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Abstract

We explored the role of Peyer’s patch (PP) dendritic cell (DC) populations in the induction of
immune responses to reovirus strain type 1 Lang (T'1L). Immunofluorescence staining revealed
the presence of T1L structural (01) and nonstructural (ONS) proteins in PPs of T1L-infected
mice. Cells in the follicle-associated epithelium contained both o1 and oINS, indicating pro-
ductive viral replication. In contrast, o1, but not NS, was detected in the subepithelial dome
(SED) in association with CD11c¢*/CD8a~/CD11b DCs, suggesting antigen uptake by these
DCs in the absence of infection. Consistent with this possibility, PP DCs purified from infected
mice contained o1, but not oNS, and PP DCs from uninfected mice could not be produc-
tively infected in vitro. Furthermore, o1 protein in the SED was associated with fragmented
DNA by terminal deoxy-UTP nick-end labeling staining, activated caspase-3, and the epithe-
lial cell protein cytokeratin, suggesting that DCs capture T1L antigen from infected apoptotic
epithelial cells. Finally, PP DCs from infected mice activated T1L-primed CD4* T cells in
vitro. These studies show that CD8a™/CD11b* DCs in the PP SED process T1L antigen from
infected apoptotic epithelial cells for presentation to CD4" T cells, and therefore demonstrate

the cross-presentation of virally infected cells by DCs in vivo during a natural viral infection.
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Introduction

Distinct populations of DCs have been identified in lym-
phoid and nonlymphoid tissues of humans and other mam-
mals. Significant efforts are now being made to understand
the ontogeny of these DC populations and their functional
significance in the development of immunity to pathogens,
tolerance to self-antigens, and induction of organ-specific
autoimmunity. We study DC subsets in Peyer’s patches
(PPs), which represent primary sites for the induction of T
and B cell immune responses at mucosal surfaces. In PPs,
DCs are separated from the intestinal lumen by only a sin-
gle layer of cells, the follicle-associated epithelium (FAE),
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which contains antigen-transporting microfold (M) cells
(1). In addition, a small number of DCs are located directly
within the FAE (2). Thus, PP DCs are constantly exposed
to food antigens, normal bacterial flora (in the terminal il-
eum), and pathogenic microorganisms. Therefore, these cells
likely play a crucial role in the induction of oral tolerance
and immunity to infectious agents.

In previous studies, we defined three distinct subsets of
CD11c* PP DCs (1-3). CD8a /CD11b" DCs produce
high levels of IL-10 and induce differentiation of IL-4—
and IL-10—producing Th2 cells in vitro (2). In contrast,
CD8at/CD11bP and CD8a~/CD11b" DCs produce low
levels of IL-10, high levels of IL-12, and induce only IFN-y—
producing Th1 cells (2). Spatial as well as functional differ-

Abbreviations used in this paper: FAE, follicle-associated epithelium; PP,
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TUNEL, terminal deoxy-UTP nick-end labeling.
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ences define the three DC subsets. The DC-rich region of
the subepithelial dome (SED) underlying the FAE contains
both CD8a /CD11b" and CD8a™/CD11b* DCs, the
T cell-rich intrafollicular region contains both CD8a*/
CD11b and CD8x~/CD11b* DCs, and the B cell follicle
contains only CD8a~/CD11b* DCs (3). Although these
initial studies allow the formulation of models for how PP
DC populations are involved in the induction of oral toler-
ance and immunity to pathogens (3, 4), the validity of these
models has not been tested in vivo.

To address the function of specific DC subsets in vivo,
we studied mammalian reovirus infection of adult mice, an
important model of mucosal virus infection (5). After per-
oral inoculation of mice with reovirus strain type 1 Lang
(T1L), the outer capsid of the virus is processed by luminal
proteases, resulting in generation of infectious subvirion
particles that specifically enter PPs via M cells in the FAE
(6-8). Once inside the PP, T1L productively infects colum-
nar epithelial cells overlying both the PP (in the FAE) and
lamina propria via receptors on the epithelial cell basolateral
membrane (9, 10). In addition, early in infection, viral anti-
gen is detectable in a few, poorly characterized mononu-
clear cells within the SED (8, 10). Later in infection, the
virus spreads to systemic sites, including the spleen and
mesenteric lymph nodes (11). Infection of adult mice with
T1L is short-lived, and virus is usually cleared within 2 wk
of inoculation by local and systemic immunity (5). The
anti-reovirus immune response is characterized by produc-
tion of IgA in the mucosa and development of Th1 cell and
CTL responses at both local and systemic sites (12—14).

CD8a /CD11b" and CD8a~/CD11b* DCs in the SED
are in close proximity to M cells in the FAE and are there-
fore poised to capture both soluble antigens and pathogens,
like reovirus. In support of this possibility, Listeria monocytoge-
nes and Salmonella typhimurium are detectable in PP DCs after
peroral inoculation (15, 16). In addition, oral administration
of virus-sized fluorescent polystyrene microparticles to mice
results in detection of fluorescent signal in CD8a~/CD11bl°
DCs in the SED (17). However, little is known about DC
capture and processing of enteric viral pathogens.

In this study, we found that all DC populations are resis-
tant to productive infection by T1L after peroral inoculation,
yet CD8a™/CD11b° DCs in the SED of PPs avidly take up
viral antigen. In addition, our results indicate that viral anti-
gen colocalizes with epithelial cell-derived cytokeratin, and
markers of apoptosis in both tissue sections and purified
CD11c¢* DCs harvested from infected mice. Finally, we
demonstrate that PP DCs purified from infected mice pres-
ent T1L antigens to primed CD4" T cells in vitro. These
findings suggest that CD8a™/CD11b"° DCs in the PP SED
capture and process viral antigens from productively infected
apoptotic epithelial cells for presentation to CD4* T cells.

