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Abstract

In this paper, we report a knowledge-based potential function, named the OPUS-Ca potential, that requires
only Ca positions as input. The contributions from other atomic positions were established from pseudo-
positions artificially built from a Ca trace for auxiliary purposes. The potential function is formed based on
seven major representative molecular interactions in proteins: distance-dependent pairwise energy with
orientational preference, hydrogen bonding energy, short-range energy, packing energy, tri-peptide packing
energy, three-body energy, and solvation energy. From the testing of decoy recognition on a number of
commonly used decoy sets, it is shown that the new potential function outperforms all known Ca-based
potentials and most other coarse-grained ones that require more information than Ca positions. We hope
that this potential function adds a new tool for protein structural modeling.
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Protein folding is one of the most challenging problems in
both computational and experimental biophysics (Dobson
and Karplus 1999). The goal is to determine three-
dimensional structures from one-dimensional amino acid
sequences. In computational studies, a potential function
plays a central role in accurately predicting the structures.
There are two general types of potential functions: One is
physics-based and another is knowledge-based. The
physics-based potential functions are derived from quan-
tum mechanical calculations, e.g., the CHARMM force
field (MacKerell et al. 1998), the essence of which is
molecular mechanics. The knowledge-based potential
functions are derived from statistical analysis of known
protein structures, the essence of which is the potential of

mean force, or free energy. In many applications, it has
been shown that the knowledge-based potential functions
outperform the physics-based ones. There are many com-
prehensive reviews for various potential functions in the
literature (Sippl 1995; Jernigan and Bahar 1996; Moult
1997; Lazaridis and Karplus 2000; Gohlke and Klebe
2001; Meller and Elber 2002; Russ and Ranganathan
2002; Buchete et al. 2004a; Poole and Ranganathan 2006;
Skolnick 2006; Zhou et al. 2006).

The knowledge-based potential functions can usually
be divided into two types: atomic level potentials (DeBolt
and Skolnick 1996; Zhang et al. 1997; Melo and Feytmans
1998; Samudrala and Moult 1998; Gatchell et al. 2000; Lu
and Skolnick 2001; Zhou and Zhou 2002; McConkey et al.
2003; Hubner et al. 2005; Qiu and Elber 2005; Shen and
Sali 2006) and coarse-grained potentials (Tanaka and
Scheraga 1976; Miyazawa and Jernigan 1985; Hendlich
et al. 1990; Sippl 1990; Hinds and Levitt 1992; Jones et al.
1992; Godzik et al. 1995; Miyazawa and Jernigan 1996;
Bahar and Jernigan 1997; Eisenberg et al. 1997; Betancourt
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and Thirumalai 1999; Liwo et al. 1999; Simons et al. 1999;
Tobi and Elber 2000; Melo et al. 2002; Zhang et al. 2003,
2004, 2006; Buchete et al. 2004b; Loose et al. 2004; Colubri
et al. 2006; Dehouck et al. 2006; Dong et al. 2006; Rajgaria
et al. 2006). The latter have been demonstrated to be highly
effective in reducing the computational cost in modeling
native protein structures, although they are sometimes
thought not to be physically rigorous enough to reflect the
entire landscape of the potential surface (Thomas and Dill
1996; Skolnick 2006). The performance and applicability of
coarse-grained potential functions are largely modulated by
the choice of a coarse-graining scheme. In many applica-
tions, an ability to accurately calculate the potential energy
solely based on Ca positions would certainly give one some
advantages. Typical examples are recent studies on model-
ing protein chain topology based on low-resolution density
maps (Wu et al. 2005a) and on a coarse-grained folding
simulation based on a Ca model (Wu et al. 2005b).

In this study, we have developed a knowledge-based
potential function, named the OPUS-Ca potential, that
requires only the Ca positions as input. The potential
function contains seven terms for representing typical
molecular interactions in proteins. They are distance-
dependent pairwise energy with orientational preference,
hydrogen bonding energy, short-range energy, packing
energy, tri-peptide packing energy, three-body energy, and
solvation energy. It was tested against a number of
commonly used decoy sets. The results show that the
OPUS-Ca potential outperforms all known Ca-based poten-
tials and most other coarse-grained ones that require more
information than Ca positions. We hope that this potential
function adds a new tool for protein structural modeling.

Results

Performance of individual terms

We first demonstrate the performance of five major
individual energy terms in Equation 1 (see Materials
and Methods) in terms of decoy recognition. They are
distance-dependent pairwise energy with orientational
preference Epairwise, hydrogen bonding energy EHbond,
short-range energy Eshort_range, packing energy Epacking,
and solvation energy Esolvation. There are two other terms:
tri-peptide packing energy Etri–peptide and three-body
energy E3–body. Due to their relatively small contributions,
their individual performance is not presented in detail here.

The decoy sets used in this study were from two
collections. One was the so-called Decoys’R’Us collec-
tion, which included decoy sets 4state_reduced (seven
proteins) (Park and Levitt 1996), fisa (four proteins)
(Simons et al. 1997), fisa_casp3 (five proteins) (Simons
et al. 1997), lattice_ssfit (eight proteins) (Samudrala et al.
1999; Xia et al. 2000), and lmds (eight proteins) (Keasar

and Levitt 2003). In total, there are 32 proteins in the
Decoys’R’Us collection. Another collection was the LKF
decoy set (185 proteins) (Loose et al. 2004).

Table 1 gives the detailed ranking and Z-scores for
individual proteins in the Decoys’R’Us collection. Note
that only the results for 25 commonly used proteins in
Decoys’R’Us (Tobi and Elber 2000; Dehouck et al. 2006)
are listed.

Distance-dependent pairwise energy
with orientational preference

For the distance-dependent pairwise energy term Epairwise,
the energy was calculated with respect to pseudo-Cb atoms
built from Ca atoms. In the literature (Zhang et al. 2004), it
had been shown that pairwise energy based on Cb atoms
taken from X-ray structures was better than that based on
Ca atoms because the distance between two Cb atoms
could better represent side chain packing than that between
Ca atoms. This was confirmed in this study. Moreover,
it has been shown that it is advantageous to include the
orientational preference of residues (Buchete et al. 2004b;
Miyazawa and Jernigan 2005). In this study, the pairwise
energy in the OPUS-Ca potential took into account the
relative orientation of two pairing residues. The comparison
of decoy recognition for pairwise energy with and without
orientation preference indicates that the energy with ori-
entation preference could recognize the native confor-
mation of more decoy sets than that without orientation
preference. Also, the average Z-scores for the native struc-
ture in the two collections of decoy sets was observed to
be 0.2–0.3 better in the case with the orientation preference
than the case without. Figure 1 shows the performance
on two decoy set collections, Decoys’R’Us (25 proteins)
and LKF (185 proteins). The upper and middle panels give
the percentage of proteins in the decoy sets whose native
conformations were correctly ranked as the top 1 and
within the top 10, respectively. It is clear that the trends
in both decoy set collections are consistent; the perform-
ance of pairwise energy with pseudo-Cb is better than the
case without, and the performance of the energy with the
orientational preference is better than the case without.
Finally, the average Z-scores show exactly the same trend
as well (Fig. 1, lower panels).

Hydrogen bonding energy

The hydrogen bonding energy term EHbond is required to
build pseudo-backbone atoms from the original Ca atoms.
They were the N and H atoms of amide groups and the C
and O atoms of carbonyl groups. To compensate for error
from building backbone atoms, the hydrogen bonding
criteria were slightly modified. First, Ca-based hydrogen
bonding energy was compared with all-atom-based hydro-
gen bonding energy, which directly used original backbone
atoms and standard hydrogen bond criteria. By testing on
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25 proteins in the Decoys’R’Us sets, it was found that
Ca-based hydrogen bonding energy recognized more native
conformations and had only a slightly lower Z-score than
all-atom-based energy (Fig. 2). The Ca-based hydrogen
bonding energy term also performed better than the all-
atom-based calculation in the top-10 ranking.

