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and should facilitate the construction of multiple mutants having a set of desired
marker genes. The transfer of the arg5- allele into an F- strain of K-12 has enabled
us to map this gene, which prior to this had not been possible because arg5- mu-
tants had not been isolated in K-12. Localization of this gene is important for
studies of the mechanism of repression in arginine biosynthesis.

It was found that the presence of an Hfr gene excludes the effective transfer of
the Flac+ episome during mating. This exclusion resembles the immunity against
infection by a temperate phage conferred by the presence of the corresponding
prophage.
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Traditional accounts of natural selection usually assume a fixed degree of in-
breeding and, especially, that population density exerts no effect on the relative
adaptive values of different genotypes. With these assumptions, some very re-
markable theorems have been proved, in which fitness plays a major role. Fisher'
was able to show that, unless the degree of inbreeding varies or the environment
deteriorates, the mean fitness aiways increases; and he gave a formula for the rate
of increase. Haldane2 showed that, during the course of substituting a superior
gene for its allele, the number of genetic deaths (actually f (rmax - r)dt, where
rmax is the fitness of the most fit homozygote and F is the mean fitness of the whole
population) is independent of the advantage of the new homozygote over the old.
The purpose of this article is to give an account of natural selection which holds for
varying degrees of inbreeding and which allows for effects of population density on
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fitness. Theorems analogous to those of Fisher and Haldane will be proved, also
allowing for density effects.

First, let us describe the replacement of allele y by x. Allowing for effects of total
number of individuals on the rates of increase of the genotypes, we can conclude
that for each genotype xx, xy, and yy and for each value of p, the proportion of x
genes in the population, there will be a value Kxx(p), K,,(p), and K,,(p) such that
when the combined population of all genotypes equals Kxx(p), the birth rate of xx
individuals just balances the death rate, and similarly for xy and yy genotypes.
Then, as a first approximation which will be quite accurate when the total popula-
tion, N, is quite near the K values, the excess of the birth rate over the death rate
of the xx, xy, and yy genotypes will be proportional to (Kxx(p) - N), (Kx,(p) -
N), and (K,(p) - N), respectively. This will be precisely true if the genotypes
have logistic population control. Now, p is the proportion of x genes: p =
(nI/N), where nx is the number of x genes in the population; n, is the number of
its allele y. Let f(p) be the proportion of these x genes which, for the given fre-
quency p, are combined in the zygote with another x gene, so that 1 - f(p) is the
proportion of the x genes which combine with y genes. Let g(p) be the correspond-
ing function for the y genes. Now we can describe the rate of increase of the x
genes with respect to time:

dx= nx[c-xf(p) (K (p) -N) + cxy(1 - f(p)) (Kz,(p) - N)], (1)
dt

where czx and cx, are constants describing the change in fitness of the xx and xy
genotypes which accompanies a unit change in N. Similarly,

dny = ny [cxyg(p) (Kxy (p) - N) + c,,(1- g(p)) (K,,(p) - N)] (1')

These are accurate in the logistic case, and always a good approximation if the K
values are similar. Now we can solve these equations graphically as follows.
Suppose, for concreteness, that for all p, Kzx(p) > Kx,(p) > Kyy(p). In Figure 1
we have all the necessary elements for the solution. The coordinates are nx and

n, (time is not a coordinate). The isoclines dnx= 0 and dny= 0, which we will
dt I dt

call the x-isocline and the y-isocline, are plotted from equations (1) and (1'). Al-
though they are not necessarily straight, the x-isocline must connect K~y(O) on the
ny axis to the point Kxx(l) on the nx axis, and the y-isocline must connect K (O)
on the ny axis to KXy(1) on the nx axis, as the right-hand sides of equations (1) and
(1') show. For instance, when ny = 0, p = 1 and the right-hand side of equation
(1) takes on the value zero only if N = nx = K1x(l). We now introduce time onto
the graphs by plotting a field of arrows which show the direction in which the popu-
lation is changing. Thus, an arrow pointing down and to the right from the point
(nxny) indicates that a population having nx of the x genes and ny of the y genes will
change so that the x genes increase in number and the y genes decrease. These
arrows are shown in Figure 1, with their directions determined by the isoclines and
the meaning of the stippling and cross-hatching. Clearly,3 any sequence of arrows,
tail to head, representing the history of any particular population, will always lead
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FIG. 1.-Graphical analysis of the replacement of y genes by their x alleles. n" and n, are
the numbers of x and y genes, respectively. Krc(1) and Kr1(1) are the densities of the total
population such that the xx and xy genotypes have death rates just balancing birth rates, when
p = 1. Kyv(O) and Ky,(O) are defined similarly for the situation p = 0. In the stippled
area, n, is always increasing, and in the cross-hatched area ny is always increasing. Hence in
the region with both stippling and cross-hatching, both genes increase, and arrows point up
and to the right. In the area with only stippling, n. increases and n1 decreases, and in the un-
shaded area, both decrease.

to the point Kx(1) on the n. axis, for that is the way the whole field of arrows flows.
Hence, we have proved that if, for all p, K&Z(p) > K,,(p) > K,(p), then the x genes
replace the y genes. Notice that no assumption of constant degree of inbreeding
was needed; we only required that each population composition determine some
fixed degree of inbreeding so that the arrows have an unambiguous direction.