Materials and Methods

Cells and Virus.  Murine L929 (L) cells were grown in either
suspension or monolayer cultures in Joklik’s modified Eagle’s min-
imal essential medium (Irvine Scientific) supplemented to contain

5% FBS (Biosource International), 2 mM r-glutamine, 100 U/ml
penicillin, 100 pg/ml streptomycin, and 0.25 pg/ml amphotericin
(Irvine Scientific). Reovirus strain T1L is a laboratory stock. Puri-
fied virion preparations were made by using second passage L cell
lysate stocks of twice plaque-purified reovirus as described previ-
ously (18). Virus was released from infected cells by two cycles of
freezing and thawing and sonication, recovered from lysates after
two Freon (trichlorotrifluoroethane) extractions, and purified by
cesium chloride gradient centrifugation. The virus band was re-
moved, dialyzed exhaustively against dialysis buffer (150 mM
NaCl, 15 mM MgCl,, 10 mM Tris, pH 7.4) at 4°C, and stored in
dialysis buffer at 4°C. The concentration of virus particles was cal-
culated from protein concentration (19), and the concentration of
infectious virus was determined by plaque assay (5). Reovirus was
inactivated by UV irradiation as described previously (20).

Animals. Female BALB/c mice were obtained from the Na-
tional Cancer Institute. Mice were maintained in accordance
with institutional guidelines for animal welfare and used at 612
wk of age. Groups of 5-15 mice were inoculated perorally with
108 PFUs of reovirus T1L in 100 pl of borate-buffered saline
(0.13 M NaCl, 0.25 mM CaCl,, 1.5 mM MgCl, - 6H,0, 20 mM
H;BO;, 0.15 mM Na,B,0; - 10H,0O) containing 5 g/liter gelatin.

Antibodies. DC subsets were identified by flow cytometry us-
ing anti-CD11¢ (N418), anti-CD11b (M1/70), anti-CD8« (Ly-2),
anti-CD19 (1D3), or the appropriate isotype-matched control
antibodies. Antibodies were labeled with FITC, PE, CyChrome,
or allophycocyanin. Before staining, cells were incubated with
anti-mouse CD16/CD32 antibody (2.4G2) to block Fc receptors
(FcyRIII/II). Antibodies were purchased from BD Biosciences.
The T1L o1 protein was detected by immunofluorescence in tis-
sue sections by using murine monoclonal antibody 5C6 (21). The
T1L oNS protein was detected by using a rabbit polyclonal anti-
serum (22). A rabbit anti-cytokeratin polyclonal antiserum (Da-
koCytomation), a rabbit polyclonal antiserum specific for the ac-
tivated form of caspase-3 (BD Biosciences), and an anti-B220
antibody (clone RA3-6B2; BD Biosciences) were used to stain
antigens in cryosections and cytospin preparations.

DC Preparation and Purification. DCs were prepared from PPs
as described previously (3). Dissected PPs were treated with DTT
and EDTA to remove the epithelium. PPs were digested with
Liberase CI (Roche Applied Science) and DNase, followed by
incubation with 5 mM EDTA to recover CD8a* DCs. Cells
were incubated with anti-mouse CD11c-coated magnetic beads
(Miltenyi Biotec) and selected on separation columns using an
AUTOMACS machine (Miltenyi Biotec). To increase the purity
of the DC preparation, cells were incubated with FITC-labeled
anti-CD11c and PE-labeled anti-CD19 antibodies. CD11c*/
CD197 cells were isolated by FACS using a FACS Vantage™ SE
sorter (BD Biosciences). DC subsets were separated by incubating
cells with FITC-labeled anti-CD11c, PE-labeled anti-CD11b, Cy-
Chrome-labeled anti-CD8a, and allophycocyanin-labeled anti-
CD19 antibodies. CD11¢*/CD19~/CD8a*/CD11b~, CD11c¢*/
CD197/CD8a~/CD11b", and CD11¢*/CD19~/CD8a™/CD11b®
were isolated by flow cytometry. Sorted DCs were typically 94—
98% pure.

Reovirus Infection of L Cells and DCs In Vitro. L cells were
seeded in six-well plates (Costar) at 5 X 10° cells/well in a vol-
ume of 3 ml Eagle’s minimal essential medium (Biosource Inter-
national), supplemented to contain 10% FBS, 2 mM r-glutamine,
100 U/ml penicillin, 100 pg/ml streptomycin, and 25 mM
Hepes. After incubation at 37°C for 24 h, when cells were 50—
60% confluent, the medium was removed and cells were ad-
sorbed with reovirus at a multiplicity of infection of 5 PFUs/cell
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in a volume of 200 pl at 37°C for 1 h. The virus inoculum was
removed and 3 ml of fresh medium was added to each well. After
incubation at 37°C overnight, cells were washed with PBS and
fixed in acetone at —20°C before immunofluorescence staining.

