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Summary

In contrast to conventional T cells, natural killer (NK) 1.1* T cell receptor (TCR)-a/B*
(NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-a/a
chains constitutively express the interleukin (IL)-2 receptor (R)B/15Rp chain. Recent studies
have indicated that IL-2RB/15R chain is required for the development of these lymphocyte
subsets, outlining the importance of IL-15. In this study, we investigated the development of
these lymphocyte subsets in interferon regulatory factor 1-deficient (IRF-1-/~) mice. Surpris-
ingly, all of these lymphocyte subsets were severely reduced in IRF-1-/— mice. Within CD8-
o/a™ intestinal IEL subset, TCR-y/3" cells and TCR-a/B™ cells were equally affected by
IRF gene disruption. In contrast to intestinal TCR-vy/3" cells, thymic TCR-vy/3* cells devel-
oped normally in IRF-1=/~ mice. Northern blot analysis further revealed that the induction of
IL-15 messenger RNA was impaired in IRF-1-/~ bone marrow cells, and the recovery of
these lymphocyte subsets was observed when IRF-1-/~ cells were cultured with IL-15 in
vitro. These data indicate that IRF-1 regulates 1L-15 gene expression, which may control the
development of NK1+T cells, NK cells, and CD8-a/a* IELSs.

n addition to the conventional lymphocyte subsets, other

lineages have been identified as NK1.1*TCR-a/B™*
(NK1*T) cells, NK cells, and intestinal intraepithelial lym-
phocytes (IELs). NK1*T cells have been recently classified
as a lymphocyte subset that shares common features with both
NK cells and conventional T cells. This lineage expresses NK
markers including NKR-P1, Ly-49, and IL-2RB/15Rp as
well as an invariant Va14J281TCR-a chain in combina-
tion with VB8, VB7, or VB2 (1, 2). Expression of these
TCRs is required for NK1* T cell development (3, 4). They
are positively selected by MHC class I-related CD1 or thymic
leukemia (TL) molecules (5-7). The majority of TCR-a/B™*
or TCR-y/8™ intestinal IEL expresses CD8-a/a homodimers.
Both NK1+T cells and CD8-a/a* intestinal IELs can de-
velop through either extrathymic or alternative thymic path-
ways (1, 2, 8). Notably, the IL-2RB/15Rf chain is required
for the development of NK1*T cells, NK cells, and CD8-
o/t intestinal 1ELs (9, 10), and IL-15 preferentially pro-
motes the proliferation of these lymphocyte subsets (10-12).

IFN regulatory factor 1 (IRF-1), an IFN-inducible tran-
scriptional activator, was initially identified as a protein that
binds cis-acting DNA elements in the IFN-B promoter
(13-15) and the IFN-stimulated response element of IFN-

o/B-stimulated genes (16, 17). Recent studies with IRF-
deficient (IRF-1~/~) mice demonstrated a reduction of
CD8TTCR-a/B* cells and decreased MHC class | levels
as a consequence of reduced expression of transporter asso-
ciated with antigen processing 1 (TAP-1) and low molecu-
lar weight protein 2 (LMP-2; 18, 19).

Since IRF-1 deficiency has been related to T cell matu-
ration, we examined the development of NK1*T cells, NK
cells, and IELs in IRF-1=/~ mice. Data indicated that these
lymphocyte subsets were selectively reduced and IL-15
messenger RNA (mMRNA) was barely detectable in IRF-
1/~ mice. Therefore, IRF-1 regulates the IL-15 gene that
is required for survival and/or expansion of these lympho-
cyte subsets in vivo.

Materials and Methods

Mice. Mice deficient in IRF-1 (18) were backcrossed five
times with C57BL/6 mice. Homozygous IRF-1-/~ mice were
bred and identified by staining blood with anti-CD8 and -CD4
mADb. Wild-type or heterozygous mice were used as controls. All
mice were maintained in our animal facility according to institu-
tional guidelines, and experiments were done between 8 and 14 wk
of age.
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Cell Preparation and Culture.  Liver mononuclear cells (MNCs)
and IELs were prepared as previously described (20). In some ex-
periments, liver MNCs or IELs obtained from IRF-1-/~ mice
were cultured with 100 ng/ml mouse IL-15 (provided by Immu-
nex Co., Seattle, WA) for 7 d.