Similarly, if Kzy(1) > Kx(1) and KV(O) > K.V(O), then the isoclines cross, and by
drawing the graphs, we see immediately that the point of intersection of the iso-
clines is a stable equilibrium point toward which all arrows converge. This is
equivalent to the traditional case of the heterozygote most fit, except that as be-
fore, our K values replace the usual fitness or adaptive value terms. Other genetic
situations can be handled similarly.
We can now prove theorems resembling those of Fisher and Haldane, mentioned

above. Assume that the x gene has an isocline only slightly farther out than the
y isocline, so that the replacement process is slow. Hence dN/dt = 0, and N =
K, approximately. We find by differentiating p = (n_/N) that

dp (1 dnx 1 dN\
dt \n. dt N dtl'

which, in our case, becomes approximately

dp = pI dn - P cX. (distance from x-isocline to nnzn) (2)dt \nidt

where c-.,. is [f(p) c,,~ + (1 - f(p)) cu,]; c,. is defined similarly. A symmetrical form is
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dp (1 ) (1 dnx 1 dny\ (2')
dl knxdt ny dt/

p(1 - p) [cx. (distance from x-isocline to nxn,) +
c,. (distance from x-isocline to n,,n,)]

= p(l - p) H(p) (distance between isoclines through no, n,)
where H(p) takes on values between c*. and c.. Furthermore, since dN/dt is
virtually zero, (rmax- r) is virtually rmax which in turn is c_ (Kx*- N). This in
turn is nearly cx(Kx- R), so the number of selective deaths is virtually equal to
cat times the extra amount of life, measured in animal-hours (or whatever the time
unit is), that would have existed had all genes been x. Thus

P
PP

N
- K) dp

L =3= (rma - :)dt= dp
PO=p O ddt

which, by equation (2) is

PfC7X(K -K)dp
J pcx. (distance from x-isocline to nxnv)

(Pf c:*(distance from N = Kim* to N = K)dp
J pcz. (distance from x-isocline to N = K)

which precisely equals loge(pf/pu) when x is dominant, so that c* = ci., and the
x-isocline is the line N = Kxx. When dominance is not complete, we must assume
the line N = K~x is parallel to N = KV, so that (distance from N = Kzx to N =-

R) equals (l-p) (distance between N = Kzx and N = Ky). Then, using equa-
tion (2'),

L Pf 1 [cx(distance between N = K~x and N = KVV)1
LJP p L H(p) (distance between isoclines) d

The term in square brackets is between about 1 and 5, for normal degrees of domi-
nance, so the number of selective deaths is some multiple (Haldane suggested about
three) of the number obtained above for the case of complete dominance.
To prove our analogue of Fisher's Fundamental Theorem of Natural Selection,

we assume for convenience in exposition that breeding is random. The general
case would have additional terms. Then,

dK _ 2dKxX dKx~dK 2 duk + 2p(1 _ p) d~v+
dp dp dp

(1-p) dK + 2(pKxx + (1 - p - p)Ky- (1 - p)Kyy)dp

--i+ 2[(pKxx + (1 - p)KXY) - (pKx,, + (1 - p)Kyv)dp/
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(dK)
= -- + 2(distance between isoclines).dp

Using equation (2'), we obtain

dK dR dp
dt dp dt

ldK\
-d) H(p)p(1 - p) [distance between isoclines] +\dp/

2p(l - p)H(p) [distance between isoclines]2. (4)

(The second term can be shown, by a proof like Fisher's, to be H(p) times the addi-
tive genetic variance in K.) If the different genotypes do not differentially affect
the renewal of the limiting resource, so that the K's are independent of p, then
(dk/dp) is zero and (dK/dt) is therefore always positive. On the other hand, if
the competing genotypes have different effects on the renewal of the resource
(e.g., if one grazes closer), so that K,,(1) # K,(O), then dK/dp may even be
negative andK need not always increase.
Discussion.-In all of these theorems, K values replace the corresponding rela-

tive fitness or adaptive value terms of the usual expositions of natural selection.
However, because dK/dt is not always positive (equation (3)), we enquire what it
is that always increases under the action of natural selection. The answer is quite
intricate; unless one type of competitor can pollute the resource so that the other
type cannot use it, natural selection seems always to decrease the density of limiting
resource required to maintain the population at a constant level. But to prove
this requires an analysis of a three-dimensional equivalent of Figure 1 in which
the third coordinate is the amount of the limiting resource.
Summary.-An account of natural selection is presented which makes no as-

sumption about fixed degree of inbreeding, and which takes into explicit account
the effect of population density. Simple analogues of Fisher's Fundamental
Theorem of Natural Selection and of Haldane's work on the number of selective
deaths during gene substitution are proved. The analogue of Haldane's work
also enables us to estimate the number of animal-hours of life which are lost due to
poor genotype. In all of these, the carrying capacity of the environment, K, re-
places fitness as the agent controlling the action of natural selection.

This work was stimulated and improved by discussions with J. Crow, G. E. Hutchinson, R.
Lewontin, E. Mayr, and E. 0. Wilson.
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