FACS®-purified DC populations (10 DCs/ml) in RPMI 1640
(Biosource International) supplemented to contain 10% FBS, 2
mM L-glutamine, 100 wg/ml penicillin, 10 pg/ml streptomycin,
5% Medium NCTC-109 (Invitrogen Corporation), 15 mM
Hepes, and 0.005 mM [-mercaptoethanol were adsorbed with
reovirus at a multiplicity of infection of 500 PFUs/cell in 14-ml
round-bottom polypropylene tubes (BD Biosciences) at 37°C for
1 h. Cells were washed, resuspended in fresh RPMI, and incu-
bated at 37°C overnight. DCs were washed twice in PBS and
centrifuged onto glass slides using a cytospin. Cells were dried at
room temperature for 24 h and fixed in acetone at —20°C before
immunofluorescence staining.

Immunofluorescence Staining.  PPs were dissected from the small
intestines of BALB/c mice 24 h after peroral inoculation with T1L
or from uninfected control mice and frozen in OCT embedding
medium (Sakura Finetek). 8-pm thick frozen sections were fixed
in acetone at —20°C and immunofluorescence was performed us-
ing the tyramide amplification method (TSA-Direct kit; Perkin-
Elmer) as described previously (3). Immunofluorescence staining
using the same techniques was also performed on cytospin prepara-
tions of FACS®-purified DCs and L cells that were grown on glass
coverslips. Nuclei were identified by staining cells (Hoechst 33258;
Sigma-Aldrich) before mounting with mounting medium (Fluoro-
mount G; Southern Biotechnology Associates, Inc.). Fluorescent
terminal deoxy-UTP nick-end labeling (TUNEL) staining of fro-
zen sections was performed using an ApopTag-Fluorescein kit (In-
tergen) according to the manufacturer’s instructions. TUNEL-
stained sections were then stained with rabbit anti-reovirus serum
using the tyramide system as described above.

Confocal Microscopy. Confocal microscopic images of stained
sections, cytospins, and L cell monolayers were collected on a
confocal microscope (TCS-NT/SP; Leica) with 40X NA 1.25 or
63X NA 1.32, zoom 4, oil immersion objectives. Fluorochromes
were excited using an argon laser at 488 nm for FITC and Cy3, a
helium-neon laser at 633 nm for Cy5, and an argon laser (Enter-
prise model 651; Coherent Inc.) at 364 nm for Hoechst. Detector
slits were configured to minimize diffusion of signal between
channels. Alternatively, images were collected separately and later
superimposed. Z-stacks (optical sections) of the images were col-
lected with an optical thickness of 0.2 wm. Images were pro-
cessed using the Leica TCS-NT/SP software (version 1.6.587),
Imaris 3.1.1 (Bitplane AG), and Adobe Photoshop 6.0.

Preparation of Purified CD4* T Cells from Reovirus-primed
Mice. Mice were inoculated in the rear footpad with an emul-
sion containing CFA and UV-inactivated reovirus (~10'" parti-
cles/mouse) or CFA and PBS as a control. 7 d later, mice were
killed and draining popliteal and inguinal lymph nodes were re-
moved. Lymph node CD4* T cells were isolated by negative se-
lection on a CD4* T cell isolation kit (MACS; Miltenyi Biotec).
CD4* T cell preparations were typically 96-98% pure.

Stimulation of Reovirus-primed CD4* T Cells by PP APCs.
CD11¢*/CD19~ PP DCs and CD11¢=/CD197 PP B cells were
isolated from mice 24 h after peroral inoculation with 10% PFUs
of T1L or from uninfected control mice. APCs were <y irradiated
with 2,000 rads to prevent proliferation. Purified T cells (typically
3 X 105 cells) from reovirus-primed or control mice were cocul-
tured in triplicate with irradiated DCs or B cells at a 4:1 ratio in
round-bottom 96-well plates. Antigen-presenting capacity of pu-
rified APCs was tested by adding UV-irradiated reovirus (10° par-
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ticles/well) to a second set of triplicate wells containing APCs
and T cells. To control for the proliferative capacity of T cells, 20
pg/ml anti-CD3e antibody (BD Biosciences) was added to a
third set of triplicate wells. After incubation for 3 d, an aliquot of
supernatant was removed from each well for IFN-y ELISA and 1
wCi/ml [*H]thymidine was added to each well for the final 7 h of
culture. Cells were harvested and [*H]thymidine incorporation
was assessed by using a 8 emission scintillation counter (Perkin-
Elmer). IFN-vy release from stimulated T cells was assayed by
sandwich ELISA (OptEia; BD Biosciences).

Statistical Analysis. ~ Statistical significance of differences was
determined by the Student’s f test.

Results

Reovirus T1L Replicates within the FAE, and Viral Antigens
Colocalize with CD11c* DCs in the PP SED. To identify
viral antigen directly in murine tissues after peroral inocu-
lation with a well-characterized reovirus strain, BALB/c
mice were perorally inoculated with 10% PFUs of reovirus
T1L and killed 8, 24, 48, and 72 h after infection. Cryo-
sections were prepared from PPs of infected and unin-
fected control mice and stained using antibodies specific
for CD11c¢ and viral structural protein ol. Confocal im-
munofluorescence microscopy demonstrated the presence
of o1 within the FAE and the SED at 8 h after infection,

Reovirus T1L in the FAE and SED of PPs in association

Figure 1.
with CD11¢* DCs. (A) PP cryosections were prepared from mice 24 h
after peroral inoculation with T1L. Sections were stained with antibodies
specific for CD11c (green) and reovirus structural protein ol (red), and
examined by confocal microscopy. (B) Higher magnification of A, showing
o1 in close association with CD11c¢* DCs in the SED as indicated by the
yellow color. (C) PP cryosections stained with antibodies specific for
CD11c (green) and reovirus nonstructural protein NS (red). (D) Higher
magnification of C showing that NS is detected only in cells of the FAE.
L, lumen of small intestine; FAE, follicle-associated epithelium; SED,
subepithelial dome. Borders of the FAE are indicated by yellow lines.