Antibodies and Flow Cytometric Analysis. The following mAb
conjugates were purchased from PharMingen (San Diego, CA)
and used in this study: M1/69-FITC (anti-HSA), 53-5.8-FITC
(anti-CD8), H57-597-FITC and -PE (anti-TCR-B), TM-B1-
PE (anti-IL-2RB), GL-3-PE (anti-TCR-3), 53-6.7-PE (anti-
CD8), PK136-PE and -biotin (anti-NK1.1), 1B1-PE (anti-CD1),
27D-biotin (anti-LFA-1), IM7-biotin (anti-CD44), and KJ16-bio-
tin (anti-VB8.1,8.2). B22-purified mAb (anti-H-2DP) was pre-
pared in our laboratory. Biotinylated mAbs were detected with
streptavidin red 670 (GIBCO BRL, Gaithersburg, MD) and puri-
fied mAbs were detected with goat anti-mouse 1gG-FITC or
goat anti—rat IgM-FITC; 108 cells were stained in 2% FCS PBS,
washed, and analyzed by FACScan® using the Lysis Il program
(Becton Dickinson, Mountain View, CA).

Analysis for IL-15 mRNA Expression. Bone marrow (BM) cells
were isolated and stimulated by 30 pwg/ml LPS and 100 U/ml IFN-+y
for 6 h. Total cellular RNA was isolated with TRIZOL (GIBCO
BRL) according to the manufacturer’s protocol. 10 pg of total
RNA were subjected to electrophoresis in a denaturing 1.0% aga-
rose gel containing 2% formaldehyde and transferred to Hybond
N+ nylon membrane (Amersham Corp., Arlington Heights, IL).
The filter was hybridized with mouse IL-15 cDNA probe radio-
actively labeled with [32P]JdCTP. The mouse IL-15 cDNA used
as a probe was obtained by polymerase chain reaction using specific
primers: sense primer 5'-GCC AGC TCA TCT TCA ACA-3' and
antisense primer 5'-TAA GTC TGA GAC GAG CTC TTT-3".
Radioactivity was assessed using phosphorimager (Molecular Dy-
namics, Sunnyvale, CA). The filter was stripped and rehybridized
with a B-actin cDNA probe.
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Figure 1. IRF-1isimportant for NK1*T cell and NK cell maturation.
Thymocytes, liver, and spleen MNCs from indicated strains were stained
with M1/69-FITC (anti-HSA), H57-597-PE (anti-TCR-B), and
PK136-biotin (anti-NK1.1) plus streptavidin 670. HSA~ cells are shown.

Results and Discussion

Impaired NK1*T Cell and NK Cell Development in IRF-
1=/~ Mice. Mouse NKIFT cells are generally either
CD4+8~ or CD4-8~ cells that are primarily found in the
thymus, liver, and BM (1, 2). We examined the NK1*T
cell subset in mice deficient for IRF-1-/~. Surprisingly, the
percentages of thymic and liver NK1*T cells were de-
creased by 4-5 fold and 8-10 fold, respectively, in IRF-1-/~
mice. The total number of thymic NK1*T cells obtained
from IRF-1-/— mice was 10-fold lower than in wild-type
control mice. Interestingly, a partial reduction of NK1*T
cells was also seen in IRF-1/~ mice (Fig. 1, Table 1). The
IL-2RB/15RB*TCR-a/B ™ cells were also decreased, sug-
gesting that the pronounced reduction of NK1*T cells de-
tected in IRF-1-/~ mice was not simply due to the loss of
NKZ1.1 molecules from the cell surface (data not shown).
The small number of NK1+T cells detected in IRF-1-/~
mice expressed the IL-2RB/15RB chain and preferentially
expressed VB8 TCR as seen in control mice (data not
shown). In addition, analysis of the thymus, liver, and
spleen using IRF-1*/*, IRF-1¥/-, and IRF-1~/~ mice
clearly demonstrated a reduction of NK cells (TCR-
B~NK1.1*) in IRF-17/~ mice (Fig. 1). This is consistent
with the lack of NK cell function previously reported in
IRF-1-/~ mice (21). Interestingly, IRF-1*/~ mice consis-
tently showed an intermediate phenotype, reflecting the
dose-dependent requirement for genes regulated by IRF-1.
These analysis showed that IRF-1 is important for NK cell
and NK1*T cell development.