Another feature of our hydrogen bonding energy was that
an unfavorable energy barrier for hydrogen bond formation
was eliminated by a constant energy shift. The occurrence
of hydrogen bonds with a large CN distance and a large

CON angle was rare. That caused hydrogen bonds to have
higher energy at these regions than at the optimal hydrogen
bonding region. The energy values sometimes could even
be positive, so that hydrogen bond formation was not
favorable. To better describe hydrogen bonding as an
energetically favorable interaction, a constant energy shift
was added to ensure that the energy was near zero when a
hydrogen bond was about to form. Hence, hydrogen bonds
could readily form without encountering an energy barrier
when an amide group was close to a carbonyl group.

Table 1. Performance of the OPUS-Ca potential on the Decoys’R’Us decoy set

(A) Individual proteins

Size Pairwise H-bond Short-range Packing Tri-peptide Three-body Solvation

4state_reduced

1 1ctf 631 1a �3.14b 4 �2.18 1 �2.56 9 �1.96 1 �2.66 2 �3.40 4 �2.89

2 1r69 676 1 �3.02 1 �2.68 1 �2.95 2 �3.43 1 �3.28 25 �1.71 60 �1.48

3 1sn3 661 1 �4.12 1 �4.29 1 �3.54 2 �6.78 1 �9.42 4 �2.87 2 �2.35

4 2cro 675 3 �2.63 2 �2.77 1 �2.98 6 �2.50 2 �3.10 8 �2.61 66 �1.43

5 4pti 688 1 �3.63 1 �3.35 1 �2.95 3 �6.34 1 �6.28 7 �2.62 19 �1.82

6 4rxn 678 1 �3.17 1 �3.91 1 �3.42 1 �10.33 16 �2.89 7 �3.13 13 �2.29

fisa

7 1fc2 501 478 2.03 448 1.24 499 3.26 446 1.34 463 1.52 14 �1.99 1 �3.79

8 1hdd-C 501 1 �2.90 217 �0.20 373 0.60 6 �2.34 18 �1.95 1 �3.42 1 �5.17

9 2cro 501 1 �3.41 1 �3.01 37 �1.37 4 �2.66 4 �2.75 32 �1.8 9 �2.16

fisa_casp3

10 1bg8-A 1201 1 �3.86 12 �2.10 135 �1.22 127 �1.26 96 �1.40 211 �0.95 248 �0.78

11 1bl0 972 6 �2.62 11 �2.38 98 �1.28 542 0.17 164 �0.92 762 0.79 777 0.84

12 1jwe 1408 1 �4.95 1 �5.60 2 �3.24 54 �1.88 2 �3.47 881 0.33 1 �2.65

lattice_ssfit

13 1ctf 2001 1 �6.31 2 �3.90 1 �4.41 2 �4.08 4 �3.72 3 �3.89 3 �3.33

14 1dkt-A 2001 1 �4.92 1 �4.60 1 �4.53 1 �23.69 1 �8.31 27 �2.27 773 �0.29

15 1fca 2001 1 �5.74 1 �4.50 1 �4.09 4 �4.89 202 �1.06 701 �0.24 72 �1.87

16 1nkl 2001 1 �4.96 1 �3.33 40 �1.93 1 �5.24 1 �5.23 2 �5.58 1 �4.04

17 1pgb 2001 1 �6.24 1 �14.17 1 �10.74 1 �33.87 1 �25.06 12 �3.29 1 �4.73

18 1trl-A 2001 1 �3.00 1 �2.99 1 �3.92 1 �4.64 1 �6.34 468 �0.64 390 �0.82

lmds

19 1ctf 498 1 �3.25 9 �1.91 9 �2.01 6 �2.52 26 �1.77 21 �1.80 4 �2.31

20 1dtk 216 6 �2.23 15 �1.52 20 �1.33 1 �3.00 10 �2.21 50 �0.71 7 �1.98

21 1fc2 501 359 0.59 18 �1.76 13 �2.01 20 �1.68 11 �2.32 15 �2.02 1 �3.23

22 1igd 501 1 �2.85 1 �6.88 1 �4.39 2 �2.98 60 �1.15 9 �1.98 4 �2.61

23 1shf-A 438 1 �5.33 1 �6.95 1 �3.57 22 �1.85 28 �1.68 140 �0.47 1 �3.36

24 2cro 501 2 �3.14 1 �3.99 2 �2.75 61 �1.19 1 �3.18 1 �5.07 1 �5.41

25 2ovo 348 61 �0.90 1 �3.96 1 �2.64 85 �0.18 113 �0.03 178 0.25 15 �1.80

(B) Average results

# f proteins Pairwise H-bond Short-range Packing Tri-peptide Three-body Solvation

4state_reduced 6 5c/6d �3.29e 4/6 �3.20 6/6 �3.07 1/6 �5.22 4/5 �4.61 0/5 �2.72 0/2 �2.04

fisa 3 2/2 �1.43 1/1 �0.66 0/0 0.83 0/2 �1.22 0/1 �1.06 1/1 �2.40 2/3 �3.71

fisa_casp3 3 2/3 �3.81 1/1 �3.36 0/1 �1.91 0/0 �0.99 0/1 �1.93 0/0 0.06 1/1 �0.86

lattice_ssfit 6 6/6 �5.20 5/6 �5.58 5/5 �4.94 4/6 �12.74 4/5 �8.29 0/2 �2.65 2/3 �2.51

lmds 7 3/5 �2.44 4/5 �3.85 3/5 �2.67 1/3 �1.91 1/2 �1.76 1/2 �1.69 3/6 �2.96

Summary 25 18/22 �3.35 15/19 �3.67 14/17 �2.80 6/17 �5.11 9/14 �3.95 2/10 �2.04 8/15 �2.47

a Ranking of the native conformation.
b Z-score of the native conformation.
c The number of native conformations ranked top-1.
d The number of native conformations ranked top-10.
e Average Z-score.

New Ca-based potential function
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From Figure 2, one can see that, comparing with the case
with a constant energy shift, the hydrogen bonding energy
without a constant energy shift performed persistently
worse in recognizing native conformation as top-1, top-10
ranking, and average Z-scores. It was also found that
the ranking of the native conformations of three proteins
(1nkl in lattice_ssfit, 1dtk in lmds, and 1fc2 in lmds)
was dramatically worsened from within top-20 to below
top-50. However, comparing with the case with an energy
shift, it was found that our energy term performed worse in the
lattice_ssfit and lmds decoy sets, while it performed better
in the 4state_reduced and fisa decoy sets. So the effect of
an energy shift was decoy-set-dependent, which was
presumably related to how each decoy set was generated.

Short-range energy

For the short-range energy term Eshort_range, different
types of secondary structures were considered separately.
This was because residues in different secondary structure
types had different preferences for local conformations.

From Table 1A, one can see that the short-range energy
could perform quite well in all decoy sets except for fisa
and fisa_casp3 decoy sets, in which case it couldn’t
recognize any native conformation and only one in the
top 10 (PDB code: 1jwe). This was probably because the
decoys in fisa and fisa_casp3 were generated by Rosetta
based on native small fragments (Simons et al. 1997); thus,
the native-like nature of short-range conformations caused
insensitivity in the energy term.