with higher levels at 24 h after infection, where it colocal-
ized with CD11c* DCs (Fig. 1, A and B). In contrast, o1
was barely detectable at 48 and 72 h after infection (not
depicted). To determine whether reovirus antigen staining
represented active viral replication, we used an antibody
specific for reovirus nonstructural protein oNS, which is
expressed during reovirus infection but does not form part
of the virion (22). Cells of the FAE were found to be the
principal site of active viral replication, as it was only in
this region that the nonstructural protein oINS was detect-
able (Fig. 1, C and D). These findings suggest that the
staining for structural protein ol in the SED represented

Figure 2. Replication of reovirus T1L within DCs in vivo and in vitro.
(A) Cytospin preparation of CD11c* DCs isolated from mice 24 h after
peroral inoculation with T1L. Cells were stained with antibodies specific
for CD11c (blue), reovirus o1 (red), and reovirus NS (green), and ex-
amined by confocal microscopy. (B) Cytospin preparation of CD11c*
DC:s isolated from uninfected control mice and stained and imaged as in
A. (C) Cytospin preparation of myeloid DCs (CD11c¢*/CD197/
CD8a~/CD11b"M) infected in vitro with reovirus T1L. Cells were stained
with antibodies specific for reovirus o1 (red) and reovirus NS (green).
Nuclei were labeled with Hoechst (blue). (D) Higher magnification of a
single infected DC. Punctate staining of a1 (red) can be seen. No evi-
dence of oINS expression was detected. (E) Reovirus infection of L cells
permissive for reovirus replication. Cells were stained as in C. (F) Higher
magnification of a single infected L cell showing sites of reovirus replica-
tion as indicated by the yellow color (presence of both a1 and oINS).

uptake of viral antigen and not active viral infection of
DCs at that site.

To confirm that viral antigen was ingested by PP DCs,
CD11c¢*/CD19 cells were purified by flow cytometric
sorting from PPs of mice 24 h after peroral inoculation with
T1L and stained with antibodies specific for o1 (Fig. 2, red)
and oNS (Fig. 2, green). Staining for o1 was clearly evident
within CD11c¢* DCs (Fig. 2 A), but staining for NS was
not detected (Fig. 2 B; see F for positive control staining).
Furthermore, purified PP CD11c* cells exposed to infec-
tious T1L in vitro were not productively infected, but these
cells were capable of acquiring viral antigen (Fig. 2, C and
D). In contrast, infection of murine L cells with T1L re-
sulted in productive viral infection with expression of both
ol and oNS (Fig. 2, E and F). In addition, some of the o1
in infected L cells demonstrated a diffuse staining pattern,
whereas 01 in DCs was distinctly punctate, suggesting anti-
gen uptake into endosomes rather than active viral replica-
tion and assembly in the cytosol. Therefore, these data con-
firm the in situ studies and demonstrate that DCs capture
T1L antigens but are not a primary site for viral replication.

To identify the specific DC subset responsible for uptake
of viral antigen, cytospin preparations of CD11c¢™" cells puri-
fied from infected mice were stained for CD11b, CD8a,
and reovirus o1. Viral antigen was detected only in CD8a™
cells and confined to cells that displayed low levels of
CD11b (Fig. 3, A and B). This result is also in concordance
with in situ studies demonstrating that reovirus antigen is lo-
calized to CD8a~/CD11bP cells (not depicted). To exclude
the possibility that antigen was contained within plasmacy-
toid DCs, we stained cytospin preparations for B220, which
is highly expressed by both immature and mature/activated
plasmacytoid DCs (23). B220-expressing cells were clearly
demonstrable in cytospin samples; however, no viral antigen
was contained within these cells (Fig. 3 C).

To determine whether CD8a~/CD11b DCs, in contrast
to CD8a~/CD11bM and CD8at/CD11b* DC subsets, are
capable of directly ingesting T1L antigen, the three CD11c¢"
DC types from PPs were purified by flow cytometric sorting
and exposed for 24 h to equivalent inocula of T1L in vitro.
Cytospin preparations were stained with antibodies specific
for o1 and oNS. We found that 70% of CD8a /CD11bM
cells were positive for 01 compared with 30% of CD8x™/
CD11b* DCs and only 10% of CD8a*/CD11b DCs.
None of the purified PP DC subsets displayed positive stain-
ing for reovirus oNS. Thus, although all DCs are capable of
taking up T1L in vitro, CD8a~/CD11b* DCs appear to be
the primary cells that contain viral antigen in the SED after
infection in vivo, despite the fact that CD8a~/CD11bM DCs
are also normally present in the SED.

