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Summary

The endothelial cell-derived peptide endothelin 1 (ET1) stimulates cell proliferation and dif-
ferentiated functions of human osteoblastic cells (HOC), and HOC constitutively express the
endothelin A receptor (ETR,). Therefore, ET1 may play an important role in the regulation of
bone cell metabolism. As glucocorticoids (GC) exert a profound influence on bone metabolism
and increase the effects of ET1 on bone cell metabolism in vitro, the effects of GC on ETR,
expression in HOC were investigated. Dexamethasone (DEX) increased ETR, mMRNA levels
in a dose- and time-dependent fashion. The effects of dexamethasone, prednisolone, and de-
flazacort on the increase of ETR, mMRNA levels correlate positively with their binding affinity
to the GC receptor. Scatchard analysis of ET1 binding data to HOC revealed that DEX in-
creased the binding capacity for ET1 from 25,300 to 62,800 binding sites per osteoblastic cell,
leading to an enhanced mitogenic effect of ET1 on HOC after preincubation with DEX.
Transiently transfected primary HOC with a reporter gene construct, containing the 5’-flank-
ing region of the ETR, gene fused to luciferase gene, showed a promoter-dependent expres-
sion of the reporter gene and the induction of reporter gene expression by DEX treatment.
Total RNA extracts of femoral head biopsies with osteonecrotic lesions from GC-treated pa-
tients showed threefold higher ETR, mRNA levels compared with extracts of bone biopsies
from patients with traumatically induced osteonecrosis and coxarthrosis. Furthermore, GC
treatment increased plasma ET1 levels by 50% compared with pretreatment values. These find-
ings suggest that GC induced upregulation of ETR,, and ET1 plasma levels enhance ET1’s an-
abolic action on bone cell metabolism. Increased ET1 concentrations may also impair bone
perfusion by vasoconstriction in a metabolically activated skeletal region.
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Bone growth and metabolism are dependent on vascular
supply. The ingrowth of blood vessels in the epiphy-
seal growth zone and in fracture callus formation precedes
bone formation (1). Restriction of bone perfusion impairs
bone metabolism, which may be associated with a loss of
bone mass (2). The most severe form of an impaired vas-
cular supply of the bone compartment is bone infarction
leading to the clinical diagnosis of osteonecrosis (3). Fre-
quently, osteonecrosis occurs in patients after long-term
treatment with pharmacological doses of glucocorticoids,
but the mechanism whereby glucocorticoid treatment
causes osteonecrosis is not understood (4). Several studies
demonstrate that glucocorticoids directly affect osteoblastic
cell functions. Thus, physiological concentrations of gluco-
corticoids have a stimulatory effect on type I collagen syn-
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thesis, whereas pharmacological concentrations of gluco-
corticoids decrease type | collagen synthesis by osteoblasts.
Alkaline phosphatase activity (ALP)! increases in short-
term experiments but decreases in long-term cultures of rat
calvariae in the presence of glucocorticoids. DNA content
and cell replication are not affected in short-term incuba-
tion but are decreased after long-term glucocorticoid treat-
ment (5). Glucocorticoids stimulate endothelin 1 (ET1) se-
cretion from vascular smooth muscle cells (6) and elevate
plasma ET1 levels (7), which may contribute to increased

1 Abbreviations used in this paper: ALP, alkaline phosphatase activity; CS, calf
serum; ET1, endothelin 1; ETR,, endothelin A receptor; GRE, glucocor-
ticoid response element(s); HOC, human osteoblastic cell(s); IGF, insulin-
like growth factor; PS, 10 U/ml penicillin-G, 10 w.g/ml streptomycin.

J. Exp. Med. O The Rockefeller University Press ¢ 0022-1007/98/11/1563/11 $2.00

Volume 188, Number 9, November 2, 1998 1563-1573

http://www.jem.org



blood pressure (8) and possibly to impaired bone perfusion
in glucocorticoid-treated patients (9) because ET1 is a po-
tent vasoconstrictor (10). ET1 also stimulates human osteo-
blastic cell (HOC) proliferation and differentiated functions
(11), suggesting that a change in the local or systemic ET1
concentration may also affect bone metabolism. Therefore,
both glucocorticoids and ET1 exert direct effects on osteo-
blastic cell metabolism. It is unclear how glucocorticoids
and ET1 interact on osteoblastic cell metabolism, and how
the direct effects of glucocorticoids and ET1 on bone cell
metabolism are related to the frequent clinical observation
of an osteonecrotic destruction, e.g., of the femoral head,
in glucocorticoid-treated patients. To better understand the
perturbation of human bone cell metabolism in glucocorti-
coid-treated patients, the interaction of glucocorticoids and
ET1 on human bone cell metabolism in vitro was investi-
gated. Glucocorticoids elevate circulating ET1 serum levels
in vivo and enhance the mitogenic effect of ET1 on HOC
in vitro by upregulating the expression of the osteoblastic
endothelin A receptor (ETR,) in vitro and in vivo.