Packing energy

The packing energy term Epacking could be divided into
seven smaller terms. They belong to three types: short-
range packing that facilitated the formation of a single
helix or single strand (EH_self, ES_self); long-range packing
in paired strands that facilitated strand pairing (ES_pairing);
and long-range packing between different helices or
strands in stabilizing tertiary structure (EH–H_ packing,
EH–S_ packing, ES–S_ packing). Equal weight was used for all
seven terms. At the i,i + 3 or i,i + 4 position in a single

Figure 1. Performance of pairwise energy. (Top panel) Percentage of

proteins in decoy sets whose native conformations were ranked top-1,

(middle panel) percentage of proteins in decoy sets whose native

conformations were ranked top-10, (bottom panel) the negative average

Z-scores. (Ca) Pairwise energy based on Ca positions, (Cb A) pairwise

energy based on pseudo-Cb positions built from Ca positions without

orientation preference, (Cb B) pairwise energy based on pseudo-Cb

positions built from Ca positions with orientation preference.

Figure 2. Performance of hydrogen bond energy. (Top panel) Percentage

of proteins in decoy sets whose native conformations were ranked top-1,

(middle panel) percentage of proteins in decoy sets whose native

conformations were ranked top-10, (bottom panel) the negative average

Z-scores. (All-atom) All-atom-based hydrogen bond energy, (Ca-based A)

Ca-based hydrogen bond energy with an energy shift, (Ca-based B)

Ca-based hydrogen bond energy without an energy shift. Results are

shown for 25 proteins in the Decoys’R’Us collection.
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helix, Pro and Gly were less likely to be involved, as the
EH_self was among the highest when packing pairs involved
Pro and Gly. Ser, Thr, Asp, and Asn were the next four
unfavorable residues. Also, Cys was less likely to pair with
one of these four types of residues. In contrast, Ala was
more likely to be involved in helices. It was also identified
that Met–Met, Glu–Arg, and Glu–Lys pairs were favorable
at both the i,i + 3 and i,i + 4 positions. A Met–Met pair had
an EH_self of �1.086 and �1.149 at the i,i + 3 and i,i + 4
positions, respectively; a Glu–Arg pair had an EH_self

of �1.333 and �1.275 at the i,i + 3 and i,i + 4 positions,
respectively; and a Glu–Lys pair had an EH_self of �1.177
and �1.248 at the i,i + 3 and i,i + 4 positions, respectively.
For the i,i + 2 position in a strand, Pro was identified to be
unfavorable, while hydrophobic residues preferred these
positions. For example, a Val–Val pair had an ES_self of
�1.793, and a Val–Ile pair had an ES_self of �1.677. For
two paired strands, packing residues tended to have hydro-
gen bond and electrostatic interactions. Preferred contact-
ing residues contained Cys–Cys, Glu/Asp–Arg/Lys,
His–His, Ser–Asn/Gln, Trp–Trp pairs, etc. For example,
ES_ pairing (averaged over seven cases) for Cys–Cys was
�0.811; ES_ pairing (averaged over seven cases) for Glu–Arg
was �0.894; ES_ pairing (averaged over seven cases) for
His–His was �0.605. For long-range tertiary packing, it
was found that hydrophobic and large aromatic residues
were favorable. For example, Tyr–Trp had an ES–S_ packing

of �2.470, and Ile–Leu had an EH–H_ packing of �1.687.
The overall performance of the packing energy term in

Decoys’R’Us recognized six native conformations in the
top-1 ranking and 17 in the top-10 ranking (Table 1).

Solvation energy

The solvation energy term Esolvation was based on
side chain solvent-accessible surfaces (SAS). An all-
atom-based energy function was first established based
on the SAS calculated from an all-atom model. Then, the
SAS for the Ca model was estimated based on a coarse-
grained method in which all parameters involved were
systemically optimized from a structure database (see
Materials and Methods). Using this estimated SAS as
an approximate value, the solvation energy for the
Ca model can be estimated from the all-atom-based
energy function.

As indicated in Figure 3, in the Decoys’R’Us test,
solvation energy based on an all-atom SAS found native
conformations of 11 decoy sets in the top-1 ranking, and
22 native conformations in the top-10 ranking. This implied
reasonable accuracy of the solvation energy term when the
SAS was obtained from the all-atom structure. For the
Ca model, the energy function was not as good as its all-
atom counterpart. However, it still recognized eight native
conformations in the top-1 ranking and 15 in the top-10
ranking. The average Z-scores are also listed in Figure 3.

Performance of the overall energy function

To examine the performance of the overall energy fun-
ction, weights had to be assigned to seven energy terms,
a procedure that could sometimes be subjective. Two
different ways of weight assigning were tried.

In the first way, all energy terms were calculated for all
proteins in a non-homology database that had no chain
break (a total of 1673 proteins [Wang and Dunbrack Jr.
2003]). The average energy was calculated for each term.
Weights were assigned in such a way that they were anti-
proportional to the average energy so as to make the numer-
ical contribution from each term roughly equal. As indicated
in Table 2, this scheme of weight assignment resulted in
18 out of 25 decoy sets in Decoys’R’Us with their native
conformations correctly recognized as the lowest in energy
(Subset 1 in Table 2). In the LKF decoy collection (Subset
2 in Table 2), it recognized 148 out of 151 decoy sets. As
the tri-peptide and three-body energy terms could be
regarded as higher order corrections of other terms, we
also empirically lowered the magnitudes of these two
weights to 0.1. It was found that the energy function with
the modified weights could slightly improve the perform-
ance (19 out of 25 Decoys’R’Us decoy sets), indicating the
less important nature of these two terms.

In the second way, all seven weights were optimized
iteratively on three subsets of decoy sets (see Materials and
Methods). Strikingly, it was found that the magnitudes of

Figure 3. Performance of solvation energy. (Top panel) The negative

average Z-scores, (bottom panel) the number of proteins in decoy sets

whose native conformations were ranked top-1 (left) and top-10 (right).

(All-atom) Solvation energy based on the solvent-accessible surface cal-

culated from all atom positions, (Ca-based) solvation energy based on

the solvent-accessible surface calculated from Ca positions only. Results

are shown for 25 proteins in the Decoys’R’Us collection.
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the optimized weights were very close to the modified
weight mentioned above. With the optimized weights, the
energy function could recognize 21 native conformations
out of 25 decoy sets in Decoys’R’Us and 146 native
conformations out of 151 LKF decoy sets. The performance
in Subset-3 was also similar. Overall, the performance with
the optimized weights was close to the case with the
modified weight. This result indicates that the optimized
weights are not very biased by the weight optimization
procedure. We suggest using optimized weights in real
applications as they have included the most diverse features
of all decoy sets.

The correlation between the root mean square deviation
(RMSD) of decoy conformations from the native con-
formation and the energy of decoy conformations was
evaluated. As indicated in Figure 4, a most linear-like
correlation between the RMSD and energy was observed
for 4state_reduced. Decoy set LKF had reasonable corre-
lations. However, in other decoy sets the correlations were
not so good. This suggests that the correlation between
RMSD and energy depended on how the decoy sets were
generated.

The performance of the OPUS-Ca potential was also
compared with that of other potentials. In the literature,
there are a few energy functions solely based on Ca

atoms (Loose et al. 2004; Rajgaria et al. 2006; Zhang
et al. 2006). The results are listed in Table 3. The
performance of the OPUS-Ca potential seems to be better
in terms of decoy set recognition and Z-scores. It also
outperformed many other coarse-grained potential func-
tions that require more information than Ca positions
(Hinds and Levitt 1992; Godzik et al. 1995; Miyazawa
and Jernigan 1996; Bahar and Jernigan 1997; Betancourt
and Thirumalai 1999; Tobi and Elber 2000; Zhang et al.

