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Abstract

The process of experimental determination of protein structure is marred with a high ratio of failures at
many stages. With availability of large quantities of data from high-throughput structure determination
in structural genomics centers, we can now learn to recognize protein features correlated with failures;
thus, we can recognize proteins more likely to succeed and eventually learn how to modify those that are
less likely to succeed. Here, we identify several protein features that correlate strongly with successful
protein production and crystallization and combine them into a single score that assesses ‘‘crystal-
lization feasibility.” The formula derived here was tested with a jackknife procedure and validated on
independent benchmark sets. The “crystallization feasibility’” score described here is being applied to
target selection in the Joint Center for Structural Genomics, and is now contributing to increasing the
success rate, lowering the costs, and shortening the time for protein structure determination. Analyses of
PDB depositions suggest that very similar features also play a role in non-high-throughput structure
determination, suggesting that this crystallization feasibility score would also be of significant interest
to structural biology, as well as to molecular and biochemistry laboratories.
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target selection

Our understanding of the molecular events that define
life depends on our ability to map the molecular details
of individual proteins and nucleic acids as well as their
interactions with each other and with small molecules,
such as inhibitors, cofactors, substrates, etc. However,
structure determination is often a long and expensive
process whereby the target macromolecule must be
produced in relatively large quantities and purified in
high concentrations. In X-ray crystallography, which is
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by far the most successful approach to structure determi-
nation of macromolecules, the target must be crystallized,
and the resulting crystal must diffract to sufficient
resolution. In NMR, the protein also has to be produced
in large quantities in highly concentrated solutions. Not
surprisingly, only a small percentage of initial attempts at
structure determination are successful. A failure at any of
the many steps leading from selecting a structure target to
determining its structure inevitably delays or even stops
the process. These factors increase the overall cost of
structure determination both in materials and in time. For
the Joint Center for Structural Genomics (JCSG), we have
estimated that greater than 60% of the overall cost of
structure determination efforts can be attributed to failed
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attempts. Reliable prediction of success or failure for
individual targets has so far been unachievable and has
made it often necessary to process many targets in order
to find the one that will succeed.

One of the unique features of structural genomics
efforts is that information on an enormous number of
both successful and unsuccessful attempts at structure
determination is collected in a single database, TargetDB
(Chen et al. 2004), that is available from the Protein Data
Bank Web site (http://targetdb.pdb.org/). Some further
details are also available from databases in individual PSI
centers. In the past, only successful attempts have been
documented, making it difficult to precisely identify
protein features that are responsible for the failures. If
proteins displaying such features could be avoided or
modified experimentally, the overall success rate could be
increased and the costs of the entire process lowered. This
approach is especially pertinent to structural genomics
(SG) where often protein families, rather than individual
proteins, are targeted, and the number of potential targets
in each family that can be selected for evaluation is
usually large. Selection of targets with the highest chance
of success in structure determination would then max-
imize the output of SG centers, and may also be of
interest to other laboratories.

The connection between protein physicochemical fea-
tures and crystallization success in SG has been already
investigated by several groups. In 2000, Christendat and
coworkers analyzed preliminary results from a SG project
that focused on the thermophilic archeon Methanobacte-
rium thermoautothrophicum and proposed a decision tree
to predict solubility from protein sequence (Christendat
et al. 2000). This analysis lead to the development of
SPINE, which was defined as ‘“‘an integrated tracking
database and data mining approach for identifying fea-
sible targets in high-throughput structural proteomics”
(Bertone et al. 2001). These early studies focused mostly
on protein production, as insufficient data of sufficient
quality were available on protein crystallization. How-
ever, a large and unbiased data set was accumulated from
processing the entire proteome of Thermotoga maritima
through a structural genomics pipeline, as described by
Lesley and coworkers (2002). Based on these data, the
JCSG team proposed several types and ranges of protein
physicochemical parameters that correlated with crystal-
lization success rates (Canaves et al. 2004). The key
features identified in this study were isoelectric point,
sequence length, average hydropathy, low-complexity
regions, and the presence of signal peptides and trans-
membrane helices. In 2003, Rodrigues and Hubbard
(2003) also analyzed similar protein characteristics,
such as the presence of transmembrane helices, low-
complexity regions, and coiled-coil regions in the context
of a project on Plasmodium falciparum. Gernstein’s