Materials and Methods

HOC Culture. Human bone biopsies were obtained from
adult healthy patients (35-75 yr old) undergoing selective ortho-
pedic surgery of the femur (approval for this study was given by
the ethics commission of the University of Heidelberg). HOC
were obtained from femur biopsies as described previously (12).
Freshly removed bone biopsies were placed in DME (GIBCO
BRL, Gaithersburg, MD) supplemented with 10% calf serum
(CS) from Hyclone (Logan, UT), 10 U/ml penicillin-G, and 10
rg/ml streptomycin (PS; GIBCO BRL). The biopsies were
minced into small pieces (0.5 cmd), rinsed, and cleaned thoroughly
of contaminating connective, erythropoietic, and fat tissue. The
resulting bone explants were incubated in culture medium at
37°C in a humidified atmosphere with 5% CO, until human
bone cells had attached to the culture dishes (Costar Corp., Cam-
bridge, MA). Cells were removed from dishes with 0.05% trypsin
solution (GIBCO BRL) and plated in culture medium as stated
above. Cells of the first and second passage were used for the ex-
periments. HOC were identified as osteoblastic cell populations
on the basis of 1,25(OH),D,-stimulated ALP, osteocalcin secre-
tion, type | procollagen peptide secretion, and in vitro mineral-
ization as described previously (13). Dexamethasone, ET1, pred-
nisolone, actinomycin D, and cycloheximide were obtained from
Sigma Chemical Co. (St. Louis, MO); deflazacort was a gift from
Dr. Gorlich (Marion Merrell Dow, Risselsheim, Germany); and
RU486 was provided by Roussel Uclaf (Paris, France).

Human Femoral Head Biopsies. Femoral head biopsies for total
RNA extractions were obtained from 40-65-yr-old patients with
no history of cardiovascular diseases or metabolic disorders (e.g.,
diabetes mellitus) who underwent surgery for total hip replace-
ment. Three groups of patients with three different diagnoses
were examined: (a) coxarthrosis, (b) glucocorticoid-induced o0s-
teonecrosis, and (c) traumatically induced osteonecrosis. After re-
moval at surgery, intact femoral heads were frozen immediately in
liquid nitrogen and maintained in —80°C until use.

Cloning and Sequence Analysis of 5'-flanking Region.  Cloning of
the 5’-flanking region of the human ETR, gene was performed
with the human Genome Walker Kit (Clontech, Palo Alto, CA).
A gene-specific primer and an adaptor-specific primer were used
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for amplification of a genomic DNA fragment upstream from the
known ETR, gene sequence, followed by reamplification using a
second set of nested primers (one gene-specific and one adaptor-
specific primer). A 3.1-kb amplification product was cloned in a
PCR cloning vector (pT-Adv vector; Clontech) and automati-
cally sequenced. After computer-aided restriction enzyme map-
ping, a Sacl-Xhol fragment containing the 5’-flanking region of
the human ETR, gene from —3050 to +48 (plus one transcrip-
tion start site) was subcloned into the pGL3 Basic luciferase re-
porter gene plasmid (Promega Corp., Madison, WI). The 3.1-kb
ETR, promoter region was analyzed with regard to the presence
of steroid hormone response elements by performing a computer-
aided search using the HUSAR Factor search utility (German
Cancer Research Center, Heidelberg, Germany).

Transient Transfection and Reporter Gene Assays. HOC were
seeded with 10* cells per well in six-well plates and grown in
DME supplemented with 10% CS and 1% PS to 60-75% conflu-
ence. Immediately before transfection, the cultures were washed
twice in serum and phenol red-free DME. Transfections were
performed with Lipofectin transfection reagent (GIBCO BRL).
Plasmids used for transfection were purified with CsCI gradient
centrifugation. Before transfection, calculated for each well of a
six-well plate, 10 wl Lipofection reagent was incubated for 10
min at room temperature with 1.5 g of reporter gene construct,
which contains the human ETR, 5'-flanking fragment (—3050
to +48) fused to luciferase gene, 0.5 g glucocorticoid receptor
expression plasmid when cotransfection experiments were per-
formed (American Type Culture Collection, Rockville, MD),
and 1.0 g PB-galactosidase expression plasmid (pSV-Bgal;
Promega Corp.). Lipofectin/plasmid solution was added to
washed cells in serum and phenol red DME (end vol 1 ml/well)
for 4 h at 37°C. After plasmid incubation, medium was changed
to DME supplemented with 5% CS and 1% PS for 44 h at 37°C.
To determine glucocorticoid-dependent expression of luciferase
reporter gene, cells were incubated for a further 24 h in the ab-
sence or presence of 100 nM dexamethasone in serum and phe-
nol red—free DME. Cells were harvested in 250 wl/well 1X re-
porter lysis buffer (Promega Corp.) and centrifuged to pellet the
debris, and the luciferase activity in the supernatant was quanti-
tated in a luminometer (model LB9507; EG&G Berthold, Wild-
bad, Germany) using a Luciferase Assay System (Promega Corp.).
To correct for variations in transfection efficiencies, luciferase
activities were normalized on the basis of B-galactosidase activity
assayed by the Galacto Light Plus System (Tropix, