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Summary

The expression of the murine interleukin (IL)-2 receptor o chain/CD25 is strongly induced at
the transcriptional level after T cell activation. We show here that nuclear factor of activated T
cell (NF-AT) factors are involved in the control of CD25 promoter induction in T cells. NF-
ATp and NF-ATc bind to two sites around positions —585 and —650 located upstream of the
proximal CD25 promoter. Immediately 3" from these NF-AT motifs, nonconsensus sites are
located for the binding of AP-1-like factors. Mutations of sites that suppress NF-AT binding
impair the induction and strong NF-ATp-mediated transactivation of the CD25 promoter in
T cells. In T lymphocytes from NF-ATp—deficient mice, the expression of CD25 is severely
impaired, leading to a delayed IL-2 receptor expression after T cell receptor (TCR)/CD3 stim-
ulation. Our data indicate an important role for NF-AT in the faithful expression of high affin-
ity 1L-2 receptors and a close link between the TCR-mediated induction of IL-2 and IL-2 re-

ceptor « chain promoters, both of which are regulated by NF-AT factors.

Key words:
T cells « NF-AT factors

he high affinity IL-2 receptor consists of three individ-

ual polypeptides, the «, B, and -y chains. Although the
B and ~y chains are shared by other lymphokine receptors,
the o chain (CD25) is restricted to the IL-2 receptor, and is
expressed by a variety of lymphoid cells (for review see ref-
erence 1). The induction of CD25 in T cells is controlled
at the transcriptional level through two DNA sequence ele-
ments, a proximal promoter/enhancer spanning the nucle-
otides between positions —54 and —584 in the mouse and
—64 and —276 in humans, and a distal enhancer spanning
~80 nucleotides around position —1350 in the mouse and
—3750 (or —4150, according to another nomenclature) in
the human CD25 gene (2-6). The activity of the promoter
is rapidly induced by TCR-mediated signals or IL-1, and is
controlled by an array of transcription factors, in particular
by nuclear factor (NF)-xB, Elf-1, SRF, and HMG I(Y).
The induction of the distal enhancer is controlled by IL-2,
which induces signal transducer and activator of transcrip-
tion (Stat)5, a member of the family of Stat transcription
factors. Stat5 binds in concert with EIf-1, HMG I(Y), and
GATA factors to multiple sites of the distal enhancer and
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contributes to its IL-2—mediated full expression in activated
peripheral T lymphocytes (4-6).

Nuclear factor of activated T cell (NF-AT) factors com-
prise a family of transcription factors that contribute to the
induced expression of numerous lymphokine and receptor
genes in T cells. Similar to NF-xB factors, the nuclear
translocation and activity of NF-AT factors is stimulated by
TCR-mediated signals (for review see reference 7). The
DNA-binding domains of NF-AT and NF-kB/Rel factors
share a common architecture (8) and, therefore, recognize
overlapping DNA sequence motifs. These common prop-
erties between NF-AT and NF-kB (a major regulator of the
CD25 promoter), and reports on the inhibition of CD25
expression by cyclosporin A (9) (an inhibitor of phos-
phatase calcineurin and, therefore, of nuclear translocation
of NF-AT; reference 7), prompted us to investigate whether
NF-AT factors participate in CD25 promoter control. We
show here that NF-ATp and NF-ATc bind to two sites lo-
cated immediately upstream of the proximal CD25 pro-
moter. Mutations within the NF-AT sites that suppress
NF-AT binding impair CD25 promoter induction. Ac-
cordingly, the induction of CD25 is markedly delayed in T
cells from NF-ATp—deficient mice. These findings impli-
cate an important role for NF-AT factors in the inducible
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expression of high affinity IL-2 receptors after T cell activa-
tion.

Materials and Methods

Cell Culture, Construction, and Transfection of CD25 Promoter Lu-
ciferase Plasmids.  Murine EI4 T thymoma cells and human Jurkat
T leukemia cells were grown in RPMI medium containing 5%
FCS. 2 X 107 cells were transfected using the DEAE dextran pro-
tocol with 2.5 wg DNA of the CD25 promoter-luciferase re-
porter constructs alone or 0.5-2.5 wg DNA of reporter constructs
(as indicated in the figure legends) along with 2 pg of a pLGP3-
based vector expressing full-length murine NF-ATp (NF-AT1-C;
reference 10) or an RSV-LTR vector expressing human NF-
ATc. Human 293 embryonic kidney cells were cultured in
DMEM and transfected using a calcium phosphate transfection
protocol. The luciferase reporter gene construct contains the
wild-type murine CD25 promoter spanning the nucleotides up
to position —2556 (4). Mutations in one or both of the NF-ATp
binding sites around positions —585 and —650 were introduced
into the promoter fragment from +1 to —800 using the
QuikChange™ site-directed mutagenesis kit (Stratagene Corp.,
La Jolla, CA) according to the manufacturer’s instructions.