group further identified other novel protein features that
influence the feasibility of selecting a target protein for a
high-throughput structure determination approach, such
as sequence conservation across many organisms, the
percentage of charged residues, and the number of protein
binding partners (Goh et al. 2004). The Center for
Eukaryotic Structural Genomics used disorder prediction
algorithms from the PONDR family (Romero et al. 2001)
to analyze the impact of intrinsic protein disorder on
crystallization efficiency (Oldfield et al. 2005). The
Berkeley Structural Genomics Center utilized several
protein features, such as length, predicted transmembrane
helices, coiled coils, and low-complexity regions to
eliminate targets predicted to be intractable for high-
throughput study (Chandonia et al. 2006). Recently, a
novel machine-learning approach to the prediction of
protein crystallizability was proposed by the Frishman
group (Smialowski et al. 2006). This was the first study
that proposed an algorithm that calculates a single esti-
mate of the probability of protein crystallization. Overton
and Barton (2006) proposed a normalized scale (called
the OB-Score) for SG target ranking based on the protein
hydrophobicity and the isoelectric point. Comparison of
OB-Score results with the scores developed in this paper
is presented in the following sections.

With that background, the analysis presented here
represents a significant advancement over previous stud-
ies in that we use different methodology, different sets of
protein features, and a much larger, updated learning set
derived from TargetDB and from PDB (Berman et al.
2000). It is also the first study that has been directly
applied to the target selection of a large SG center, the
Joint Center for Structural Genomics, which is one of the
four production centers of the NIH-funded Protein Struc-
ture Initiative.

Although many individual steps occur in protein
structure determination, essentially these fall into two
key processes: protein production and protein crystalli-
zation. The term “‘protein production” is used here to
cover the process starting from DNA cloning and ending
with a purified protein, including protein expression and
purification. Because of variation in processing methods
and reporting methods between various SG centers, these
steps were grouped together. The term ‘‘protein crystal-
lization,” as used here, covers all steps from initial,
coarse crystallization screens to fine screening to obtain
(or not) the diffracting crystal. Using learning sets
extracted from TargetDB, we examined distributions of
probabilities of success for protein production and protein
crystallization and used combinations of these probability
distributions to predict the chance of success for these
processes. We further showed that, by using these parameters,
new targets can be selected with significantly higher suc-
cess rates.
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Materials and Methods

Sequences of targets from SG centers were collected from
TargetDB (Chen et al. 2004) and sorted into groups
depending on the success of the structure determination
attempts. While success is easy to document, it is much
more difficult to determine if lack of success resulted
from an actual failure of the process or resulted from
abandonment of a target due to changing priorities or
other nonexperimental determinants. Only a relatively
small group of targets could be convincingly classified as
confirmed failures using the TargetDB data. Successfully
produced targets and confirmed protein production fail-
ures then formed the production learning set. Success-
fully crystallized targets and confirmed crystallization
failures formed the crystallization learning set.

Learning sets for protein production
and protein crystallization

All data used in the learning sets were extracted from the
October 2005 version of TargetDB. Proteins shorter than
50 residues and proteins longer than 700 residues were
excluded from the learning sets since there were insufficient
proteins of these sizes to allow for meaningful analysis.

Protein production learning set

The positive subset of the learning set for protein
production statistics contained 12,850 targets listed as
purified in TargetDB in October 2005.

The negative subset of this learning set contained two
groups of targets:

e All stopped targets that were listed as cloned, but not
purified,

e all targets that were cloned, but not purified, and did not
show any further progress after 18 mo.

A total of 13,587 targets were included in this subset.

Protein crystallization learning set

In order to avoid ambiguities in the definitions of good
and poor crystals, we included only fully determined
structures in the positive subset since solved structures
are the ultimate measure of success for the SG pipelines.
A total of 1503 protein structures determined by X-ray
crystallography and deposited in the PDB by all SG
centers are included in the positive subset. As before,
finding straightforward criteria for the negative subset are
far less obvious since, in many cases, ‘“‘stopped’ targets
were not failures, but were stopped for other reasons. In
defining the criteria for the selection of the negative set
we used our experience in how the targets that failed in
our (JCSG) production were reported in TargetDB, we
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have also informally consulted other PSI centers. As a
result, we used two subsets of proteins in the negative
subset:

e All stopped targets listed as purified, but not crystallized,
and not assigned to NMR,;

e all targets that were purified >18 mo before October
2005, and were not crystallized, and not assigned to
NMR, and did not show any progress since then.

A total of 2456 proteins were included in the negative
subset.

Our goal was to create the most accurate learning sets
possible; therefore, many groups of targets were not
included in either set to avoid possible contamination.
For instance, 4076 targets that were purified but not
stopped, not crystallized, and not assigned to NMR were
not included in the learning set because it was not clear
whether they failed in crystallization or were still being
processed. Although not including these proteins signifi-
cantly decreased our negative subset, we decided to err on
the side of caution and not ‘‘contaminate’” the negative
subset with proteins that could have all of the features
present in the positive set.

A total of 2945 targets were crystallized, but not
deposited in the PDB. We did not include these targets
in the positive set because it was not obvious whether the
quality of these crystals allowed structure determination.

A total of 12,141 targets were stopped before they
entered crystallization trials (targets that were not puri-

fied), and 380 targets were stopped after crystallization.

Independent benchmark sets

Since the selection of the learning sets was originally
carried out at the end of 2005, it was possible to construct
independent benchmark sets from new SG targets pro-
cessed in 2006 and 2007. All benchmark data were
extracted in the same way as for the original learning
sets. The only exception was a negative subset of the
protein production set. It was reduced to one-third in
order to keep roughly the same proportion of positive and
negative subsets, as observed in the learning set. The
protein production benchmark set contains 9165 positive
and 11,726 negative samples. The protein crystallization
benchmark set contains 1637 positive and 3365 negative
samples.

Calculating probability distributions

Several parameters describing each protein sequence
were calculated for all target proteins in the production
and crystallization learning sets. All parameters, which
were included in the analysis, are described in Table 1.
The populated range for each parameter was split into



Probability of protein structure determination

Table 1. Protein features considered in obtaining protein production and crystallization feasibility scores

Found to be
correlated with

Observed Calculated production (P), or
Protein feature range with crystallization (X) Remarks and references
Sequence length 50-700 In-house script P, X
Predicted isoelectric point 3.3-13.3 In-house script P X Calculated using pKa scale (Creighton 1984).
The analysis and calculation of feasibility scores
were done separately for proteins shorter than
345 aa and for proteins longer than this threshold.
Gravy hydropathy index (=2.7)—(2.0) In-house script P X Kyte and Doolittle hydrophobicity index
(Kyte and Doolittle 1982).
Length of the longest 0-496 DISOPRED2 X We found the length of the longest disordered
disordered fragment fragment to be more correlated with protein
crystallization success rate than the total
percentage of predicted disordered fragments
in a protein sequence (Ward et al. 2004).
Instability index 0-170 In-house script X Predictor of protein instability in vivo
(Guruprasad et al. 1990)
Predicted percentage of 0-95 PSIPRED X (Jones 1999)
coil secondary structure
Number of residues in 0-196 COILS X (Lupas et al. 1991)
predicted coiled-coil regions
Predicted transmembrane helices 0-12 TMHMM P X (Krogh et al. 2001)
Percentage of insertions 0%—54% In-house script X We built multiple alignments using PSI-BLAST

in multiple alignments

Predicted long SEG
low-complexity regions
Predicted signal peptides SignalP

Net protein charge In-house script

on NR database clustered at 60% level of
sequence identity. We then counted residues that
corresponded to gaps in more than 11% of the
aligned homologous sequences. The percentage
of such residues in the sequence was used as an
estimate for the number of insertions observed
in the sequence. The threshold of 11% was
found by a grid search optimization method.

Low-complexity regions were identified using
SEG (Wootton 1994), and signal peptides were
found using SignalP (Bendtsen et al. 2004).
Since our learning sets were already filtered by
SG centers during the target selection process,
our learning sets contain few proteins with
predicted signal peptides or long low-complexity
regions.

Highly charged proteins were observed to be less
likely to crystallize and more difficult to produce,
but the isoelectric point gave slightly better
predictions for protein production and
crystallization than the net charge, and these
two values were observed to be correlated.

bins, and targets from the learning set were assigned
according to the value of the parameter. The success rate
was calculated for each bin as the ratio of the number of
targets from the positive set falling into this bin compared
to the total number of targets assigned to the same bin.
The bins of variable size were used in order to eliminate
large random fluctuations in the regions with a small
number of targets. In order to reduce effects of the uneven
distribution of targets within bins, the final sequence
parameter value associated with each bin was an average

value of this parameter from all targets assigned to this
bin (instead of the central point of the bin). The final
probability distributions used in the calculations of
feasibility scores described below were obtained by linear
interpolation between these points.

Probability distributions of successful protein produc-
tion as a function of several different protein features are
shown in Figure 1. Analogous distributions for protein
crystallization are shown in Figure 2. Only the distribu-
tions for which we observed significant and systematic
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Figure 1. Observed distributions of successes and failures and calculated probabilities of successful protein production for (A)
sequence length, (B) isoelectric point for short and long proteins, and (C) gravy hydrophobicity index. The number of successfully
produced proteins in each bin are shown as black bars, and the number of proteins that failed in the production process are shown as
gray bars (i.e., they are associated with the left vertical axis). The probability of protein production calculated as the fraction of successfully
produced proteins for all proteins from the same bin is shown as a continuous line (i.e., it is associated with the right vertical axis).

differences in probability are included in the figures. The
only exception is a number of predicted transmembrane
helices. The negative subset of the protein production
learning set contains 1462 targets with at least one
predicted transmembrane helix, while the positive subset
contains 394 such targets. Thus, the production success
rate for such targets was around 21%. In the case of the
crystallization learning set, this proportion was 86 neg-
ative to 10 positive targets; thus, the success rate was
around 10%. Since in both learning sets the number of
targets with predicted transmembrane helices was too
small to derive probability distributions, and transmembrane
helices are obviously detrimental to protein solubility, we
assigned all targets with predicted transmembrane helices to

2476 Protein Science, vol. 16

the lowest feasibility classes for protein production and
crystallization. Because of the small number of such targets
in the learning and test sets, the impact of using this
criterion on our results was relatively small.

Protein features that significantly influenced protein
production or crystallization probabilities

Protein parameters that were tested for correlation with
protein production and crystallization success rates are
listed in Table 1. Parameters for which actual correlation
with the success rate in either the production or the
crystallization stage was found are identified by P or X,
respectively, in Table 1.



Probability of protein structure determination

800 0.5
A E 1000 0.7
+ 04 9004 0.6
] 800
E 8 105
i 1osg £ 700 -
P g & e0 04
g toz2m G 500 g
3 £ 400 03
** 1 E_h |
0.1 G 300 - 02
*
o 200 |
| =g 100 - ‘ 0.1
o (=3 (= (=1 (=1 (=3 (=3 (=3 (=1
T 2 2 8§ 8 8§ B 8 R 0 — \-I | 4 l 0.0
2 28 888 8 8 5-10 10-20 20-30 30-40 40-50 50-60 60-90
- - o 2] 3 n <]
sequence length instability index
F 900 —————————— [i§
length < 345 aa length > 345 aa 800
700 0.6 @ 700 04
o
g 600 |05 8 3 600 |
o | ‘ £ K] 103
2 500 - = ¥ 500 =
= -~ 0.4 = p ]
400 — el T 400 g
P 038 @ B T 02
= 300 - L £ 300
% 4 ]
£ 200 ¢ 0.2 £ = 200 | 01
#* 100 — 0.1 * 100 + ‘
0 | |—= 0.0 0 —t | | 0
35 56 67 7-8 89 9-1111-13 35 56 67 78 89 911 0-10 10-20 20-30 30-40 40-50 50-70
isoelectric point isoelectric point % predicted coil structure
C 800 0.6 G , 2500 0.5
700 o
= T 05 S 2000 0.4
§ 600 - o
R 0.4 ¥ 1500 0.3 o
3 z 0 g
B 400 03 § T 1000 0.2
'3 300 & g
g 200 t0.2 5 500 0.1
*
100 04 ® 0 | - 0
0 Lo 0-20 20-40
s ee s 8§23 Yy i i icti
-~ 6 6 6 6 6 £ ¢ ¢ % ¢ coiled-coil structure prediction
- I I I I I -9 = a o
Fdsgzgicccec
w9 8 2
gravy hydrophobicity index H 1200 B
0
g 1000
1000 0.5 = 1
D & 800 0.4 °
-~
0.4 o 600 £
8 T &
3 ®w 400 — + 0.3
8 TO3 o Feal
% é’ : 200 —
[ o
% 0.2
% 0 | 0.2
* 1 o4 0-5 5-20 20-100
% insertions
(]

0-10 10-20 20-30 30-40 40-50 50-60 60-100
the longest disordered region (aa)

Figure 2. Observed distributions of successes and failures and calculated probabilities of protein crystallization for (A) sequence length, (B) isoelectric
point for short and long proteins, (C) gravy hydrophobicity index, (D) length of the longest disordered region, (E) protein instability index, (F) predicted
content of coil structure, (G) predicted content of coiled-coil structures, and (/) insertions. The number of crystallized proteins in each bin are shown as
black bars, and the number of proteins that failed to crystallize are shown as gray bars (i.e., they are associated with the left vertical axis). The probability of
protein crystallization calculated as the fraction of successfully crystallized proteins for all proteins from a given bin is shown as a continuous line (i.e., it is
associated with the right vertical axis).
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Crystallization and production feasibility scores

The probability distributions described in the previous
paragraph were calculated for all protein sequence fea-
tures listed and marked as useful in Table 1. We assumed
that the final probability of success depends on the
balance between all “positive”” and ‘“‘negative’ features.
The problem of combining probability distributions is
known in the field of Risk and Experts Analysis. We used
a method called logarithmic opinion pool (Genest et al.
1984) that estimates the final probability as a product of
individual distributions:

P=kﬁp,”"

i=1

where k is the normalizing constant (we used k = 1); p; is
the individual probability distributions, such as Piengin,
Pp1, Pgravy €tc.; n is the number of individual proba-
bility distributions; w; is the weight of a probability
distribution (we used all weights = 1/n, since the size
of the learning sets did not allow optimization of indi-
vidual weights).

The logarithmic opinion pool method ensures that, if
any individual probability (e.g., Pgravy) is very low, then
the total probability will also be low. This feature of the
logarithmic opinion pool makes it suitable for estimating
production or crystallization probability where one prop-
erty (e.g., extreme pl or gravy index) of a protein may
make its production or crystallization very difficult. In
other simple methods of aggregating probabilities, such
as the linear opinion pool method, where the final
estimate is the sum of individual probabilities, the impact
of individual probabilities is much smaller.

At this point, there are not enough data to analyze a more
complex interplay of multiple protein features on protein
production or crystallization. The only exception was the
isoelectric point since, for this feature, we observed sig-
nificant differences for production and crystallization prob-
ability distributions between short and long proteins. Thus,
probability distributions related to the isoelectric point were
calculated separately for targets shorter than 345 residues
and for proteins longer than this threshold.

Testing of protein production and crystallization
feasibility scores on the learning set

The protein production and protein crystallization feasi-
bility scores were calculated for all targets from their
respective learning sets. The targets were rank-ordered by
the score and placed into five bins, each representing 20%
of the total targets. The average observed success rate was
calculated for each bin as a percentage of successfully
produced or crystallized targets. The observed success

2478 Protein Science, vol. 16

rates of protein production are shown in Figure 3, and
success rates for protein crystallization are shown in
Figure 4. In both cases, the results are compared to those
obtained using OB-Score, a single protein production and
crystallizability score developed by the Barton group
(University of Dundee, Scotland, UK).
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Figure 3. (A) Success rate distributions of protein production for targets
rank-ordered by production feasibility score S, = (Piengin * Ppr * Poravy *
Pun)*. Results of two jackknife tests applied to S, feasibility score are
also shown. S is a success rate distribution obtained when S, feasibility
score was based on the data from four large PSI centers (JCSG, MCSG,
NESG, and NYSGXRC) and used to rank-order targets from all other
centers (BSGC, BCGI, CESG, ISFI, OPPF, S2F, SECSG, SGPP, SPINE-
EU, YSG, TB, and RSGI). For S, distribution, the targets from the four
large PSI centers were rank-ordered using S, feasibility score derived from
the data from all other centers. The benchmark result, based on targets
processed after our original analysis, is shown as S,. Because tested sets
have different average success rates (from 44%-51%), the normalized plot
is shown as an inset. Production probability distribution obtained for OB-
Score is shown for comparison (dotted line). (B) Distribution of targets into
feasibility classes and observed numbers of successes and failures in
protein production.
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Figure 4. (A) Probability distributions of protein crystallization when
targets were sorted by crystallization feasibility score S. = (Piengin * Ppr *
Poravy * Puiso * Pri ™ Peoits * Pee * Pun * Ping) . Results of two jackknife
tests applied to S, feasibility score are also shown. S is a success rate
distribution obtained when S, feasibility score was based on the data from
four large PSI centers (JCSG, MCSG, NESG, and NYSGXRC) and used to
rank-order targets from all other centers (BSGC, BCGI, CESG, ISFI,
OPPF, S2F, SECSG, SGPP, SPINE-EU, YSG, TB, and RSGI). For S
distribution, the targets from the four large PSI centers were rank-ordered
using S, feasibility score derived from the data from all other centers. The
benchmark result based on targets processed after our original analysis is
shown as S, Because tested sets have different average success rates
(from 33%-41%), the normalized plot is also shown. Crystallization
probability distribution obtained for OB-Score is shown for comparison
(dotted line). (B) Distribution of targets into feasibility classes and
observed successes and failures in protein crystallization.

Jackknife tests

As the proposed scoring scheme described above is very
simple, overfitting of parameters is very unlikely. There
is, however, a question of whether a feasibility score
derived from the data coming from certain SG centers can
be used to estimate the likelihood of success for targets

from other centers. If probability distributions were
completely different for different centers, then the score
would have no predictive value.

We tested production and crystallization feasibility
scores with a jackknife procedure designed to answer
the above question. The targets in both learning sets were
divided into two groups, each corresponding roughly to
50% of the targets:

A. From the four big PSI centers (TargetDB acronyms
JCSG, MCSG, NESG, and NYSGXRC);

B. from all other centers (TargetDB acronyms BSGC,
BCGI, CESG, ISFI, OPPF, S2F, SECSG, SGPP,
SPINE-EU, YSG, TB, and RSGI).

The jackknife tests were performed as follows: First,
only the data from group A were used to calculate
probability distributions used in the feasibility score,
and only the targets from group B were ranked and used
for success-rate calculation. In the second test, these two
groups were swapped: i.e., targets from group B were
used to derive the feasibility score, and targets from group
A were ranked. The results of jackknife tests for protein
production and crystallization feasibility scores were
compared with the original results when all targets from
learning sets were used both for score preparation and for
testing (see Figs. 3, 4).

Independent benchmark tests

We used probability distributions calculated on the
learning sets to calculate feasibility scores for the targets
from the benchmark sets consisting of targets that entered
SG pipelines after the original learning set was derived
(as described in the previous section). The results were
compared with the results obtained for learning sets and
for jackknife tests (see Figs. 3, 4).

Results

Probabilities of successful protein production as a
function of different protein features

The distributions of probabilities of successful protein
production were significantly different from random for
three protein features: sequence length, isoelectric point,
and gravy hydropathy index (see Fig. 1).

Testing of protein production feasibility score on the
learning set in jackknife tests and on the independent
benchmark set

The protein production feasibility score was tested by
examining the distribution of success rates for targets
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sorted by this score. The targets were rank-ordered
according to the feasibility score, and observed success
rates were plotted. Success rate distribution for targets
ranked by the previously developed OB-Score is shown
for comparison (see Fig. 3). Analogous plots prepared for
results of jackknife and independent benchmark test
procedures are close to the plot obtained for the full set,
indicating that observed tendencies are quite general (see
Fig. 3). Because benchmark and jackknife test sets have
different overall success rates, normalized distribution
plots are shown in the inset.

For illustration purposes, one can define production
feasibility categories corresponding to subsets of targets
ranked according to feasibility score. For example, SG
centers successfully produced 62% of targets with a pro-
duction feasibility score within the top 20%. On the other
hand, only 28% of targets with a production feasibility score
within the bottom 20% were successfully produced.

Crystallization probability distributions as a function of
different protein features

The protein crystallization learning set was used to plot
and examine distribution of protein crystallization prob-
ability for several protein features. Eight of these features
gave nontrivial distributions of crystallization probability
(see Table 1; Fig. 2). These were sequence length, iso-
electric point, gravy hydropathy index, number of resi-
dues in the longest disordered region as predicted by
DISOPRED?2, protein instability index, percentage of the
coil structure as predicted by PSIPRED, number of
residues in the coiled-coil structure as predicted by
COILS, and the percentage of insertions in the sequence
when aligned with its homologues.

Testing of protein crystallization feasibility score on the
learning set in jackknife tests and on the independent
benchmark set

The targets from protein crystallization sets were sorted
by the crystallization feasibility score, and observed
success rates were plotted. Again, success rate distribu-
tion obtained for OB-Score was added for comparison
(see Fig. 4).

Jackknife and benchmark test procedures yielded distri-
butions similar to those obtained for the full crystallization
learning set of targets, indicating that observed tendencies
are general (see Fig. 4). Because benchmark and jackknife
test sets have different overall success rates, normalized
distribution plots are also given. From comparison of
Figures 3 and 4, it clear that while OB-Score was relatively
successful in predicting protein production success, it
essentially failed for the protein crystallization stage. As
we show here, protein features important for protein
production are a subset of features influencing protein
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crystallization, and a single OB-Score appears to be domi-
nated by the statistics from protein production.

Again, one can use the crystallization feasibility score
to assign targets to crystallization classes corresponding
to subsets of targets ranked according to each scoring
method. For example, SG centers successfully crystal-
lized 57% of targets with a crystallization feasibility
score in the top 20% and only 10% of targets with a
crystallization feasibility score in the bottom 20%.

Complementary character of X-ray crystallography and
NMR in protein structure determination

We calculated the crystallization feasibility score for
2799 structural genomics targets deposited in the PDB
that were solved via X-ray crystallography and for 1203
targets that were solved via NMR. The distributions of
these targets between crystallization feasibility classes
are shown in Figure 5A.

The comparison of distributions of targets solved by
X-ray crystallography and NMR between crystallization
classes strongly confirms the complementary character of
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Figure 5. (A) Distributions of structural genomics structures determined
via X-ray crystallography and via NMR between crystallization classes.
(B) Distribution of structures solved via X-ray crystallography between
crystallization classes in TargetDB and in PDB.
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X-ray and NMR methods of protein structure determi-
nation as described previously (Yee et al. 2005).

The distribution of proteins between crystallization
classes in the entire TargetDB and in the PDB

In order to determine whether our feasibility score applies
to protein structures determined by traditional (non-SG)
structural biology laboratories, we calculated the distri-
bution between crystallization classes for all X-ray
structures deposited in the PDB and compared it to the
distribution obtained only for X-ray structures from
the TargetDB (see Fig. 5B). The structures of viral and
eukaryotic proteins were excluded from this set since,
in most cases, they can only be crystallized as large com-
plexes. The distributions of crystallization feasibility classes
obtained for proteins from PDB and from TargetDB are,
indeed, quite similar, and confirm the universal nature
of the tendencies and observations described above.

Discussion

In this paper, we have shown that success and failure in
protein structure determination are strongly correlated
with particular protein features. While some of these
tendencies have been observed previously, the enormous
amount of data from SG centers have allowed us to
perform large-scale analyses to derive a quantitative
feasibility score, which is extraordinarily useful in eval-
uating and selecting new targets for structure determi-
nation. We have also shown that even though the data
used for the analysis here was derived from Structural
Genomics centers, the same trends are seen in data from
standard structural biology labs.

The analysis presented here confirms that medium
sequence length and hydrophobicity, combined with acidic
character, increase the chance of success in protein pro-
duction. It is not surprising that shorter proteins are favored
over longer proteins and that very short, very long, or very
hydrophobic proteins are more difficult to produce in
standard experimental setups. The probability distribution
obtained for predicted isoelectric points is more interesting,
as it seems that current high-throughput protein production
systems significantly favor moderately acidic proteins.
Since many protein families include homologs with a wide
range of isoelectric point values, this observation may help
in selecting optimal targets from individual families. In
principle, the isoelectric point of a protein can also be
changed by protein engineering techniques, and this direc-
tion could be worth exploring.