PP DCs Can Acquire Reovirus Antigen from Infected Apop-
totic Epithelial Cells. Given that T1L does not appear to
productively infect DCs, we reasoned that DCs likely ac-
quire viral antigen from infected epithelial cells. Further-
more, because PP DCs ingest virus after exposure to T1L
in vitro, it is likely that virus released from infected epithe-
lial cells is directly sampled by underlying DCs. Reovirus is
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capable of inducing apoptosis of infected cells (24-26).
Therefore, we hypothesized that reovirus-infected apop-
totic epithelial cells are the source of the reovirus protein
associated with the CD11c* DCs in the SED. To test this
hypothesis, we used the TUNEL technique to examine
cells in reovirus-infected PP domes for evidence of apopto-
sis. TUNEL™ cells were detected in the SED of both unin-
fected and infected mice (Fig. 4, A—C). In infected mice,
TUNEL staining in the SED colocalized with staining for
ol (Fig. 4, B and C). It was not possible to perform double
staining for TUNEL and CD11c, as the CD11c epitope is
not recognized by the N418 antibody after the paraformal-
dehyde fixation required for TUNEL staining. Nonethe-
less, these results suggested that apoptotic cells in the SED
contained o1.
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Figure 3. Reovirus T1L in association
with double negative DCs (CD11c*/
CD8a /CD11b") in vivo. Cytospin
preparations of CD11c* DCs isolated
from PPs of mice 24 h after peroral in-
oculation with T1L. Cells were stained
with antibodies specific for reovirus o1
protein and cell surface molecules, and
examined by confocal microscopy. Nu-
clei were labeled with Hoechst (blue).
(A) Anti-CD8a (green) and anti-ol
(red). Reovirus is found in association
with CD8a™ cells. (B) Anti-CD11b
(green) and anti-ol (red). Reovirus
antigen is found in association with
CD11bP cells. (C) Anti-B220 (red) and
anti-o01 (green). Reovirus antigen 1is
found in B220~ cells, indicating that it is
not within plasmacytoid DCs.

To confirm the presence of apoptotic material in the DC
region of the SED, we performed triple staining on PP cryo-
sections using antibodies specific for CD11c, a1, and the
activated form of caspase-3, which is an early marker of
apoptosis (Fig. 4, D-F; reference 27). Activated caspase-3
was detected in all domes of PPs infected with reovirus, of-
ten in close association with punctate ol staining. We also
observed activated caspase-3 staining in PP domes from
uninfected control mice (Fig. 4 D).

To determine whether the apoptotic cells in the SED
were of epithelial origin, we stained tissues for CD11c, o1,
and cytokeratins, which are present in high concentration
in epithelial cells of the FAE. Similar to the findings made
using TUNEL and activated caspase-3 staining, punctate
cytokeratin staining was detected in the SED of both unin-

Figure 4. Reovirus infection in asso-
ciation with apoptosis in the PP SED.
(A) PP cryosection from an uninfected
control mouse stained with TUNEL
(green) and examined by confocal micros-
copy. (B) PP cryosection from a mouse
24 h after peroral inoculation with T1L
stained with TUNEL (green) and an
antibody specific for reovirus ol (red).
(C) Higher magnification of B showing
reovirus o1 in association with TUNEL*
inclusions. (D) PP cryosection from an
uninfected mouse stained with antibodies
specific for CD11lc (green), activated
caspase-3 (red), and reovirus o1 (blue).
Note that apoptotic material can be de-
tected in both the FAE and SED. (E) PP
cryosections from a T1L-infected mouse
stained as in D. Note two reovirus-
infected cells in the FAE that are also
positive for activated caspase-3 as indi-
cated by the purple color. (F) Higher
magnification of the SED of E showing
association of reovirus o1 and activated
caspase-3 as indicated by the purple color.
L, lumen of small intestine; FAE, follicle-
associated epithelium; SED, subepithelial
dome. Borders of the FAE are indicated
by yellow lines.



Figure 5. Epithelial cell-derived cytokeratin in the FAE and SED of
reovirus-infected mice. PP cryosections were prepared from mice 24 h after
peroral inoculation with T1L. Sections were stained with antibodies specific
for (A) CD11c (green) and cytokeratin (red), or (B) CD11c (green), cytoker-
atin (red), and reovirus o1 (blue). Sections were examined by confocal
microscopy. Cytokeratin can be detected in the DC region of the SED
underlying the FAE. Reovirus o1 shown in association with cytokeratin
staining in the FAE and occasionally in the SED is indicated by the purple
color. Borders of the FAE are indicated by yellow lines.

fected (unpublished data) and infected mice (Fig. 5 A). In
addition, o1 and cytokeratin were observed to colocalize
within the SED of infected animals (Fig. 5 B).

To test whether uptake of T1L leads to death of DCs,
we counted viable DCs after trypan blue staining after in-
cubation with T1L in vitro. In these experiments, we could
not detect an eftect of reovirus on DC viability. However,
because a significant proportion of PP DCs die once they
have been isolated from tissue in the absence of further
stimulation, it might be difficult to exclude a more subtle
effect. We also performed studies with an immature/inacti-
vated murine DC cell line (D1) and found no evidence of
cell death upon incubation with T1L.

To conclusively determine whether CD11¢* DCs in the
SED acquire reovirus antigen from apoptotic epithelial cells,

PP DCs were isolated from mice 24 h after peroral inocula-
tion with T1L, and cytospins of these cells were stained with
antibodies specific for CD11¢, o1, and either activated cas-
pase-3 or cytokeratin. Confocal microscopic analysis indi-
cated that both activated caspase-3 and cytokeratin colocalize
with o1 within CD11c¢* DCs (Fig. 6). The vast majority of
DCs containing viral antigen (85-95%) also contained active
caspase-3. Analysis of intracellular staining by flow cytometry
supported this finding (not depicted). Moreover, T1L anti-
gen and activated caspase-3 were observed to colocalize into
discrete vesicles within DCs (Fig. 6). Thus, these findings
strongly suggest that SED DCs ingest apoptotic epithelial
cells containing reovirus antigen for presentation to T cells.

