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Abstract

Molecular density information (as measured by electron microscopic reconstructions or crystallographic
density maps) can be a powerful source of information for molecular modeling. Molecular density
constrains models by specifying where atoms should and should not be. Low-resolution density infor-
mation can often be obtained relatively quickly, and there is a need for methods that use it effectively.
We have previously described a method for scoring molecular models with surface envelopes to
discriminate between plausible and implausible fits. We showed that we could successfully filter out
models with the wrong shape based on this discrimination power. Ideally, however, surface information
should be used during the modeling process to constrain the conformations that are sampled. In this paper,
we describe an extension of our method for using shape information during computational modeling. We
use the envelope scoring metric as part of an objective function in a global optimization that also optimizes
distances and angles while avoiding collisions. We systematically tested surface representations of proteins
(using all nonhydrogen heavy atoms) with different abundance of distance information and showed that the
root mean square deviation (RMSD) of models built with envelope information is consistently improved,
particularly in data sets with relatively small sets of short-range distances.
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Despite the increasing success of large-scale structure
determination efforts (including recent efforts in struc-
tural genomics [Todd et al. 2005]), there is still a need for
robust structure modeling methodologies. First, structural
genomics efforts are likely to yield members of a fold
family, and other members may have to be modeled from
these examples. Second, some structures may not be
determined for technical reasons. Finally, even when
component structures are determined, it will often be
necessary to assemble the components into larger com-
plexes, sometimes with modeling.

Modeling makes use of many data sources, including
those that produce distances (such as NMR [Tzakos et al.

2006], fluorescence resonance energy transfer [FRET
{dos Remedios and Moens 1995}], and cross-linking
[Kunkel et al. 1981]); those that produce surface acces-
sibility (such as chemical footprinting [Nguyenle et al.
2006]); those that produce overall dimensions (such as
hydrodynamic sedimentation measurements [Lebowitz
et al. 2002] and small-angle X-ray scattering [Svergun
and Koch 2002]); and overall shape information (such as
from electron microscopy [EM] or low-resolution crys-
tallography [Rossmann et al. 2005]). Recent advances in
the ability to determine overall shapes based on electron
microscopy have visualized molecular structures of sig-
nificant size, but usually with a limited resolution of 6–9 Å
(Chiu et al. 2005). The challenge in using EM data,
however, is that the overall surface may be well-defined,
but the location of individual atoms is not specified.
Although some reference markings may be defined using
antibody or heavy-atom ‘‘tags,’’ these can involve signifi-
cant additional labor (Buchel et al. 2001). Nonetheless, the
information content of a medium-high resolution surface
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envelope should markedly reduce the space of molecular
structures that are compatible with the envelope. While
generally not sufficient to uniquely define a structure, the
envelope is useful in the context of other structural
measurements, such as distance information taken from
the sources mentioned. Our work is focused on developing
methods to use envelope information to assist in building
models of molecular assemblages.

In previous work, we reported a data structure called
the ‘‘surface envelope’’ (SE) that could be used to
represent the shape of a molecule (Dugan and Altman
2004). An SE is a cubic grid-based structure (with grid-
variable dimensions) that represents the overall shape of
a molecule at any resolution. We developed a fitness
metric that scores the degree of match between a
molecular model and a target SE. The fitness metric
searches for the best rotation/translation of the model so
that it matches the SE. We showed that the fitness
function tracks well with the RMSD, with high fitness
scores corresponding to low RMSD matches between the
model and the target structure from which the SE was
generated.

In this paper, we present results showing that an SE
can be used prospectively in computational modeling to
constrain the molecular structure produced from a set of
distance constraints. The goal is to produce a molecular
model with a shape similar to the shape encoded with
the SE data structure while also satisfying the distance
constraints. Our method works best with high-resolution
shape data in the 3–4 Å resolution range, but it can be
applied to any data set. We use ‘‘prospective’’ to distin-
guish a method that uses the SE actively in the search for
conformations from methods that use the SE simply as a
postmodeling filter to throw away incompatible models.
Our previous work showing the correlation between
molecular shape and RMSD demonstrates the filtering
capability of SE, but here we show the value of directly
integrating the SE data into the optimization routines
for building molecular models. Ideally, the modeling
process will use SE data to more quickly converge to a
global minimum of our objective function, reducing the
measured residuals between the constraints (interatomic
distances and SE shape) and the corresponding measure-
ments from atom positions in the model.

The details of our method are provided in the Materials
and Methods section, but the key features can be
summarized here. First, we use the grid-based SE, aligned
to the ‘‘model-under-construction,’’ to evaluate which
atoms are occupying the molecular shape and which are
not. Second, we compute the derivative of the fitness
function to estimate where atoms that are not currently
within the target SE shape should move in order to oc-
cupy the shape. Third, we employ increasingly ‘‘fuzzy’’
versions of the SE to ensure that the derivative of the

fitness function with respect to the atom position is never
zero, to ensure that atoms are always moving toward
positions that are contained within the SE.

We have validated our method in the context of a
distance-geometry algorithm called GNOMAD (Williams
et al. 2001). GNOMAD uses nonlinear optimization tech-
niques to estimate molecular structure based on an
objective function that is optimal when all constraints (in
this case, distance and surface) are satisfied. GNOMAD
uses the derivative of the objective function to guide its
search. GNOMAD has been shown in previous work to be
fast and accurate (Williams et al. 2001). In our validation
experiments, we show that the addition of surface informa-
tion, through our SE data structure, can provide information
equivalent to 10%–40% of short-range distances. That is, in
some cases a low-RMSD structure can be computed with
60% of short-range distances alone, or 20% of those
distances along with an SE. Thus, we are able to provide
a first-order quantification of the relative value of surface
information in molecular modeling, in ‘‘units’’ of percent-
of-short-range-distances.

Results

We validated our method on synthetic distance and SE
data computed from eight different crystallized proteins.
The first two are fragments of the N-terminal region from
complete structures, the third is a complete structure, and
the fourth is a CATH domain from the Hodor set (Hodor
et al. 1999). The molecular sizes range from 56 atoms
through 717 atoms. In each of the four experiments, the
same experimental design was used: 48 different distance
input sets were created by taking six random samples of
short-range distances <6 or 10 Å, in order to simulate
distances derived experimentally from cross-linking or
NMR. Four different fractions of these short-range dis-
tances were used: 20%, 30%, 40%, and 60%. We have
found in previous work that 60% of short-range distances
is typically sufficient to reconstruct a structure with high
precision (Chen et al. 1996, 1998, 1999; Schmidt et al.
1998). Four fractions, two distance cutoffs, and six sam-
ples of each, leads to 4 3 2 3 6 ¼ 48 different distance
sets. We graph each of these as shown in Figure 1A,H,
with the Y-axis indicating the RMSD (to the known
structure) of the computed model with SE data added to
the distance data set and the X-axis indicating the RMSD
of the model computed without the SE data. The short-
range distances provided were all exact with low var-
iance. We have previously documented the loss in
precision in GNOMAD when using noisier distance data.
The SE for each known structure was computed with a
grid size of 3.7 Å, as detailed in Materials and Methods.

Figure 1A presents results from the full-atom modeling
of the first 171 atoms (24 residues) of protein 1ctf (PDB
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Figure 1. (A) Modeling results for ribosomal structure (1ctf). This graph compares the RMSD of resulting models of 1ctf, derived both

with and without SE data. In all modeling runs, sets of interatomic distances were included spanning 20%–60% of short-range

distances, as described in the text. The distance range was taken as either 6 or 10 Å. The key indicates the percentage and distance

range applied. (B) Modeling results for protein 1myt; (C) modeling results for plant seed protein Crambin, 1crn; (D) modeling results

for virus coat protein, 2bbv; (E) modeling results for chain B of the HPP precursor protein, 1ivy; (F) modeling results for chain O of the