Previous reports have shown that CD4 8" TCRa/B™
cells were selectively reduced in thymus and periphery of
IRF-1-/~ mice (18). The data demonstrated a crucial role
for IRF-1in T cell development for the first time. A recent
paper suggested that IRF-1 controls MHC class | expres-
sion through the regulation of transporter associated with
antigen 1 and low molecular weight protein (19). Since
mouse NK1+T cells require B2-microgloblin—associated
CD1 and TL molecules for development (5-7, 20, 22, 23),

Table 1. Impaired Maturation of Thymic NK1*T Cells in IRF-
1=/~ Mice
Total Total NK1+T
thymocytes  HSA- NK1+T cell
Mice (X 109) cell cell (x 109
% %

IRF-17/* 81.7+47 34+04 11.9+14 395+88
IRF-1*/- 87.3+108 32+06 81*06 226=*75
IRF-1-/- 86.0 +11.8 1.6 + 04 24*+04 33*+06

Four to six mice from each group were individually analyzed. Thy-
mocytes were stained with M1/69-FITC (anti-HSA), H57-PE (anti—
TCR-B), and PK136-biotin (anti-NKZ1.1) plus streptavidin 670. The
percentage of NK1*T cells was calculated in the HSA~ thymocyte
population.
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Figure 2. Normal CD1 expression on IRF-1-/~ thymocytes. Thy-
mocytes from the indicated strains were stained with 1B1-FITC (anti-
CD1), 57.6.7-PE (anti-CD8), and L3T4-biotin (anti-CD4) plus streptavi-
din 670, and double-positive CD4+8" thymocytes were analyzed for
CD1 expression. For H-2DP expression, total thymocytes were stained
with B22 (anti—-H-2D") plus goat anti-mouse Ig-FITC.

we examined CD1 expression on thymocytes from IRF-
1=/~ mice. Consistent with a recent paper (19), Fig. 2
showed that the lack of the IRF-1 gene clearly resulted in
reduced H-2DP expression. However, the mean intensities
of CD1 on IRF-1~/~ thymocytes was comparable to litter-
mate controls, suggesting that the IRF-1 gene does not
control NK1*T cell development through CD1 expres-
sion. In addition, we can further exclude the role of the TL
antigen in NK1*T cell development, since both IRF-1-/~
and control mice are of the C57B1/6 background and do
not express TL.

Maturation of Intestinal IELs Is Reduced in IRF-17/-
Mice. The majority of IELs express CD8 and can be di-
vided into two subsets. One population bears CD8-a/B+
heterodimers and expresses TCR-a/B ™, whereas the other
expresses CD8-a/a™ homodimers consisting of TCR-a/B*
and TCR-vy/3* cells. Using thymectomized recombinase
activating gene (RAG)-deficient mice reconstituted with
BM cells from athymic (nude) mice, thymus-independent
development of CD8-a/at IELS has been clearly demon-
strated to occur (8). Surprisingly, in IRF-1=/~ mice, the
percentage of intestinal CD8-a/a™ IELs was approxi-
mately eight- to ninefold less than in wild-type control
mice. As seen with NK1*T cells, mice heterozygous for
IRF-1*/= showed altered CD8-a/a* IEL development.
TCR-y/8" IELs were profoundly reduced by IRF gene
disruption (Fig. 3 A, Table 2). In addition, CD8-a/B"T
cells were also reduced as seen in periphery. The total cell
numbers of IELs from IRF-1=/~ mice (0.4 = 0.1 X 109)
were three- to fourfold lower than those from littermate
controls (1.5 = 0.3 X 10%). Therefore, IRF-1 controls the
expression of genes important for IEL T cell development.
It is likely that the reduced development of intestinal v/
ST cells is controlled by other mechanisms unrelated to
MHC class | expression in IRF-1=/~ mice. Previous studies
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Figure 3. [IRF-1 controls intestinal IEL development. (A) Intestinal
IELs were obtained from either IRF-1*/+ mice, IRF-1*/~ mice, or IRF-
1=/~ mice and stained with H57-597 (anti-TCR-) and GL-3-PE (anti—
TCR-3), or 53.6.7-FITC (anti-CD8«) and Lyt3-PE (anti-CD8p). (B)
Thymocytes were stained with L3T4-FITC (anti-CD4), GL-3-PE (anti—
TCR-3), and 53.6.7-FITC (anti-CD8«). Histograms are gated on dou-
ble-negative CD4~8~ thymocytes and TCR-8 expression is shown.

using B2-microglobulin—deficient (MHC class 1-/~) mice
showed a reduction in TCR-a/B* IELs, but not TCR-vy/
d* IELs (24), demonstrating that TCR-o/B* and TCR-vy/
d* IELs have differential requirements for g2-microglobu-
lin dependent selection.

Since the majority of thymus-independent intestinal
TCR-y/3" cells were absent in IRF-17/~ mice, we also
examined whether thymic TCR-vy/3* cells were present in
these mice. Although the number of intestinal TCR-vy/8*
cells were decreased by 10-fold in IRF-1-/~ mice, thymic
TCR-y/87" cells were normal (Fig. 3 B, Table 2). Thus,
IRF-1 selectively affected the development of intestinal
TCR-y/87 cells.