2004; Dong et al. 2006). In two cases (Zhou and Zhou
2002; Dehouck et al. 2006), the performance was similar.

Discussion

In this study, a knowledge-based potential function,
named the OPUS-Ca potential, was developed. To eval-
uate the potential function, only Ca positions are needed
as input. Since it is hard to establish a sensitive enough
potential function based only on Ca positions, the con-
tributions from other atomic positions were established
from pseudo-positions artificially built from the Ca trace.
The potential function was constructed based on seven
major terms representing dominant molecular interactions
in proteins. The seven terms are distance-dependent
pairwise energy with orientational preference, hydrogen
bonding energy, short-range energy, packing energy,
tri-peptide packing energy, three-body energy, and sol-
vation energy.

Decoy set recognition indicated that the overall poten-
tial function outperformed all known Ca-based potentials
and most of the other coarse-grained ones that require
more information than Ca positions. For the performance
of individual terms, it was found that the distance-
dependent pairwise energy with orientational preference
performed the best, which could identify 18 native con-
formations alone (out of 25 proteins in the Decoys’R’Us
collection). Hydrogen bonding and short-range energy
could also identify 15 and 14 native conformations,
respectively. If the top-10 was used for native conforma-
tion ranking, then five out of seven energy terms could
identify >15 native conformations alone (especially, the
distance-dependent pairwise energy with orientational
preference could identify 22 native conformations). The
performance of some individual terms could even per-
form better than some of the other potentials published
in the literature. This highly optimized performance of
individual terms is advantageous because, in certain
situations, one may want to use the individual energy
terms separately based on their physical nature.

An important and difficult issue in developing knowl-
edge-based potential functions is the assignment of
weight for each term (Feng et al. 2007). In general, each
term represents one or more aspects of physical inter-
actions, so the contribution of each term should be
inherently determined by the physical features of protein
structures. Ideally, the magnitudes of weights should be
independent of their performance on decoy sets, and
independent of the methods in generating decoy sets.
However, there is no ab initio way to determine the
contribution of each energy term. Besides, some energy
terms, like pairwise, three-body, and tri-peptide terms, have
a mixture of several basic physical interactions; i.e., they
are not completely orthogonal to each other. That makes

Table 2. Weights and performance in decoy set recognition

Type
of weight

Equal
contribution Modified Optimized

Weights wpairwise 0.3 0.3 0.3

wHbond 0.3 0.3 0.3

wshort_range 0.6 0.6 0.6

wpacking 3.5 3.5 2.7

wtri-peptide 0.4 0.1 0.1

w3-body 5.6 0.1 0.1

wsolvation 5.1 5.1 2.5

Performance aSubset-1 (25b) 18c (�4.11d) 19 (�4.68) 21 (�4.81)
eSubset-2 (151) 148 (�6.92) 148 (�7.13) 146 (�7.00)
fSubset-3 (41) 37 (�6.40) 39 (�6.66) 39 (�6.51)

a A subset from the Decoys’R’Us collection.
b The number of proteins in the subset of the decoy collection.
c The number of native conformations with a rank of top-1.
d Average Z-score.
e A subset from the LKF decoy collection.
f The remaining proteins in the Decoys’R’Us and LKF decoy collections.
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weight optimization even more subjective. This is why
weight optimization by using a specific training set often
introduces biases. In this study, several different ways of
assigning weights were tried in order to minimize the bias.

Materials and Methods

The total energy function consists of seven terms,

Etot = wpairwise Epairwise + wHbond EHbond + wshort range Eshort range

+ wpacking Epacking + wtri�peptide Etri�peptide + w3�body E3�body

+ wsolvation Esolvation: (1)

Here, w is the weight for that energy term. The statistical
analysis of the knowledge-based potential function was

performed over a nonhomologous structure database from the
PISCES server by Dunbrack (Wang and Dunbrack Jr. 2003).
Only X-ray structures were used. The percentage identity cutoff
was 30%. The resolution cutoff was 1.8 Å. The R-factor cutoff
was 0.25. The total number of chains was 2232.

Building pseudo-main chain atoms

Although the energy function only requires a Ca trace as input,
to reliably build some of the terms in Equation (1), pseudo-main
chain (including N, C, O, and H atoms) and Cb conformations
were established from a Ca trace. The procedure was based on
the observation that main chain conformation can be mostly
determined by local conformation of Ca atoms (Fidelis et al.
1994; Milik et al. 1997). In general, a main chain atom database
was established, and it contained positional information of main
chain atoms with respect to the local conformation of Ca atoms
extracted from the nonhomologous structure database.

Figure 4. Scatter plots of total energy vs. RMSD of decoy from the native structure (based on Ca atoms). Results of eight proteins

(1r69 and 4pti in the 4state_reduced decoy set, 1hdd-C in the fisa decoy set, 1jwe in the fisa_casp3 decoy set, 1fca in the lattice_ssfit

decoy set, 2cro in the lmds decoy set, and 1bg8, 1bo0 in the LKF decoy set) are shown.
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In detail, all main chain atoms of residue i were built from the
position of four consecutive Ca atoms of residues i � 1, i, i + 1,
and i + 2. The local Ca conformation was based on three
parameters: Ca�Ca distance (di�1,i+1) between residues i � 1
and i + 1, Ca�Ca distance (di,i+2) between residues i and i + 2,
and the dihedral angle (ui) formed by all four Ca atoms. Figure 5
schematically illustrates these parameters. Here, the distance was
divided into 10 bins with a bin width of 0.3 Å. The range of the
distance in the analysis was 4.6–7.6 Å. The dihedral angle was
divided into 36 bins with a bin width of 10°. This led to a total of
10 3 10 3 36 ¼ 3,600 three-dimensional bins. To establish the
main chain atom database, the positions of all main chain atoms
(N, C, O, H) found in the structure database were averaged within
each bin. To perform the averaging, a local reference frame was
used. Its origin was set at the Ca atom of residue i, and Cartesian
coordinate axes vx, vy, vz were defined as:

vx =
ri + 1 � ri

ri + 1 � rij j
vb =

ri � ri�1

ri � ri�1j j
vy = vx 3 vb

vz = vx 3 vy

; (2)

where ri was the Ca positional vector of residue i and vb was an
auxiliary vector.

In addition, if the Ca distance between residues i and i + 1
was 2.7–3.3 Å, e.g., the cis-peptide bond in the case such as
proline, statistical analysis of the histogram was performed
separately. In the case where not enough statistical data were
available for a particular bin, data from the most similar bins
were assigned. For the first and last two residues, their local Ca
conformations were assumed to be the same as those of the
nearby residues so that their main chain atoms could be built as

well (note, for most proteins, these residues were highly
flexible). Also, to build the main chain atoms between the first
Ca and second Ca atoms, local reference coordinate axes v9x, v9y,
v9z on the first Ca atom were defined as

vb9 =
r3 � r2

r3 � r2j j

vx9 =
r2 � r1

r2 � r1j j
vy9 = vx9 3 vb9

vz9 = vx9 3 vy9

: (3)

Table 3. Comparison of performance between OPUS-Ca and other potential functions

Decoys’R’Us (25a) LKF (151)

ReferencesEnergy functions Top-1 performance
Average
Z-scores Top-1 performance

Average
Z-scores

Ca-only potentials OPUS-Ca 21 �4.81 146 �7.00 This study

CALSP 10b (out of 18) — 140 �6.42 Zhang et al. (2006)