RNA binding attenuation protein, 1wap; (G) modeling results for actin binding protein, 1svr; and (H) modeling results from chain E

from the virus coat protein, 2bbv.



entry codes). This graph shows 48 different points
representing 96 different modeling runs for this structure.
The first 48 runs used distinct distance data sets, and the
second 48 runs used the same distance sets, with the
addition of a 3.7 Å SE generated from the crystal
structure of 1ctf. Figure 1B presents results from the
full-atom modeling of the first 283 atoms (36 residues) of
protein 1myt. Figure 1C presents results from the full-
atom modeling of plant seed protein Crambin (1crn, 327
atoms). Figure 1D presents results from the full-atom
modeling of chain E from the virus coat protein with
2bbv, 125 atoms. Figure 1E presents results from the full-
atom modeling of chain B of the HPP precursor protein
with 1ivy, 399 atoms. Figure 1F presents results from the
full-atom modeling of chain O of the RNA binding
attenuation protein with 1wap, 519 atoms. Figure 1G
presents results from the full-atom modeling of the actin
binding protein with 1svr, 717 atoms. Figure 1H presents
results from the full-atom modeling of a fragment of
chain E from the virus coat protein with 2bbv, 56 atoms.

The changes that we introduced into the GNOMAD
code for determining structure from distances slowed the
code considerably. In general, GNOMAD produces struc-
tures in a few minutes, and these modifications increased
running time by 10-fold. We attribute the increase to the
unoptimized computation of surface to model match,
the blurring procedure, and (most of all) the finite-
difference estimate of derivatives of the augmented ob-
jective function.

Discussion

Several existing tools assist in applying shape informa-
tion in the determination of 3D biomolecular structures.
Current techniques include manual and semi-automated
procedures (Volkmann and Hanein 2003), secondary
structure mapping and fold detection (Dror et al. 2007),
reduced-detail representations and conformational flexi-
bility fitting (Wriggers et al. 2004), and mapping density
onto a 3D grid (Topf et al. 2005). Our method is fully
automated and does not include secondary structures or a
reduced complexity density representation. We apply a
3D cubic grid for the electron density values with the SE.

Examination of Figure 1A,H, shows the clear benefit
of using shape information in the modeling process. In
almost all cases, addition of the SE data type caused the
resulting model RMSD to improve relative to the crystal.
In some cases, these improvements were dramatic, caus-
ing models in the 6–7 Å range with distance information
alone to move close to 0 Å RMSD after adding the SE. It
should be noted that the results presented have a stochas-
tic nature to them because the procedure for aligning the
current best molecular model to the surface envelope
includes random perturbations to improve the fit (Dugan

and Altman 2004). Therefore, no single data point would
appear in the same place given the same starting con-
ditions. It is still informative to examine overall trends
in the data. Not surprisingly, the envelope data helps
low-abundance data sets the most; the 20% and 30% of
short-range distance data sets often show the greatest
improvements with the SE data. When using extremely
low percentages of distances, such as only one or two
distance constraints, models converge quickly to minima
that conformed to both the shape and the distance con-
straints but had very high RMSD when compared to the
solved structure.

Conversely, a few of the modeling runs actually
produced worse structures after adding SE data. These
are easy to identify because they generally come from
runs that never converge to low error and thus do not
converge. If at the end of the modeling run, the model
does not satisfy the input data, then the structure with the
lowest observed error during the modeling run provides
the run RMSD value. In practice, the high constraint error
makes it clear that the run had not converged.

Our distance sets were generated by measuring the
distance in a solved structure between two random
residues without regard for their 3D position. The par-
ticular residues for which there are distance constraints
can affect the precision greatly. Particularly when cou-
pled with shape information, certain ‘‘strategic’’ distances
could greatly increase the accuracy of resulting models
for a given amount of distances. Unfortunately, most
experimental methodologies do not allow distances to be
selectively probed (FRET being an exception), so we
simulated the most likely scenario: randomly measured
distances.