IL-15 mRNA Expression Is Impaired in IRF-1-/~ BM
Cells.  As certain cytokines are crucial for lymphocyte de-
velopment, it is possible that a reduction in the expression
of cytokine receptors or cytokines may result in poor selec-
tion, survival, or expansion of NK1*T cells, NK cells, and
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Table 2. Intestinal and Thymic T Cell Subsets in IRF-1=/~ Mice

Intestine Thymus*
Mice CD8-a/a* CD8-a/B* TCR-o/B™" TCR-vy/3* TCR-y/3*
IRF-1+/+ 425 *+ 4.3 75 =*3.0 26.7 = 2.6 347 4.0 9.3*+05
IRF-1+/- 270 £ 2.6 105 + 2.3 295+ 3.6 21.0 = 4.4 10.7 = 1.8
IRF-1-/- 50+ 34 32+17 15.8 = 8.9 46 + 2.8 9.6 £ 0.8

Four mice in each group were individually analyzed.

*Total thymocytes were stained with GK1.5-FITC (anti-CD4), GL-3-PE (anti-TCR-+/3), and 53.6.7-biotin (anti-CD8) plus streptavidin 670.
TCR-v/37 cells were analyzed on gated double-negative (CD4~-8~) thymocytes.

intestinal IEL subsets in IRF-1=/~ mice. IL-15 is one of the
most likely targets because NK1*T cells, NK cells and in-
testinal IEL subsets are severely reduced in IL-2RB/
15RB~/~ mice (9, 10), while present in normal numbers in
IL-2, IL-7Ra, or IL-7-deficient mice (10, 25-27). Inter-
estingly, 1L-15 preferentially promotes the proliferation of
these T cell subsets (10-12). Thus, we examined IL-15
MRNA expression by Northern blot analysis (Fig. 4 A).
Wild-type BM cells cultured in the presence of LPS and
IFN-vy for 6 h, clearly increased 1L-15 mRNA levels. In
contrast, IL-15 mRNA remained undetectable in IRF-1-/~
BM cells, even after induction with LPS and IFN-v. These
data demonstrate that IRF-1 regulates the expression of IL-15.

NK21*T Cells, NK Cells, and Intestinal IELs were Recovered
by IL-15 In Vitro. To further examine the importance of
IL-15 for maturation of NK1*T cells, NK cells, and intes-
tinal IEL subsets in IRF-1-/~ mice, liver MNCs and intes-
tinal IELs were isolated from these mice and cultured with
100 ng/ml mouse IL-15 for 7 d (Fig. 4 B). Recovery of
these lymphocyte subsets was observed. This suggested that

B Liver

A IRF-1"- WT
[ T
oh 6h Oh 6h

' =

188 & ; )

. =

: § . q—IL-15
d—ﬁ-actin ST TR TR T

NK1.1

970

IL-15 is essential for the survival or expansion of NK1*+T
cells, NK cells, and intestinal 1ELs, and not early develop-
ment or commitment.

NK21+*T cells, NK cells, and intestinal 1ELs share cell sur-
face markers and other common features during develop-
ment. In addition to the expression and developmental re-
quirement of IL-2RB/15RB chain, they also express the
NK complex that encompasses NKR-P1 and Ly-49 (1, 2,
28, 29). In contrast, conventional T cells do not express
these products. Although the majority of T cells develops
in the thymus, NK cells develop normally in athymic nude
mice. The developmental origin of NK1+T cells can be ei-
ther thymus dependent or independent (2, 30, 31). Thymus-
independent development of intestinal CD8-o/a™ T cells has
been clearly demonstrated to occur (8). Thus, NK1+T cells
and intestinal CD8-a/a™ T cells are related to the NK lin-
eage and can be distinguished from mainstream T cells. Our
results demonstrate that IRF-1 controls the expression of
IL-15, which is likely to be important for the maturation of the
related NK1*T cell, NK cell, and CD8-a/a* IEL lineages.

Figure 4. Impaired lineage
development correlates with the
absence of IL-15. (A) Limited
IL-15 expression in the absence
of IRF-1. BM cells were isolated
from IRF-1~/~ mice or control
wild-type (WT) mice. Total
RNA was extracted from un-
treated BM cells or BM cells cul-
tured for 6 h in the presence of
LPS (30 wg/ml) and IFN-v (100
U/ml). Northern blot analysis
was performed using IL-15
cDNA and B-actin probes. (B)
IL-15 induces the expansion of
NK1+T cells, NK cells, and IEL
subsets. Liver MNCs and intesti-
nal IELs were isolated from IRF-
1=/~ mice and cultured with 100
ng/ml mouse IL-15 for 7 d.
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