HR — — 86 (out of 110) — Rajgaria et al. (2006)

LKF — — 93 �3.08 Loose et al. (2004)

Other coarse-grained

potentials

HL 8 �2.67 — — Hinds and Levitt (1992)

GKS 9 �2.36 — — Godzik et al. (1995)

MJ 11 �2.82 — — Miyazawa and Jernigan (1996)

BJ 15 �2.75 — — Bahar and Jernigan (1997)

BT 9 �2.65 — — Betancourt and Thirumalai (1999)

TE13 14 �3.53 64 �2.44 Tobi and Elber (2000)

DFIRE-B 20 �4.22 — — Zhou and Zhou (2002)

DFIRE-SCM 23c (out of 32) �4.36 — — Zhang et al. (2004)

DGR 21 �5.25 — — Dehouck et al. (2006)

DWL 22c (out of 32) �3.59 — — Dong et al. (2006)

a The total number of proteins in the decoy set collection.
b Two decoy sets, fisa and fisa_casp3, in Decoys’R’Us are not included; thus, there is a total of only 18 proteins. If compared with the performance on
all 25 decoy sets used in Zhang et al. (2006) (seven in 4state_reduced, eight in lattice_ssfit, 10 in lmds), the OPUS-Ca potential had 22 Top-1s, and the
Z-score was �5.33. The performance of CALSP in Zhang et al. (2006) was 15 Top-1s.
c It also included another seven Decoys’R’Us sets. The performance of the OPUS-Ca potential on the Top-1 ranking was 25 out of 32 decoy sets. Thus, it
was better than DWL and DFIRE-SCM.

Figure 5. Schematic illustration of parameters used to build pseudo-main

chain atoms and Cb atoms from Ca positions. The three parameters are the

Ca�Ca distance (di�1,i+1) between residues i � 1 and i + 1, the Ca�Ca

distance (di,i+2) between residues i and i + 2, and the dihedral angle (ui)

formed by all four Ca atoms. vx, vy, vz are local Cartesian coordinate axes

to build atoms.
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In a real application, given the conformation of four consecutive
Ca atoms, one would look up the corresponding bin based on the
distances and dihedral parameters, and assign the main chain
atoms coordinates extracted from the database. After establishing
the positions of the main chain atoms, Cb atoms could be built
from the N, Ca, and C atoms according to the standard
parameters: The bond length of the Ca�Cb bond was 1.53Å,
the bond angle of the N-Ca�Cb angle was 110°, and the dihedral
angle between plane N-Ca-C and plane Ca-C-Cb was 124°.

Distance-dependent pairwise energy
with orientational preference

The term Epairwise was the distance-dependent pairwise energy
term. It had an orientational preference in such a way that cases
in which the side chain of one residue points away from the
partner residue and points toward the partner residue were
distinguished. Specifically, a Ca to Cb vector was used to
represent the rough direction of the side chain. The distance-
scaled finite ideal-gas reference state was used to normalize the
statistical data (Zhou and Zhou 2002). For a pair of residues
whose Cb atoms were within the cutoff distance (rcut ¼ 15Å),
the energy Epairwise for residues i with respect to residue j was
given by

Epairwise Ai;Aj;Oij; rij

� �
=

� RT ln
Nobs Ai;Aj;Oij; rij

� �
rij

�
rcut

� �a
Drij

�
Drcut

� �
Nobs Ai;Aj;Oij; rcut

� � : (4)

Here, Ai was the residue type, rij was the Cb�Cb distance
between residues i and j, and Drij and Drcut were the bin width
at distance rij and rcut. The constant R was the gas constant and
T was temperature (both were set to 1 in practice). The total
number of bins used in the study was 20. The bin width was 2 Å
for rij < 2 Å, 0.5 Å for 2 Å < rij < 8Å, and 1 Å for 8 Å <
rij < 15Å. The exponent a was 1.61. The term Nobs(Ai, Aj,
Oij, rij) gave the observed number of pairs of Cb atoms at the
designated distance in their respective orientation in the struc-
tural database. The symbol Oij was expressed as

Oij =
1; rCi

a;C
i
b
� rCi

b;C
j
b

> 0

�1; rCi
a;C

i
b
� rCi

b;C
j
b

< 0

(
; (5)

where ratom1,atom2 was the displacement vector from atom 1 to
atom 2. The symbol Oij was used to distinguish the effect of the
relative orientation of the two residues. If the value of Oij was 1,
residue i pointed toward residue j; if the value of Oij was �1,
residue i pointed away from residue j. Note this means that the
case of i pointing toward j and the case of j pointing toward i can
be different. Figure 6 schematically illustrates the two cases; in
panel A, residue i points toward j, but residue j points away from
i. In panel B, both residues point toward each other. Because of
the normalization, the energy term Epairwise naturally decays to
zero at cutoff distance rcut. In the case of glycine, Ca atoms
were used instead, and the effect of orientation was omitted.

Hydrogen bonding energy

The term EHbond was the main chain hydrogen bonding energy.
It was developed first via statistical analysis of those residue

pairs in the nonhomologous structure database based on an all-
atom structure model. Then, for Ca models in real applications,
the energy was computed based on the constructed pseudo-
backbone atom positions.

The hydrogen bonding criterion based on the all-atom
structure model was from Fabiola et al. (2002),

rO;H # 2:7 Å; rO;N # 3:5 Å; \CON $ 90°; \NHO $ 90°: (6)

Figure 7 illustrates the parameters. For a particular pair
distance rij ¼ rC,N and interaction angle uij ¼ :CON, the total
number of main chain hydrogen bonds was counted as N(rij,uij)
in a space region defined from (rij,uij) to (rij + Drij, uij + Duij)
with volume V(rij,uij) (Drij was 0.1 Å and Duij was p/36). This
region was cylindrically symmetric with respect to the main chain
carbonyl bond (it was assumed that the nitrogen atoms in hydrogen
bonding interactions in this region were uniformly distributed).
Then, the hydrogen bonding energy EHbond as a function of (rij,uij)
was given by

EHbond rij; uij

� �
= � RT ln

VTotalN rij; uij

� �
V rij; uij

� �
+

rij;uij

N rij; uij

� �

+ RT ln
VTotal31

V rmax
ij ;p=2

� �
+

rij;uij

N rij; uij

� � : (7)

Here, VTotal was the volume of the entire search space defined
as the spherical shell with rij in the range of 1.8–3.3 Å, rij

max

was 4.8 Å, and uij was in the range of [0,p]. The sum in the
denominator gave the total number of hydrogen bonding pairs in
the research region. The counting only applied to residues that
were at least two residues apart in sequence. The second part of
the energy term was a constant energy shift to eliminate the
energy barrier during hydrogen bond formation. Note that in this
study, proline was never considered a donor, and chain C termini
were never considered as acceptors.

In real applications, main chain atoms (including hydrogen
atoms) were built from Ca atoms first. It was found that the N
and C atoms built from Ca atoms had ;0.1 Å RMSD from
native positions, while O atoms had ;0.3–0.4 Å. In order to

Figure 6. Schematic illustration of the different orientations of interacting

Cb pairs. (A) Residue i points toward j, but residue j points away from i.

(B) Both residues point toward each other.
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avoid the wrong assignment of hydrogen bonds owning to the
error of the estimated main chain, a modified criterion was used:

rO;H # 2:8 Å; rO;N # 3:7 Å; \CON $ 90°; \NHO $ 90°: (8)

It was found that by using this criterion, ;91% of the
hydrogen bonds identified by the old criterion in Equation 6
were found by the new criterion in Equation 8. Thus, the current
only-Ca-based method could provide a reasonably close energy
value to the all-atom main chain hydrogen bond energy.

Ca-based secondary structure assignment

Several terms in the energy function required the secondary
structure assignment. The Ca trace alone does not allow one to
accurately identify the secondary structure by methods such as
the DSSP algorithm (Kabsch and Sander 1983), and the
positions of main chain atoms built were pseudo-positions for
auxiliary purposes; i.e., they were not accurate enough for
regular secondary structure assignment. As indicated above, a
modified definition of hydrogen bonds was used for DSSP
analysis. Since, with the new definition, only 9% of hydrogen
bonds were missed, it was expected that the accuracy of the
secondary structure assignment on the sole Ca level would be
reasonable. Only three types of secondary structure elements
were used: a-helix, 10–3 helix, and p-helix were categorized as
helix; extended sheet and b-bridge were categorized as sheet;
others, such as loop and bend, were categorized as loop.

Short-range term

The term Eshort_range is a short-range energy term. The con-
formation of each pentapeptide fragment was divided into
discrete bins, associated with the sequence information. The
correlation between the sequence and local secondary structure
for each pentapeptide fragment was constructed and transferred
into energy functions based on the statistical distribution
extracted from the nonhomologous structure database. This
short-range energy term presents the structural preference of
local fragments.

The conformation of the Ca trace for a protein of N residues
was thus defined by 3N � 6 parameters: N � 1 pseudo-bonds
connecting two neighboring Ca atoms, N � 2 pseudo-bond
angles (u) formed by three Ca atoms, and N � 3 pseudo-
dihedral angles (u) formed by four Ca atoms. All the degrees of
freedom are illustrated in Figure 8. The energy function was
expressed as:

Eshort rangeðAi; ui;ui�1;ui; S2ndÞ=

� RT ln
Nobs Ai; ui;ui�1;ui; S2ndð Þ= sin ui

+
ui;ui�1;ui

NobsðAi; ui;ui�1;ui; S2ndÞ
 !

+
ui

sin ui

, : (9)

Here, Ai was the residue type of the central residue in the
pentapeptide (20-letter code) and S2nd was the secondary
structure type. The bond angle, which was from 0°–180°, was
divided into six bins. The dihedral angle, which was from �180°
to 180°, was divided into 24 bins.

Packing term

The term Epacking was for pairwise packing energy related to the
side chain orientation, residue type, and secondary structure.
The packing energy can be expressed as a sum of six terms,

Epacking = EH self + ES self + ES pairing + EH�H packing

+ EH�S packing + ES�S packing:
(10)

The first term, EH_self, was the helix self-packing energy. Side
chain interactions within a helix have been analyzed previously
(Stapley and Doig 1997; Adamian and Liang 2001; Andrew et al.
2001; Shi et al. 2002), and (i,i + 3), (i,i + 4) residue pairs play a
significant role in stabilizing helix structure. Hence, the sequence
propensity of such residue pairs in a helix was statistically analyzed
in the structure database. The term EH_self can be expressed as:

EH self ðAi;AjÞ=

�RT ln

Nh
3ðAi;AjÞ +

Ai;Aj

Nnh
3 ðAi;AjÞ

Nnh
3 ðAi;AjÞ +

Ai;Aj

Nh
3ðAi;AjÞ

0
B@

1
CA; j = i + 3

�RT ln

Nh
4ðAi;AjÞ +

Ai;Aj

Nnh
4 ðAi;AjÞ

Nnh
4 ðAi;AjÞ +

Ai;Aj

Nh
4ðAi;AjÞ

0
B@

1
CA; j = i + 4

8>>>>>>>>>><
>>>>>>>>>>:

; (11)

where N3
h(Ai, Aj) was the number of cases in which residue i of

type Ai was three residues ahead in sequence of residue j of type

Figure 7. Schematic illustration of the parameters used in H-bond energy.

:CON, :NHO, rO,N, rO,H are used in hydrogen bonding criterion.

:CON, rC,N are used as energy parameters.

Figure 8. Schematic illustration of short-range parameters. u is the

pseudo-bond angle formed by three consecutive Ca atoms; u is pseudo-

dihedral angles formed by four consecutive Ca atoms.
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Aj on the helix, N3
nh(Ai, Aj) was for the cases in which both

residues were not in the helix, N4
h(Ai, Aj) was the number of

cases in which residue i of type Ai was four residues ahead in
sequence of residue j of type Aj in the helix, and N4

nh(Ai, Aj) was
for the cases in which both residues were not on the helix.

The second term, ES_self, is sheet self-packing energy, very similar
to the first term. The sequence propensity of (i,i + 2) residue pairs in
a sheet was statistically analyzed in the structure database. So,

ES self ðAi;AjÞ=

�RT ln

Ns
2ðAi;AjÞ +

Ai;Aj

Nns
2 ðAi;AjÞ

Nns
2 ðAi;AjÞ +

Ai;Aj

Ns
2ðAi;AjÞ

0
B@

1
CA; j = i + 2 ; (12)

where N2
s(Ai, Aj) was the number of cases in which residue i of

type Ai was two residues ahead in sequence of residue j of type
Aj on the strand, and N2

ns(Ai, Aj) was for the cases in which both
residues were not on the strand.

The third term, ES_ pairing, was the intrasheet strand–strand
pairing energy. In this term, the sequence propensity of any
interacting residue pair in both antiparallel and parallel cases
was analyzed. Comparing with what has been reported in the
literature (Hutchinson et al. 1998; Steward and Thornton 2002),
a more complete set of interacting types for residue pairs was
included. This energy term is very useful in determining the
sequence register of pairing b-strands. Let Tij denote the type of
interacting residue pairs i, j. There were in total four types of
interacting residue pairs for the antiparallel sheet (schematically
shown in Fig. 9A): a hydrogen-bond-involving pair (type AA,
Tij ¼ (0, 0)), a non-hydrogen-bond-involving pair (type aa, Tij ¼
(1, 1)), a hydrogen-bond-involving residue interacting with the
next hydrogen-bond-involving residue on the opposite strand
[type AB, Tij ¼ (0,2)], and a non-hydrogen-bond-involving
residue interacting with the next non-hydrogen-bond-involving
residue on the opposite strand [type ab, Tij ¼ (1,3)]. Similarly,
there were three types of interacting residue pairs for the parallel
sheet (schematically shown in Fig. 9B): a hydrogen-bond-
involving residue interacting with a non-hydrogen-bond-involv-
ing residue [type Aa, Tij ¼ (0,1)], a hydrogen-bond-involving
residue interacting with the next non-hydrogen-bond-involving
residue on the opposite strand toward the C terminus [type Ab,
Tij ¼ (0,3)], and a non-hydrogen-bond-involving residue inter-
acting with a hydrogen-bond-involving residue on the opposite
strand toward the C terminus [type aB, Tij ¼ (3,0)]. Note that the
four types in the antiparallel sheet were symmetric, while the
three types in the parallel sheet were asymmetric with respect to
the direction of the polypeptide chain. The term ES_ pairing could
be expressed as:

ES pairingðAi;Aj; TijÞ=

� RT ln

NobsðAi;Aj; TijÞ +
Ai;Aj

NobsðAi;Aj; TijÞ

+
Aj

NobsðAi;Aj; TijÞ+
Ai

NobsðAi;Aj; TijÞ
; (13)

where Nobs(Ai, Aj, Tij) was the observed number of one specific
interacting residue pair of type Ai and Aj.

The fourth term, EH–H_ packing, was the interhelix packing
energy. The sequence propensity of the packing residue pairs in
different helices was analyzed. The strategy was to define a Ca-
based condition for interhelix packing, then to develop an
energy term based on that. First, a residue-type-dependent cutoff

distance, dhh
cut
ðAi;AjÞ, was defined as the distance between the Cb

(or Ca in the case of glycine) of two residues for an interhelix
interaction. To determine dhh

cut
ðAi;AjÞ, the distances between the

Cb atoms (or Ca in the case of glycine) of two residues in
different helices whose side chains had contacts was analyzed in
the structure database. Two side chains were considered to have

Figure 9. Seven types of interacting residue pairs in two pairing

b-strands. (A) Four types of interacting residue pairs in antiparallel

b-strands. (AA) A hydrogen-bond-involving pair [Ti+1j�1 ¼ (0,0); note

for illustration purposes that the subscripts of Tpq are based on the diagram

in the figure]; (aa) a non-hydrogen-bond-involving pair [Tij ¼ (1,1)]; (AB)

a hydrogen-bond-involving residue interacting with the next hydrogen-

bond-involving residue on the opposite strand [Ti+1j+1 ¼ (0,2)]; (ab) a non-

hydrogen-bond-involving residue interacting with the next non-hydrogen-

bond-involving residue on the opposite strand [Tij+2 ¼ (1,3)]. (B) Three

types of interacting residue pairs in parallel b-strands. (Aa) A hydrogen-

bond-involving residue interacting with a non-hydrogen-bond-involving

residue [Ti�1j�1 ¼ (0,1)]; (Ab) a hydrogen-bond-involving residue inter-

acting with the next non-hydrogen-bond-involving residue on the opposite

strand toward the C terminus [Ti�1j+1 ¼ (0,3)]; (aB) a non-hydrogen-bond-

involving residue interacting with the next hydrogen-bond-involving residue

on the opposite strand toward the C terminus [Tj�1i+1 ¼ (3,0)].
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contacts if the distance between two atoms from each side chain
was <5 Å. The cutoff distance dhh

cut
ðAi;AjÞ was chosen to include

most of the contacting residue pairs while having reasonably low
false positives, and its value was kept in a lookup table. The
interhelix packing criterion based on the pseudo-Cb position was:

rCi
b ;C

j
b

��� ���# 6Å

or

rCi
b;C

j
b

��� ��� # dhh
cut
ðAi;AjÞ and rCi

a ;C
i
b
� rCi

b ;C
j
b

$ 0: (14)

The energy term can be expressed as:

EH�H packingðAi;AjÞ =

� RT ln

NobsðAi;AjÞ+
Ai

NhðAiÞ+
Aj

NhðAjÞ

NhðAiÞNhðAjÞ +
Ai;Aj

NobsðAi;AjÞ
; (15)

where Nobs(Ai, Aj) was the observed number of interacting
packing pairs in a helix of residues of type Ai and Aj, and
Nh(Ai) was the total number of residues of type Ai in the helix.

The fifth term, EH–S_ packing, was the helix-strand packing
energy. The helix-sheet packing criterion was almost the same
as the interhelix packing criterion in Equation 14, except that the
cutoff distance dhs

cut
ðAi;AjÞ for helix-strand packing was extracted

from the structure database. The energy term can be expressed as:

EH�S packingðAi;AjÞ =

� RT ln

NobsðAi;AjÞ+
Ai

NhðAiÞ+
Aj

NsðAjÞ

NhðAiÞNsðAjÞ +
Ai ;Aj

NobsðAi;AjÞ
; (16)

where Nobs(Ai, Aj) was the observed number of interacting packing
pairs for two residues of type Ai in a helix and Aj in a sheet, N h(Ai)
was the total number of residue of type Ai in a helix, and N s(Aj)
was the total number of residues of type Aj in a sheet.

The sixth term, ES–S_ packing, was the intersheet strand–strand
packing energy. Differing from the third term, this term
represented the sequence propensity of packing residue pairs
in different b-sheets. The criterion of packing residue pairs in
strand–strand packing was:

rCi
a ;C

i
b
� rCj

a ;C
j
b

# 0

and

rCi
b;C

j
b

��� ��� # dss
cutðAi;AjÞ

(17)

where dss
cutðAi;AjÞ was the cutoff distance extracted from the

structure database. Note that the residue pairs belonging to two
contacting strands in the same sheet were excluded. The energy
term can be expressed as:

ES�S packingðAi;AjÞ=

� RT ln

NobsðAi;AjÞ+
Ai

NsðAiÞ+
Aj

NsðAjÞ

NsðAiÞNsðAjÞ +
Ai;Aj

NobsðAi;AjÞ
; (18)

where Nobs(Ai, Aj) was the observed number of interacting
packing pairs in a sheet for two residues of type Ai, Aj, and
Ns(Ai) was the total number of residues of type Ai in a sheet.

Tri-peptide packing term

The term Etri–lpeptide was for the tri-peptide energy, defined as
the contact energy of two specific tri-peptides with correspond-
ing secondary structure types. The amino acids were grouped
into four categories based on their physicochemical properties
and sizes: (Asp, Glu, Lys, Arg, His), (Ser, Thr, Asn, Gln), (Gly,
Ala, Val, Cys, Met), and (Ile, Leu, Pro, Phe, Tyr, Trp). Three
types of secondary structure, a-helix, b-strand, and loop, were
used. Therefore, there was a total of 64 3 3 ¼ 192 different
types of tri-peptides, in which 64 ¼ 4 3 4 3 4 was for the
coarse-grained residue types, and three was for the secondary
structure types. The tertiary packing potential was given by

Etri�peptide Ti; Si; Tj; Sj

� �
=

� RT ln
Nobs Ti; Si; Tj; Sj

� �
Nobs Si; Sj

� �
3 x Tið Þ 3 x Tj

� � : (19)

Here, Ti was for the ith tri-peptide, Si was for the secondary
structure type of that tri-peptide, and x(Ti) was the mole
fraction of tri-peptide i extracted from the structural database.
Also, Nobs was the observed number of contact pairs in the
structural database: Nobs(Ti,Si;Tj,Sj) was for the contacts be-
tween tri-peptides and Nobs(Si;Sj) was for the contacts between
two secondary structural elements defined as a pair of secon-
dary structural elements with at least one pair of tri-peptide
contacts. To define a contact between two tri-peptides, a 3 3 3
distance matrix Dij was constructed for the pair, in which the
element dki,lj of the matrix gave the distance between the kth
residue in tri-peptide i and the lth residue in tri-peptide j. Two
tri-peptides were regarded as being in contact if more than five
elements of their 3 3 3 distance matrix were within the cutoff
distance, which was set to 5 Å for a strand–strand contact, 10 Å
for a helix–helix contact, and 12 Å for all other contacts.

Three-body term

The term E3-body was a three-body energy for including the
multi-body effect. A triplet of residues was defined as three
residues (not nearest neighbor in sequence) with their Cb atoms
in long-range contact (defined as all three pair distances smaller
than a cut-off distance rc < 7.5 Å). All the triplets in the
nonredundant structure database were recorded. The energy
term for a residue triplet (type Ai, Aj, and Ak) was given by

E3�body ðAi;Aj;AkÞ=

�RT ln
NobsðAi; Aj; AkÞ

ð +
i; j; k

NobsðAi; Aj; AkÞÞxðAiÞxðAjÞxðAkÞC
; rij; rjk; rik # rc

0; otherwise

8>><
>>: ;

(20)

where Nobs(Ai, Aj, Ak) was the number of triplets of type (Ai, Aj,
Ak) extracted from the database, and x(Ai) was the mole fraction
of the residue type Ai. C was a factor defined as:
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C =
3!Qh

v = 1

tv!