PP DCs, But Not B Cells, from Reovirus-infected Mice
Present Viral Antigens to Virus-primed CD4" T Cells In Vitro.
To determine whether DCs isolated from PPs of T1L-
infected mice present viral antigen to T cells, CD11c* DCs
were isolated from PPs of T1L-infected BALB/c mice
by flow cytometric sorting and used to stimulate primed
CD4* T cells isolated from draining lymph nodes of mice
immunized in the footpad with T1L in CFA. DCs from in-
fected but not uninfected mice induced proliferation of, as
well as IFN-y production by, T1L-primed T cells (Fig. 7).
In contrast, B cells isolated from infected mice did not
present viral antigens to primed T cells, although they were
capable of presenting antigen if reovirus was added to
the cultures. These data provide strong evidence that PP
CD11c¢* DCs and not B cells present viral antigen to CD4*
T cells after peroral inoculation of mice with reovirus.

To identify the subpopulation of PP DCs capable of
processing T1L in vivo, we isolated by flow cytometry
the three major populations of CD11c" DCs, CD8a*/
CD11bP, CD8a~/CD11b®, and CD8a~/CD11b" DCs,
24 h after peroral inoculation with T1L and determined the
capacity of these cells to activate T1L-primed T cells in

Figure 6. Reovirus T1L antigen in association
with activated caspase-3 and epithelial cell-
derived cytokeratin in CD11c¢* DCs isolated
from reovirus-infected PPs and purified by flow
cytometry. Cytospin preparations were obtained
from mice 24 h after peroral infection with
T1L, stained, and examined by confocal micros-
copy. Nuclei were labeled with Hoechst (blue).
Staining for (A) reovirus o'l (green) and (B) acti-
vated caspase-3 (red) indicates that the majority
of virus® cells also express active caspase-3
within vesicular structures as indicated by the
yellow color in the merged image (C). Expression
of active caspase-3 in T1L-infected cells also is
shown in D: reovirus ol (red), activated caspase-3
(green), and CD11c (gray). (E) Staining of cells
for cytokeratin (green), reovirus ol (red), and
CD11c (gray) demonstrates that reovirus o'l also
colocalizes with cytokeratin within vesicular
structures as indicated by the yellow color. In this
micrograph, a CD11c* cell containing cytokeratin
without reovirus is evident (large arrow), as is a
cytokeratin-expressing  contaminating  epithelial
cell (small arrow). Note that the cytokeratin in
this cell stains diffusely and is not punctate.
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Error bars represent standard error of the means for three independent ex-
periments. *, P < 0.05; **, P < 0.0002; ns, not significant.

vitro. Both CD8a~/CD11b* and CD8at/CD11b" DCs,
but not CD8a™/CD11b" DCs, were capable of inducing
the proliferation of T1L-primed T cells (Fig. 8). Thus, al-
though CD8a~/CD11b" DCs located in SED appear to
be the primary cells that process reovirus-infected apop-

totic epithelial cells, reovirus antigen is also processed by
CD8a*/CD11bP DCs for presentation to CD4™ T cells.

Discussion

In this work, we examined early events that occur in
murine PPs after infection with reovirus, which specifically
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targets the FAE and induces both mucosal and systemic im-
mune responses. Previous studies have shown that reovirus
strain T1L transcytoses through M cells and infects neigh-
boring epithelial cells likely via receptors expressed on the
basolateral epithelial cell surface (9). Electron microscopy
studies demonstrate productive infection of epithelial cells
along with viral particles in a small number of mononuclear
cells in the SED (10). These observations prompted us to
examine whether DCs in the SED are capable of taking up
reovirus antigen for presentation to T cells.

We first tested whether reovirus proteins colocalize with
CD11c* cells in situ after viral infection. We detected re-
ovirus structural protein 1 not only in the epithelium, but
also in discrete aggregates within the SED of infected PPs.
In contrast, we did not detect reovirus nonstructural pro-
tein ONS, which is expressed only in infected cells during
active viral replication (22). These findings indicate that ac-
tive replication of T1L occurs only within the FAE and not
within DCs of the SED. Consistent with these results, we
tound that purified DCs are not productively infected with
T1L in vitro, although they are capable of avidly engulfing
T1L antigen. Thus, unlike many viruses that directly infect
DCs, such as influenza virus (28), reovirus T1L does not
infect SED DCs, but instead these cells capture viral anti-
gen from the FAE. Virus ingested by SED DCs might be
input virus transported to the PP via M cells or progeny vi-
rus released from infected epithelial cells.

We also thought it possible that DCs in the SED might
acquire viral antigen from infected epithelial cells in the
FAE. This process could occur by a mechanism termed
“nibbling,” in which antigen is taken up from living cells
by contact with DCs (29). However, we considered it
more likely that DCs process antigen from apoptotic epi-
thelial cells nearby. This hypothesis is supported by two
lines of evidence. First, reovirus T1L induces apoptosis of
infected cells, although to a lesser extent than type 3 reovi-
rus strains (24—26). Second, after infection of mice with re-
ovirus, aggregates of viral antigen in the SED are observed,
and these aggregates are much larger than those found in
DC:s loaded with virus in vitro (Figs. 1 and 2). These ob-
servations suggest that the viral antigen is contained within
apoptotic bodies. Indeed, we found that a substantial pro-
portion of reovirus antigen is associated with apoptotic
bodies in the SED as judged by colocalization of reovirus
o1 protein with both TUNEL staining and activated cas-
pase-3, the processed form of pro—caspase-3 detected dur-
ing the early stages of apoptosis (27). Moreover, tissue
staining for epithelial cell-expressed cytokeratins demon-
strated that at least a portion of the apoptotic cells are epi-
thelial cells. The fact that there is no T1L oNS protein de-
tectable within these apoptotic bodies is likely because viral
replication is normally complete before apoptosis of virally
infected cells occurs (24, 25).