The following oligonucleotides were used for the mutagenesis
of NF-AT sites:

(i) (—667) GCTAGACTTAAAATCTATCATTGCAGCTGTAAACAC (—632)
CGATCTGAATTTTAGATAGTAACGTCGACATTTGTG; and

(ii) (—596) CCCACACCCATGATACTATGAATCGTGCATCAGAG (—562)
GGGTGAGGGTACTATGATACTTAGCACGTAGTCTC

The underlined nucleotides indicate the mutations.

Immunofluorescence and Flow Cytometry.  For Ab stainings, 2-8 X
105 cells were incubated on ice with mAbs at saturating concen-
trations. Fluorescein- and PE-labeled mAbs (Pharmingen, San
Diego, CA) were used for two- and three-color immunofluores-
cence. For three-color flow cytometry, cells were stained first with
biotinylated mAbs (PharMingen) for 15 min and were subse-
quently incubated with streptavidin-Red®”® (GIBCO BRL, Eg-
genstein, Germany) and FITC- and PE-labeled mAbs for 15 min.
Results obtained after analysis on a FACScan® flow cytometer
(Becton Dickinson, Mountain View, CA) using Lysys Il software
(Becton Dickinson) are shown as log dot-plots or histograms.

DNase | Footprint Protection Assays and EMSAs.  In DNase |
footprint protection assays, end-labeled DNA probes were pre-
pared using [y-32P]JATP and polynucleotide kinase. 10* cpm
(~0.2 ng) of the following DNA fragments from the murine
CD25 promoter (4) were used: (a) the Hindlll-Sacll fragment
spanning the nucleotides from position +94 to —268; and (b) the
Sacll-Bglll fragment spanning the nucleotides from —268 to
—801. Fragment (a) was recut with Espl, and fragment (b) with
Dral generating DNA fragments of ~150-300 bp. These were
incubated for 60 min with a bacterially expressed glutathione
S-transferase (GST)-NF-ATp protein (11) containing the DNA-
binding domain of murine NF-ATp. The samples were processed
and fractionated on 6% polyacrylamide, 42% urea-sequencing gels.

Electromobility shift assays (EMSAs) were performed as previ-
ously described (11), using 2 g nuclear proteins and 0.5 g poly
[d(I-C)]. In supershift EMSASs, 0.5 g of either an NF-ATp-spe-
cific Ab (Cat. no. 06-348; UBI) or an NF-ATc-specific mAb
(7A6) (12) were added to the incubations. When the DNA bind-
ing of GST-NF-ATp was tested, 0.5-1.5 ug of bacterial proteins
prepared by affinity column chromatography (11) were incubated
along with 0.5 pg poly [d(I-C)]. The following oligonucleotides
were used as probes:
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(iii) (—596)gatc CCCACACCCATGGAACTATGAATCGTG (—571)
GGGTGTGGGTACCTTGATACTTAGCAC tag;
(iv) (—663)gatcGACTTAAAATCTTCCATTGCAGCTGTA (—635)
CTGAATTTTAGAAGGTAACGTCGACATC tag; and
(v) (—667)GCTAGACTTAAAATCTTCCATTGCAGCTGTAAACAC (—632)
CGATCTGAATTTTAGAAGGTAACGTCGACATTTGTG
The small letters indicate linker nucleotides.

Results and Discussion

To determine whether the CD25 promoter is a target
for NF-AT, we cotransfected a CD25 promoter—driven lu-
ciferase reporter gene with NF-ATp- and NF-ATc-spe-
cific expression vectors into EI4 T and 293 cells. Treatment
of 293 cells with TPA plus ionomycin (T +1) led to a <2-
fold, and treatment of El4 cells with T+Con A led to an
8-9-fold, induction of activity of CD25 promoter spanning
the nucleotides up to position —2556 (4), and to a 12-fold
induction of a shorter CD25 promoter reaching up to
—800. Cotransfection of an NF-ATp expression vector
into El4 cells resulted in a strong, 40-fold induction of ac-
tivity of the longer CD25 promoter and in an up to 60-fold
induction of the shorter CD25 promoter fragment after
T+Con A treatment of cells (Fig. 1). Cotransfection with
the NF-ATc vector gave rise to only a slight increase in
promoter activity. In 293 cells, the overexpression of both
NF-AT factors resulted in a six- to ninefold increase in
CD25 promoter activity (Fig. 1).

To demonstrate the binding of NF-ATp to the CD25
promoter, GST-NF-ATp encoding its DNA-binding do-
main was incubated with DNA fragments containing the
first 800 bp of the promoter region in DNase | footprint
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Figure 1. NF-ATp transactivates the murine CD25 promoter in T
cells. 2.5 ng DNA of luciferase reporter gene constructs controlled by
murine CD25 promoters up to position —2556 (wt-2556) and —800 (wt-
800) were transfected into murine El4 T thymoma cells or human embry-
onic 293 kidney cells, along with an empty RSV-based expression vector
or vectors expressing NF-ATp (10) or NF-ATc. The cells were induced
as indicated for 18 h. To calculate the extent of induction, the activity of
the CD25 wild-type promoter in nonstimulated cells was used as a refer-
ence point (onefold).
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Figure 2. Binding of NF-AT
to the CD25 promoter. (A)
DNase | footprint protection as-
say. A CD25 promoter probe
spanning the nucleotides from
—548 to —804 was incubated
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protein (lanes 5-9). The NF-
AT p-specific footprints are indi-
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sequencing reactions. (B) Se-
quences of footprint regions.
The footprints are indicated in
brackets. The arrows indicate the
direction of TGGAA NF-AT
“core” motifs. The TPA respon-
sive element-like sequence mo-
tifs 3" from the NF-AT motifs
are boxed. (C) EMSAs with the
NF-AT sites. In lanes 1-12, nu-
clear proteins from murine sple-
nocytes are shown, and in lanes
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13-15, GST-NF-ATp was used
with the —639/—658 (lanes 1-6
and 13) and —577/—587 probes
(lanes 7-12 and 15). In lane 14, a
probe of the —610/—636 site
was used as a control. 2 pg of
nuclear proteins from unin-
duced splenocytes (—) or spleno-

o cytes induced for 2 h with T+I
TGT AAR CAC

(+) were incubated in the ab-
sence or presence of 0.5 ug NF-
ATc— or NF-ATp-specific Abs,
or in the presence of a 200-fold
molar excess of homologous un-
labeled probes or distal 1L-2 NF-

(-562)

AT site as indicated. Note that the autoradiograph of lanes 1-6 was exposed for 16 h, and that of lanes 7-12 for 3 d. NS, nonspecific complex. Free
probes are cut off. (D) EMSAs of the —639/—658 site using nuclear proteins from Jurkat cells. A probe of the —639/—658 site was incubated with 2 g
of nuclear proteins from Jurkat cells treated with T+1 in the absence or presence of 100 ng/ml cyclosporin A (CsA). For competition the following
DNAs were used: 5-50 ng of the cold —639/—658 site and the distal IL-2 NF-AT site, or 10 and 50 ng of the proximal IL-2 octamer site (11) and a con-
sensus AP-1 site. In lanes 16 and 17, 0.5 pg of NF-AT—specific Abs were added. In lanes 18-20, a —632/—667 probe mutated in the NF-AT site (see
oligonucleotide a in Materials and Methods) was incubated without or with NF-AT—specific Abs.

protection assays. Two prominent footprints were de-
tected, spanning the nucleotides from —577 to —587 and
—639 to —658, respectively (Fig. 2 A). These comprise the
NF-AT “core” binding sequence TGGAA (7) in opposite
orientations (Fig. 2 B). When probes of these oligonucle-
otides were incubated with GST-NF-ATp in EMSAs,
both probes were bound by NF-ATp, whereas a third
probe spanning the unprotected nucleotides from —619 to
—636 was unable to bind (Fig. 2 C, lanes 13-15). Using
nuclear proteins from murine splenocytes, the generation
of typical inducible NF-AT complexes was detected with
the —639/—658 probe (Fig. 2 C, lanes 1-6) and, although
far more weakly, with the —577/—587 probe (Fig. 2 C,
lanes 7-12). The generation of these complexes was enhanced
after induction of cells with T+ (lanes 1, 2, 7, and 8) and
efficiently competed with a 100-fold molar excess of the dis-
tal IL-2 NF-AT site (Fig. 2 C, lanes 6 and 12). Moreover,
the complexes were supershifted in EMSAs using NF-
ATp- and NF-ATc-specific Abs (lanes 3, 4, 9, and 10).
The —639/—658 site corresponds to a high-affinity NF-
AT binding site. This could be seen best in EMSA compe-
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tition assays comparing the binding of NF-AT factors in
nuclear protein preparations from T+ l—-induced Jurkat cells
to this site and the distal NF-AT site of the murine IL-2
promoter (Fig. 2 D). Although 5-10 ng of the —639/—658
site was sufficient to suppress almost all NF-AT binding,
10-50 ng of the distal IL-2 NF-AT site was necessary to see
the same effect (Fig. 2 D, lanes 6-11). 50 ng of an AP-1
site was also able to suppress NF-AT complex formation,
whereas the same amount of the upstream promoter site,
i.e., an efficient octamer but poor AP-1 site from the 1L-2
promoter (11), was without effect on factor binding (Fig. 2
D, lanes 12-15). In contrast to the —639/—658 site, the
—577/—587 NF-ATp binding site is a low-affinity NF-AT
site (Fig. 2 C, lanes 7-12; note that lanes 7-12 were ex-
posed five times longer than lanes 1-6).

To demonstrate a functional role for the two NF-ATp
sites, we introduced mutations into the NF-AT motifs of
each site, or into both sites, in the context of the 800-bp
wild-type CD25 promoter fragment. These mutations led
to a loss of NF-AT binding in EMSAS using nuclear pro-
teins from induced Jurkat cells (see Fig. 2 D, lanes 18-20)

Brief Definitive Report
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Figure 3.

The NF-ATp sites contribute to the induction of CD25 promoter. (A) Mutations within the NF-ATp sites that suppress NF-AT binding in-

terfere with the T+Con A-mediated CD25 promoter induction in El4 cells. 2.5 g of luciferase constructs containing the wild-type CD25 promoter up
to —800 bp or a promoter with mutations in the —658/—639 (mut. 1), the —587/—577 site (mut. 2), or in both sites (mut. 1+2) was transfected into El4
cells that were induced for 12 h. (B) Mutations of NF-AT sites suppress the NF-ATp-mediated transactivation of the CD25 promoter. 0.5 pg of the
CD25 luciferase constructs was cotransfected with an NF-ATp expression vector into El4 cells that were stimulated for 12 h. To calculate the extent of
induction, the activity of the CD25 wild-type promoter in nonstimulated cells was used as a reference point (onefold).

or GST-NF-ATp (data not shown). When the mutated
CD25 promoter/luciferase constructs were transfected into
El4 T cells alone or with an NF-ATp expression vector
their induction was severely impaired compared with the
wild-type promoter. The T+Con A-mediated 16-fold in-
duction of the 800-bp CD25 promoter fragment was al-
most abolished (Fig. 3 A) and its >25-fold transactivation
by NF-ATp was reduced to a 2-3-fold increase for the
mutated promoter (Fig. 3 B).

The importance of NF-ATp sites for the CD25 expres-
sion is underlined by defects in the CD25 surface expres-
sion on LN T cells from NF-ATp~/~ mice established in
our laboratory (13). When LN T cells from wild-type mice
were stimulated with plate-bound «-CD3 Abs for 2-24 h
in vitro, a marked increase of CD25 surface expression was
detected after 6-12 h, which became even more pro-
nounced after 24 h. Due to the strong stimulation of the
CD25 promoter by secreted 1L-2 (2), >50% of T cells ex-
press large amounts of CD25 48 h after stimulation (Fig. 4).
On NF-ATp~/~ LN T cells, CD25 expression was found to
be distinctly delayed, becoming clearly detectable only 24 h
after induction in spite of high, unimpaired IL-2 production
of NF-ATp~/~ T cells (13). In addition, fewer cells ex-
pressed high levels of CD25 after induction for 48 h (Fig. 4).

The two NF-ATp binding sites are located near the
CD25 promoter and therefore appear to be involved in the
rapid induction of the murine CD25 gene in resting T
cells. The core sequences of these sites, TGGAA, differ
slightly from the AGGAAAA core motifs of the IL-2 and
IL-4 promoters and are the strongest NF-ATp binding sites
in the human GM-CSF enhancer (14). As indicated in Fig.
2 B, 7-9 bp 3’ to the NF-AT motifs are situated TPA-
responsive element-like sequences that might allow the con-
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certed binding of AP-1 and NF-AT. In EMSAs we detected
a specific binding of GST—c-Jun to both sites (data not
shown), but it remains to be shown which proteins of the
AP-1 family bind and regulate the CD25 promoter in vivo.

Finally, it should be pointed out that several properties of
NF-ATp~/~ mice, such as the impaired clonal deletion of
T cells and expansion of lymphoid organs (13, 15, 16), are
shared by the mice deficient for IL-2 and IL-2 receptors
(17-19). We assume that the impaired CD25 expression
might contribute to the development of this phenotype in
NF-ATp~/~ mice, which is reminiscent of other mice with
defects in the IL-2 signaling system.
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