We were concerned that the addition of SE data might
make the optimization landscape rougher and result in
poor convergence. However, there were surprisingly few
examples to support local-minima issues with the SE
data. However, local minima were most likely when the
addition of SE made structural models worse; adding the
shape information sometimes made convergence of the
nonlinear minimization more difficult than using distance
sets alone. We did not find any particular distance set to
stand out as difficult in terms of convergence; the distance
sets were randomly generated and were internally self-
consistent with the solved structure. For the cases with
poor structural models using SE data and sparse distance
sets, we sometimes find low-error solutions that do not
produce models with low RMSD. For denser distance
sets, high-RMSD solutions are typically local minima
that are easy to recognize: They have high error in the
resulting distances, and our system is unable to find the
correct solution.

Another factor affecting the outcome of our method is
the intrinsic shape of the protein. The more spherical the
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protein (the closer to 1 for the ratio of min to max
principal component of 3D density), the lower the con-
tribution of shape information to modeling.

Data quality is a major factor in modeling protein
structures. The effect on model quality from errors depends
on many factors, including the kinds of errors and the degree
or severity of the error. For example, mislabeling residues
for distance constraints could greatly increase the chance of
nonconvergence, resulting in model with extremely high
error (fortunately, often easily detected). Individual errors
in the distances for some distance constraints would
produce internally inconsistent data sets, and our modeling
system may not converge depending on the magnitude of
the errors. Our method is fairly robust with respect to errors
in the SE, as we use the envelope data for deriving gradient
information. As long as gradients are similar, errors in

actual values in the SE would create minimal changes in
resulting protein models.

Given the models created both with and without shape
information, it is interesting to estimate the value of the
SE in terms of percentage of distances saved. In other
words, ‘‘What percentage of available distances is equiv-
alent to adding shape information for producing models
with similar RMSD?’’ Figure 2, A and B, shows two
graphs derived from the 1ctf and 1crn runs above. For
each group of six random-distance sets, the median
RMSD is plotted against the percentage of distances
used. The four cases represent two different distance
cutoffs (6 and 10 Å) both with and without SE data.
Linear approximations to the median RMSD are shown
with straight lines. Examination of the horizontal distance
between the solid lines provides the estimate of the

Figure 2. (A) Estimation of the value SE contributes to modeling in 1ctf. This graph presents the median RMSD over the six random-distance sets in each

of four cases for the 1ctf structure. Data at 6 and 10 Å, both with and without SE data, are included. Lines are linear approximations to the median RMSD

values. By looking at the horizontal distance between the lines, we can estimate the value of adding SE data during modeling (1ctf). (B) Estimates of the

value that SE contributes to modeling in 1crn, (C) 1myt, and (D) 1svr.
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improvement due to assigning SE with 6 Å distances (as
measured in percent distances). Similarly, the dotted lines
pertain to 10 Å data. With 6 Å data, the SE is ‘‘worth’’
;10% additional distances when 60% of distances are
provided and ;15% when a lower fraction of distances is
provided. The 10 Å data show that the SE has less value.
For these data, the value of the SE is about the same as
providing an additional 10% of the short-range distances.
These are, to our knowledge, the first direct-assessment
methods of the relative value that shape information
provides in modeling. As we discussed previously (Dugan
and Altman 2004), surface information is most useful for
modeling when the shape is highly eccentric.

Figure 2C presents a similar analysis of 1myt. For the
10 Å data and large fractions of the short-range distances,
the SE adds almost nothing, but for 10 Å runs and <40%
of short-range distances, the SE contributes significantly.
Figure 2D presents similar data for 1svr.

Materials and Methods

The overall features of the SE data structure are described
elsewhere (Dugan and Altman 2004). Briefly, each molecular
density data set is mapped to a cubic 3D grid, and the grid boxes
are filled with atomic density linearly proportional to the
contents of the initial data set. During modeling, the molecule
is aligned with the SE by first aligning the principal inertial
components of the grid and the molecule and then by refining
the registration and checking for symmetry. Once the SE and the
molecule are aligned, we define a score based on the match
between SE grid boxes that have density and whether atoms in
the model fill those grid boxes (at any level of abstraction).

The general method for using an SE match as part of a
molecular structural modeling optimization involves ensuring
that the score function for the SE is both differentiable and
always defined. This ensures that atoms can be ‘‘pulled’’ into
density by the optimizer no matter where they land on previous
iterations. As discussed below, we created a hierarchical data
structure with multiple SE to support modeling. This hierarch-
ical structure allows expanding and blurring, as described in the
next two subsections. Expanding and blurring allow us to create
a lower-resolution set of envelopes, each one successively larger
than the previous, with respect to the box size and the total
three-dimensional extent. These larger envelopes guarantee that
the fitness function for any individual atom (and therefore its
gradient) is always computable. The initial SE has the label
layer 0, which is blurred and then expanded to create layer 1.
The process is iterated through blurring and then expanding on
layer n to create layer n + 1. The current implementation creates
five layers (layers 0–4), but that number is adjustable to
accommodate larger models.

Several methods for different starting structures were tested
as part of the research. For the results presented here, atoms
were placed in random position in a box 610 Å from the origin.
Other methods tested included iterative buildup along the
backbone chain, iterative addition of atoms by traversal of
distance constraints, depth first and breadth first. In all of these
test cases, minimal additional value was added to the resulting
models, so random initial placement of all atoms was used in
final runs.

We used the GNOMAD optimization code for estimating
molecular structure from distances. Details of GNOMAD have
been published previously (Williams et al. 2001), but they can be
summarized here. GNOMAD creates a nonlinear objective func-
tion that is minimized when all distance and angle constraints are
satisfied. It uses a line-search method that can guarantee that all
structures have no atomic collisions, because each atom is placed
in an unoccupied location at each step of the optimization.

GNOMAD updates the coordinated locations of one atom at a
time instead of simultaneously updating the positions of all the
atoms in the molecule or some group of atoms. This atom-based
approach reduces the dimensionality of the system and makes
constraint enforcement more tractable. The GNOMAD objective
function is based on the sum-of-squares of the weighted resid-
uals. Residuals are the difference between input data (an inter-
atomic distance) and the corresponding calculated value from
the current model which requires that all elements of the objec-
tive function be differentiable. GNOMAD is fast and has been
shown to produce low residual structures from distance information.

Fitness function

During atom-based modeling, we need a measure of how
accurately any particular atom meets the shape of the SE after
the model is aligned to the SE. We use an atom-based score
function for this measure:

score = +
n

i = 1

ðDi� a � PiÞ;

where i ¼ counts over all atoms in the model, Di ¼ density value
from SE at atom position i, a ¼ an adjustable scaling factor, and
Pi ¼ penalty function for regions of SE near atom i not filled
with atoms in the model. Pi is calculated for each atom and is
equal to zero for each box i in the SE that contains an atom and
is equal to the density value in the box (a value from 0 to 1) if no
nearby atom can account for the atom density expected in box j.

During modeling, the movement of each atom requires the
gradient and an estimation of the Hessian (second partial
derivatives) of the fitness function. For the SE, we can under-
stand these quantities as the direction an atom must move to
make its position better with respect to the shape. This
numerical requirement from the optimization method means
we calculate and maintain gradient information in each box of
the SE and use these gradients during modeling to move atoms.
The actual calculation of the gradient is a finite-difference
estimation based on values within the SE.

The modeling process moves atoms one by one, and often
these atoms move far outside the initial constraining SE data.
This means the SE constraint must provide some information
both about atom fitness (objective-function values) and about
the gradient outside the initial ranges of the shape data. To
address this issue, the shape information in the SE is encoded in
a multilevel, hierarchical set of SE data structures to expand the
initial data into a format that spans a larger 3D space. Each level
of the hierarchy is a separate, self-consistent SE, maintaining its
own data and reporting its own objective function, gradient, and
Hessian data.