Successful crystallization is also more likely for slightly
acidic proteins of medium lengths and hydrophobicity gravy
indexes around 0; however, optimal ranges for these features
are narrower than observed for protein production. As

expected, predicted structural disorder, presence of trans-
membrane helices, instability, and high content of predicted
loops, insertions, and coiled-coil structures correlate with
lower probability of crystallization.

These diverse features are related to different obstacles
in protein crystallization. For instance, very long proteins
usually comprise several structural domains and, there-
fore, are often flexible as a whole, which may hinder the
construction of repetitive, well-ordered crystal lattices.
Very short proteins often do not fold into well-defined
structures unless they are cross-linked with disulphide
bridges or stabilized with metal-binding sites. A high
content of structural disorder is obviously unfavorable
since it makes establishment of repetitive crystal inter-
actions very unlikely and, in extreme cases, may indicate
a complete lack of a well-defined structure. In contrast,
this feature does not have significant impact on protein
production. (Predicted protein disorder was not included
in the previously developed OB-Score, and this is prob-
ably the most important reason of its lower ability to
differentiate between crystallization classes.) In a similar
fashion, a high content of predicted coil structure prob-
ably indicates high structural flexibility. Perhaps more
surprisingly, a very low content of predicted coil structure
also negatively correlates with protein crystallization.
The possible explanation here is that secondary structure
predictions for very long and continuous a-helices or
B-strands may indicate a lack of typical globular struc-
ture. Secondary structure prediction that lacks such a
recognizable pattern may indicate that the protein is not
globular. Finally, the high percentage of insertions that
correspond to flexible regions of a protein surface may
prohibit creation of stable, repetitive interactions in the
crystal lattice. The negative correlation between the length
of a predicted coiled-coil structure and protein crystalliza-
tion can be explained by the nonglobular character of these
elements and strong interactions between them.

Crystallization probability distributions for protein
hydropathy index and predicted isoelectric point are more
interesting. Apparently, there is a well-defined crystal-
lization optimum for protein hydrophobicity around a
gravy index value of 0.1. This can be rationalized by arguing
that very hydrophobic proteins would tend to aggregate and
interactions between very hydrophilic proteins may be too
weak to build a stable crystallographic lattice or that very
hydrophilic proteins may completely lack stable structure.
The distribution of crystallization success rate as a function
of a predicted isoelectric point also shows well-defined
optima for short (fewer than 345 residues) as well as for
long (at least 345 residues) proteins. Neutral and slightly
acidic proteins are favored, and extreme values of pl are
strongly disfavored. One can hypothesize that strong, non-
specific, and repulsive interactions between highly charged
proteins may obstruct crystal nucleation. Construct design
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or adjustment of crystallization conditions may provide a
solution.

A preliminary version of this analysis was performed in
late 2005 at JCSG and applied to target selection at JCSG
from early 2006. Selection of optimal targets from
targeted protein families allowed us to effectively speed
up structural mapping of such families and contributed to
fast growth of production in SG centers.

The analysis described in this paper and derived
feasibility score are most useful in the context of structural
genomics efforts where protein families rather than
individual proteins are targets for structure determination,
but in many cases determining a homologous structure
from a more feasible class may also be worth considering
for traditional crystallographic laboratories. Moreover,
since feasibility profiles observed here affect all the
structures determined by X-ray crystallography, they also
provide useful hints for construct design in cases where the
structure of a specific protein or protein domain is of
interest. At JCSG, we observed cases when targets could be
modified by construct optimization to improve the feasi-
bility score and eventually lead to successful structure
determination; however, large-scale analysis of such cases
is still impossible due to insufficient data.

Unprecedented amount and type of data collected
by Structural Genomics centers should, in principle,
allow us to perform even more interesting analyses, such
as optimizing crystallization conditions depending on
physicochemical characteristics of the protein, suggesting
mutations that would enhance structure determination
successes and many others. Unfortunately, more effort
on data standardization and exchange protocols is neces-
sary before all of the existing data will be available for
analysis. Such efforts are currently underway in our
center and in all other PSI centers; therefore, we can
expect such analyses in the near future.

The algorithm described here is now publicly available
as a Web server at http://ffas.burnham.org/XtalPred; the
server will be the subject of a separate publication.
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