (82.0%), and three-domain
(55.6%) proteins. As a reference, the results of Domain-
Parser 2 and PDP are also shown.

DDOMAIN is further tested by a new benchmark
(Benchmark-2) (Holland et al. 2006). This new bench-
mark is an ‘‘easy set’’ in which CATH, SCOP, and
AUTHORS all agree on the number of domains. Only
one half of the set are available for download. The results
are shown in Table 5. For this small set, the performance
of DDOMAIN is worse than that of either DomainParser

Table 3. Number of proteins whose number of domains is correctly predicted, over-predicted, and under-predicted for the entire
SCOP set of 2301 proteins

Correct prediction Over Under

# Domains SCOP DDOMAINa DP2b PDP DDOMAINa DP2b PDP DDOMAINa DP2b PDP

1 1751 1618 (1516c) 1498 1328 133 (235) 253 392 0 (0) 0 31d

2 411 251 (284) 262 275 19 (44) 51 96 141 (83) 98 40

3 106 47 (56) 60 50 7 (17) 13 40 52 (33) 33 16

4 25 10 (10) 11 13 2 (6) 1 10 13 (9) 13 2

$5 8 1 (2) 1 4 0 (1) 1 4 7 (5) 6 0

a DDOMAIN is trained by the easy set 1. Also see below.
b DomainParser 2.
c The number in parentheses is for DDOMAIN trained by two-domain and three-domain proteins only (Elow

cutoff = 0:72; Eexcess
cutoff = 0:2; and Lcut ¼ 36).

d PDP predicted some proteins with zero domains.
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2 or PDP. This highlights the strong dependence of
method performance on benchmarks.

Discussion

In this paper, we have proposed a simple method called
DDOMAIN for automatic domain parsing of protein
structures. The method is based on the principle that
inter-domain interaction is weak under a correct domain
assignment. The domain–domain interaction is calculated
either by number of residue–residue contacts (DDOMAIN)
or by a residue-based, distance-dependent statistical pair
potential (DDOMAIN-DFIRE). DDOMAIN with an appro-
priate training yields a prediction that is most consistent
with AUTHORS annotations, followed by SCOP and
CATH annotations. DDOMAIN yields not only a 96.8%
agreement with AUTHORS annotations in single-domain
proteins, but also a high 82.0% in two-domain and 55.6% in
three-domain proteins. For comparison, the highest agree-
ments between SCOP-multidomain-trained DDMAIN and
SCOP annotation are 86.6%, 69%, and 53% for one-, two-,
and three-domain proteins, respectively.

It is somewhat surprising that DDOMAIN’s annota-
tions are most consistent with AUTHORS annotations in
number of domains because AUTHORS assignment is
supposed to be the least consistent data set as a result of
involvement of many individuals with different opinions
on domain definitions (Veretnik et al. 2004). The under-
lying difference in expert opinions (Veretnik et al. 2004)
is that SCOP is based on evolutionary and structural
relations whereas AUTHORS emphasizes more on small
functional regions. The best use of DDOMAIN is to use
the AUTHORS-trained parameter set. However, if one
is interested in reproducing a SCOP-like annotation, a
SCOP-trained parameter set can be used. More studies are
needed to assess if functional regions are a more funda-
mental determinant than evolution in domain identification.
This study is certainly not enough to support that AUTHORS
should be the gold standard of protein domains. More
studies are certainly needed in this area. For example, what
happens if DomainParser 2 is also trained by AUTHORS

annotations? Will DomainParser 2 be also more consistent
with AUTHORS than with SCOP or CATH?

Veretnik et al. (2004) found that a contact-based energy
is too simplistic to make an accurate domain assignment
at least for some proteins. However, the use of more
realistic distance-dependent knowledge-based DFIRE
energy function did not improve the performance of
domain assignment. This may indicate that the perform-
ance of a domain parser is less sensitive to the accuracy of
an interaction energy function, as a result of the some-
what subjective nature of domain definition. However,
further studies are certainly needed.

We also tested a simple consensus prediction based on
the results of PDP, DomainParser 2, and DDOMAIN. The
consensus prediction seems to improve the performance
in the easy set but reduce the agreement with SCOP anno-
tations in the hard set. The overall agreement between the
consensus prediction and SCOP annotation for the whole
SCOP-CATH set (81.7%) is even worse than from the use
of DDOMAIN alone (83.8%). Consensus prediction
improves over DDOMAIN from 78.1% to 79.2% in
agreeing with CATH annotations largely because
DomainParser 2 has a better agreement with CATH
annotations (78.7%) than DDOMAIN. Similarly, consen-
sus prediction improves over easy-set-trained DDOMAIN
from 81.5% to 87.0%, agreeing with AUTHORS annota-
tions largely because DomainParser 2 has a better agree-
ment with AUTHORS annotations (86.1%) than the easy-
set-trained DDOMAIN.

In this work, we only compare DDOMAIN with two
recently developed methods, PDP and DomainParser 2.
This is because the standalone programs for the two
methods can be readily obtained and DomainParser 2 has
been shown to be more accurate than many methods
developed earlier (Guo et al. 2003). Here, we found that
DDOMAIN’s automatic annotation trained by either
SCOP annotations or the easy set has the best consistency
with SCOP annotations in number of domains among
three SCOP-trained automatic methods (PDP, DomainParser
2, and DDOMAIN). This is true for both single-and
two-domain proteins if trained appropriately (Table 3).

Table 5. Number of proteins whose number of domains is
correctly predicted for the Benchmark-2

#Domains Benchmark-2 DDOMAINa DP2b PDP

1 54 96.3% 98.1% 96.3%

2 69 72.5% 72.5% 87.0%

3 25 44.0% 68.0% 72.0%

4 4 50.0% 50.0% 75.0%

5 3 66.6% 33.3% 66.6%

6 1 0% 100% 0%

a DDOMAIN is trained by the easy set.
b DomainParser 2.

Table 4. Number of proteins whose number of domains is
correctly predicted for the AUTHORS set

#Domains AUTHORS DDOMAINa DP2b PDP

1 1442 96.8% 96.6% 86.0%

2 690 82.0% 73.3% 74.3%

3 81 55.6% 49.4% 60.5%

4 26 30.8% 53.8% 50.0%

5 1 0% 0% 0%

a DDOMAIN is trained by the AUTHORS set.
b DomainParser 2.
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However, its performance is worse than either PDP or
DomainParser 2 when tested in a small benchmark in which
SCOP, CATH, and AUTHORS all agree in number of
domains (Table 5). This indicates that the performance on
a small subset of proteins may vary. Both PDP and
DDOMAIN belong to a category of domain parsers that
locate domain boundaries based on an analysis of domain–
domain interactions whereas DomainParser 2 is a more
sophisticated method based on the Ford-Fulkerson algorithm
for a contact-network flow problem and a neural network for
recognizing overcut domains. The two main differences
between PDP and DDOMAIN are that (1) PDP defines a
contact based on Ca atoms and DDOMAIN based on side-
chain center of mass and (2) DDOMAIN normalizes domain–
domain interaction not only by domain sizes but also by the
average energy of all possible domain–domain interactions.
The latter, which is absent in PDP, may be important for
making a method suitable for proteins of any sizes.

One of the major limitations in the current method is
the assumption that each structural domain is a contin-
uous segment of its amino acid sequence. However,
expert-based annotations sometimes assign two different
segments to one domain. A new version of DDOMAIN
that divides structures without being restricted by
sequence connectivity is in progress.
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