To distinguish between DCs in the SED that were un-
dergoing apoptosis from DCs that had ingested apoptotic
epithelial cells, we isolated DCs from infected mice and ex-
amined whether these cells contained reovirus antigen that
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colocalized with activated caspase-3 or cytokeratins. We
detected DCs that contained each marker in the same in-
clusions as the reovirus protein. These data strongly suggest
that a major pathway by which reovirus antigen is pro-
cessed by DCs in vivo is via the sampling of apoptotic bod-
ies from virus-infected epithelial cells.

This interpretation is consistent with extensive previous
studies demonstrating the capacity of DCs to process viral
antigens from apoptotic and dying cells (for review see ref-
erence 30). After the report by Bevan (31) demonstrating
the phenomenon of cross-presentation and cross-priming
of CTLs, Albert et al. (32) found that human DCs can use
influenza virus—infected cells as sources of antigen. Since
that time, in vitro studies have shown that DCs cross-
present antigens from dead cells infected with a variety of
viruses, including human immunodeficiency virus (33),
measles virus (34), human cytomegalovirus (35-37), Ep-
stein-Barr virus (38—40), canarypox virus (41, 42), and vac-
cinia virus (43). In contrast, in vivo studies, although impli-
cating DCs in cross-priming to soluble or cell-associated
nonviral proteins (for review see references 30, 44, and 45),
have provided less direct evidence that DCs mediate cross-
presentation of virus-infected cells. For example, although
bone marrow—derived APCs mediate cross-priming against
poliovirus in vivo in a transporter associated with antigen-
processing—dependent manner (46), and infection of mice
with adenovirus expressing influenza A virus nucleoprotein
under tissue-specific promoters resulted in CTL activity
against nucleoprotein (47), DCs were not specifically im-
plicated in these studies. More direct evidence for DC pre-
sentation of viral antigens in vivo comes from studies of
HSV. HSV-1 and -2 antigens are presented in the absence
of HSV virions or DNA in the draining lymph nodes of in-
fected mice, and presentation of these antigens is mediated
primarily by CD8a™ and CD11b" DCs, respectively (48,
49). Although these studies demonstrate cross-presentation
of viral antigens by DCs in vivo, they do not demonstrate
the source of viral antigen. The results presented here pro-

+ Anti-CD3

one of two experiments performed with similar results.
*. P < 0.05; ns, not significant.

vide direct evidence that DCs process viral antigen from vi-
rus-infected apoptotic cells in vivo.

An additional important finding of our work is the dem-
onstration of significant numbers of TUNEL* and activated
caspase-37 cells in the SED of uninfected mice. Although it
is our impression that there might be a higher number of
TUNEL" cells in the SED of reovirus-infected PPs, it is
difficult to discern whether the absolute frequency of apop-
totic cells differs from that of uninfected animals because of
problems with orientation during the preparation of tissue
for cryosectioning. Therefore, we are hesitant to draw firm
conclusions about these observations. However, it is appar-
ent that infection is not required for the presence of
TUNEL" cells in the PP dome. This result suggests that
epithelial cells in the SED undergo apoptosis continually
under normal physiologic conditions.

Two previous studies provide additional support for
physiologic apoptosis of SED epithelial cells. In the first,
Huang et al. (50) demonstrated in uninfected rats the pres-
ence of CD47/0X41~ DCs containing apoptotic bodies
and cytokeratin™ inclusions in the lamina propria and T cell
zones of mesenteric lymph nodes. They also showed that
DCs contain epithelial cell-derived, nonspecific esterase in
the basal layer and T cell zones of PPs. The OX41~ DC
subset is a weak inducer of T cell proliferation and consti-
tutively migrates from the intestine to mesenteric lymph
nodes, as evidenced by the presence of large numbers of
these cells in the thoracic duct lymph after mesenteric
lymph node adenectomy (51). In the second, Vezys et al.
(52) demonstrated that expression of a nonsecreted form of
OVA in intestinal epithelial cells results in OVA-specific
CD8* T cell unresponsiveness. OVA-specific, OT-1 T cell
receptor—transgenic T cells transferred into OVA-express-
ing mice expanded first in PPs and mesenteric lymph
nodes, and then became unresponsive to challenge with
OVA-expressing vesicular stomatitis virus. OV A-specific
CD8* unresponsiveness can also be prevented by treatment
of these mice with cholera toxin, activating CD40 antibod-
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ies, or vesicular stomatitis virus that does not express OVA
(53). Taken together with the current studies, these data
are consistent with the hypothesis originally offered by
Huang et al. (50) that under steady-state conditions, anti-
gens either expressed by epithelial cells or absorbed from
the intestinal lumen into epithelial cells are taken up by
DCs after epithelial cell apoptosis. The possibility that these
DCs may then induce T cell unresponsiveness is supported
by studies showing that apoptotic cells do not induce matu-
ration of immunostimulatory DCs, which allows captured
antigens to be presented in a fashion that induces tolerance
(for review see reference 54).

The situation may differ in the case of reovirus infection.
DCs loaded with virus-infected apoptotic epithelial cells
are most likely induced to mature into fully immunostimu-
latory DCs resulting in the strong T cell immune responses
seen to this virus. This process may occur by exposure of
resident DCs to products of necrotic epithelial cells after vi-
rus-induced cell lysis, cytokines such as IFN-a, IL-1, or
TNF-a, viral particles, or viral double stranded RNA re-
leased from infected epithelial cells. Studies are currently
underway to distinguish between these possibilities. Re-
gardless of the precise mechanism, reovirus infection may
convert a normal tolerogenic response to epithelial cell—
associated antigens into an effective immunogenic response
to the virus. This model is consistent with the idea that
tolerogenic DCs continuously induce T cell tolerance to
self-antigens under steady-state conditions. After infection,
when immunogenic DCs are induced (e.g., by cytokines,
pathogen-associated molecular patterns, or factors released
from necrotic cells) and present both self- and environmen-
tal proteins together with viral antigens, preexisting T cell
tolerance (in this case to noninfectious epithelial cell—
derived antigens) would allow the development of an adap-
tive immune response tightly focused on antigens derived
from the invading pathogen (55). This scenario would cer-
tainly be the case if the mechanism of tolerance induced by
steady-state DCs is T cell deletion or unresponsiveness, as
has been shown in many systems (see reference 44).

Our work also addressed the role of specific DC subsets
in the uptake of epithelial cell-associated antigen in the PP
SED. Although previous studies have shown that both
CD8a* and CD8a™ DCs can present soluble antigen in the
context of MHC class II molecules after in vivo loading,
CD8a* DCs might be more efficient in the presentation of
soluble antigens to CD8* T cells. In addition, CD8a* DCs
are clearly specialized for the uptake and presentation of
cell-associated antigen to both CD4* and CD8" T cells
(56-60). We detected inclusions containing reovirus, cyto-
keratin, and activated caspase-3 in CD8a™ DCs in the PP
SED. However, the SED region of CD8a~™ DCs that con-
tained apoptotic epithelial cells difter from the majority of
CD8a™ DCs in other tissues in that they do not express
significant levels of CD11b.

In previous studies, we showed that CD8a~/CD11bk
DCs are uniquely overrepresented in mucosal lymphoid tis-
sues, concentrated in the SED and interfollicular T cell re-
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gions of the PP, and produce high levels of IL-12 upon
stimulation with CD40L or Staphylococcus aureus and IFN-y
(2). These DCs are not plasmacytoid DCs because they do
not express B220 or Ly6C, and express high levels of
CD11c. In addition, these CD8a~/CD11b" DCs induce
Th1 cell differentiation in vitro in a manner similar to
CD8a* PP or spleen DCs (2). However, despite this simi-
larity, CD8a~/CD11b PP DCs are not likely to be an im-
mature or mature form of CD8a* DCs. Freshly isolated or
in vitro—stimulated CD8a~/CD11b*, CD8x~/CD11b",
and CD8a*/CD11b PP DCs express similar levels of
MHC class II and costimulatory molecules (2, 3). In addi-
tion, in vitro maturation of CD8a~/CD11b DCs does not
result in an increase in CD8a expression (2). The unique
lineage of these cells is also supported by a study demon-
strating that CD8a~/CD4~/DEC-205"° DCs, which are
likely the same population as the CD8a /CD11b* DCs,
appear in the mesenteric lymph nodes with kinetics similar
to other DC subsets after BrDU labeling in vivo (61). We
now have demonstrated that CD8a~/CD11b" DCs likely
play a key role in the development of an antiviral immune
response to reovirus. Because CD8a™/CD11b* DCs pro-
duce high levels of IL-12 and induce strong Th1 cell re-
sponses in vitro (2), these cells may play a role in driving
Th1 cell responses to reovirus in vivo (13).

In a final series of experiments, we demonstrated that DCs
isolated from PPs of reovirus-infected mice can present viral
antigen to reovirus-primed CD4* T cells. In addition, we
found that both CD8a /CD11b® and CD8a*/CD11b
DCs, but not CD8a~/CD11b" DCs, from T1L-infected
animals were capable of inducing proliferation (Fig. 8) and
IFN-vy production (not depicted) by T1L-primed CD4* T
cells. These data demonstrate that although apoptotic bodies
are associated with CD8a™/CD11b DCs, T1L antigen is
also processed by CD8a*/CD11b* DCs in vivo. Interest-
ingly, these findings are similar to those of Scheinecker et al.
(62), who found that a gastric self-antigen, H(+)/K(+)-
ATPase, thought to be released from dying cells, is con-
tained within vesicular compartments of CD8a™ DCs in
draining lymph nodes in situ. However, both CD8a™ and
CD8a™ DCs could stimulate antigen-specific T cells directly
ex vivo. Thus, the presentation of T1L by CD8a*t DCs
could be the result of direct viral antigen uptake or the cross-
presentation of antigen transported into the T cell zone by
CD8a~/CD11b* DCs or other types of cells.

Studies reported here demonstrate a direct role for PP
DC:s in the presentation of viral antigen to CD4* T cells af-
ter reovirus infection of mice. We show that an important
pathway by which PP DCs process reovirus antigen is by
uptake of virus-infected, follicle-associated epithelial cells
that have undergone apoptotic cell death. This function is
mediated principally by the CD8a™/CD11b' subset of PP
DC:s. Although not demonstrated here, it is likely that T1L
antigens are also cross-presented to CD8 T cells in a similar
manner. These studies provide mechanistic insight into the
process by which an intestinal viral pathogen induces both
local and systemic immune responses.
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