: (21)

Here, h was the number of distinct residue types in the triplet
(1 # h # 3), and tv was the number of residues of type v in the triplet.

Solvation energy based on the solvent-accessible surface

The term Esolvation was for the solvation energy based on the
solvent-accessible surface (SAS). It was developed via statis-
tical analysis of the side chain solvent-accessible surface in the
nonhomologous structure database based on the all-atom struc-
ture model. For the Ca model, an approximate method for
calculating the side chain SAS was developed, and the solvation
energy was evaluated accordingly.

An approximate method was developed to calculate the side
chain SAS from Ca atoms. Here, rres(i) was defined as
the effective radius of the whole residue i, and SSC(i) was
defined as the effective total solvent-accessible surface for the
side chain of residue i. SSC(i) could be expressed by
SSC(i) = 4p(rSC(i) + rH2O)2; rSC(i) was the effective radius for
the side chain of residue i, and rH2O was the radius of a water
molecule (set to 1.4 Å). Also, dSC(i) was defined as the distance
between the Ca atom and effective side chain center of residue i,
and the positional vector of the side chain center was defined
as RSC(i). It was assumed that the effective side chain center
was always along the Ca to Cb direction (Fig. 10). So,
RSC(i) = RCa(i) + dSC(i)̂rCi

a ;C
i
b
, where RCa(i) was the Ca posi-

tional vector of residue i, and r̂Ci
a;C

i
b

was the unit vector along
the Ca to Cb direction. The side chain SAS for residue i could
then be calculated by:

SASðiÞ= Ai � Bi ðSASðiÞ = 0 if Ai < BiÞ

Ai = SSCðiÞ
Y

j

1� bj
i � b9j

i

SSCðiÞ

 !

Bi = +
j

b9j
i

rcut
i; j = rresðjÞ+ rSCðiÞ+ 2rH20

Di; j = RSCðiÞ � RCaðjÞk k

bj
i =

0; Di; j > rcut
i; j

p � ðrSCðiÞ+ rH20Þðrcut
i; j � Di; jÞ 1 +

rresðjÞ � rSCðiÞ
Di; j

� 	
; Di; j < rcut

i; j

8<
:

b9j
i =

0; Di; j > rcut
i; j

max 0;p�ðrSCðiÞ+rH20Þðrcut
i; j �Di; j�sÞ 1+

rresðjÞ � rSCðiÞ � s

Di; j

� 	� 	
;Di; j < rcut

i; j

;

8><
>:

ð22Þ

where s ¼ 2.5 Å according to the literature (Wodak and Janin
1980). Here, there were 20 of rres(i), 19 of SSC(i), and 19 of
dSC(i) as all the parameters in the SAS calculation.

In order to obtain the side chain SAS accurately for the
coarse-grained model, all 58 parameters were trained against
the atomic side chain SAS. The atomic side chain SAS was
calculated based on look-up table methods (Bystroff 2002) and
they were regarded as expected values. Then, a simulated
annealing Monte Carlo simulation was used to optimize param-
eters according to the following target function on a set of 392

protein chains, which were selected from the nonhomologous
structure database whose total number of residues range from 60
to 150 and there were no chain break, heteroatoms,, and missing
atoms. The target function was:

D =

+
training set

+
Ntot

i = 1

zðiÞ � z expðiÞj j

+
training set

Ntot
; (23)

where Ntot was the total number of residues of a protein chain,
and z(i), z exp(i) were the coarse-grained and expected fraction
of solvent-accessible surface, respectively, which can be defined
as the ratio between the side chain solvent-accessible surface
and the total side chain surface area of that residue in isolation
with the same configuration; i.e.,

zðiÞ= SASðiÞ
SSCðiÞ

z expðiÞ= SAS expðiÞ
S exp

SC ðiÞ

(24)

The optimized parameters can be found in Table 4, and the
best target function value after optimization was 0.0917,
indicating the existence of small error.

Finally, the energy term was related to the fraction of solvent-
accessible surface z, which had a value between [0,1], and was
uniformly divided into nbins ¼ 20 bins. It was given by

Esolvent Ai; z
expðiÞð Þ = � RT ln

nbinsNðAi; z
expðiÞÞ

+
bins

NðAi; z expðiÞÞ : (25)

Here, Ai was the residue type of the target residue, and N(Ai, z exp

(i)) was the observed number of occurrences of residue type Ai.

Figure 10. Schematic illustration of the parameters of the side-chain SAS

from the Ca position. For residue i, rres(i) is the effective radius of the

whole residue, rSC(i) is the effective radius for the side chain, dSC(i) is the

distance between the Ca atom and effective side chain center, and RSC(i) is

the positional vector of the side chain center. rH2O is the radius of a water

molecule (1.4 Å).
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When using the solvent energy term, z from the coarse-grained side
chain SAS was used as the approximation of atomic value.

Weight optimization

Weights were optimized against all proteins in the LKF and
Decoys’R’Us decoy set collections. To ease the decoy set
dependence of weight optimization, these decoy sets were
regrouped into three subsets based on the literature: The first
subset consisted of 25 proteins in the Decoys’R’Us sets (Tobi
and Elber 2000) (Subset-1 in Table 2), the second group
consisted of 151 proteins in the LKF set (Loose et al. 2004;
Zhang et al. 2006) (Subset-2 in Table 2), the third group
consisted of the remaining 34 proteins in the LKF set and seven
proteins in the Decoys’R’Us sets (Subset-3 in Table 2). The
seven proteins from Decoys’R’Us in Subset-3 were 3icb in the
4state_reduced decoy set, 4icb in the fisa decoy set, 1eh2 and
smd3 in the fisa_casp3 decoy set, 1beo and 4icb in the
lattice_ssfit decoy set, and 4pti in the lmds decoy set.

In this study, an iterative protocol of Monte Carlo-simulated
annealing was used on the three subsets of decoy collections.
The cost function for optimization was:

F = �z + 1:5Nmissing; (26)

where �z was the average Z-score for all proteins in the group and
Nmissing was the number of proteins whose native structures
failed to be ranked first in energy. The Z-score of the native
structure was defined as:

z =
Enative

tot � �Etot

sðEtotÞ
; (27)

where Enative
tot and Etot were the energy of the native and decoy

structures for a particular protein, respectively, �Etot and s(Etot)

were the average and standard deviation of energy of all decoys
for a particular protein. The temperature factor kBT in the Monte
Carlo simulation was decreased gradually during simulated
annealing from 1.0 to 0.01 in 19,800 steps. Then, kBT was set
to zero in Metropolis sampling, and the scoring function in
Equation 26 was minimized for another 200 steps. The simu-
lation started with predefined initial weights. Then, a randomly
selected weight was increased or decreased by 0.1 in each
Monte Carlo move, if the weight was within the predefined
allowed range (see below for more details).

In detail, simulated annealing optimization was first per-
formed on a randomly picked decoy subset with randomly
assigned weights to obtain a set of optimized weights. Then,
those weights were set as the new initial values for another
round of simulated annealing optimization on a different decoy
subset picked randomly. Optimizations were repeated among
three decoy subsets 100 times. To make the simulation con-
verge, the percentage changes of each weight with respect to the
initial weight were restricted. In each round of simulation, the
allowed percentage changes gradually decreased from 300% to a
minimal 20%. However, to prevent the weights from being
trapped at zero, the absolute allowed changes were no less than
0.5. According to weight optimization, weights finally con-
verged. But the overall performance was not necessarily the best
for the weight in the last step of annealing. So, we selected the
best performing weights from the last few annealing steps.
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