Gradients

Each box in each SE in the constraint has a gradient vector
associated with it. For the initial SE data (in SE0), representing
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the lowest layer on the hierarchy, the gradients are all set to zero
if the density number in the box is >0.125. This value represents
the minimum density that can explain an atom resting within
this box (it occurs if the atom is exactly resting in one corner of
the box). All the other boxes in the SE each have a gradient
vector calculated using

Go = +
i; j2ð�k;kÞ

fDi;j � Dog�
xi;j
!

xi;j
!j j2

;

where k is the gradient extent, typically set to one, representing
the number of neighboring boxes in each direction to include in
the gradient calculation. Do is the density number in the current
box, Di,j is the density of the box offset (i,j) from the current
box, and xi;j

!
is the vector from the center of the current box to

the box offset by (i,j).

Multiple envelopes

Using a hierarchical set of SEs for the molecular shape has
several advantages. Primarily, this provides a solution to having
objective-function values and gradient information span the
whole 3D range of atom positions. There are multiple different
SE layers, each with a different box width. During the modeling
process, shape information for any one particular atom position

comes from a single SE layer. The smallest SE layer, SE0, is
3.7 Å on each side of the cube. Successive SEn are factors of
two larger in each dimension, so SE1 has boxes that are
7.4 Å on each side and SE2 has boxes that are 14.8 Å on each side.

The algorithm selects the SE layer to apply on the basis of
density numbers: The lowest SE in the hierarchy with a nonzero
density value is used for any particular location. This means that
if an atom is within the input shape data, then SE0 is used. If SE0

has 0 density at that position, then SE1 is checked, and so on,
until the lowest layer SE is found to have density greater than
zero. In this way, each SE is maintained as a separate data
structure that does not interact with any of the others. Figure 3
shows SE1 and SE2 for 1svr. The two SEs are presented with a
similar size scale to emphasize the differences created by the
expansion and blurring steps. The blue arrows represent gradient
direction.

For each step of the hierarchical SE data structure generation,
one envelope (SEn) is used to create the next higher layer
envelope (SEn + 1). Figure 4 shows a schematic of the process.
Expansion means increasing the box width of the SE n + 1 to be
larger than the box width of SEn. To accomplish this, boxes in
SEn are grouped into contiguous sets of eight boxes meeting at a
single corner. These eight boxes are merged to create a single
box in SE n + 1, and the maximum density value is applied to the
new box. The result of this operation doubles the width of each
box, and does not change the overall extent of the SE in space.

The blurring operation acts on SE n + 1 and changes the
density numbers in each box. Figure 5 shows a schematic of the
process. A 3D convolution kernel of magnitude three is marched
over every box and contributes 1/27th of its density value to
each of its 26 neighbors and to itself. Only these contributions
are counted in the SE after blurring; the initial density values are
discarded. The blurring operation does not change the width of

Figure 4. Schematic diagram showing the expansion operation on a 2D

grid. Expansion of SE0 yields SE1, and expansion of SE1 yields SE2. The

widths of the boxes are twice as long in each dimension after expansion.

The grids are shown to relative scale, so SE1 contains the volume covered

by SE0 but extends it. Likewise, SE2 extends the area covered by SE1. This

is all done to ensure that any atom in space has a nonzero derivative with

respect to the objective function (which is blurred onto this expandable

grid as illustrated in Fig. 5).

Figure 3. (A) SE1 for 1svr showing arrows for the gradient vectors. (B)

SE2 for 1svr on the same size scale as A, also showing gradient vectors

with blue arrows.

Dugan and Altman

1272 Protein Science, vol. 16



the boxes, but it increases the extent of the SE n + 1 by two box
widths in each direction. This increase comes from the neighbor
contributions from boxes on the current edge into previously
empty (zero-density number) boxes.
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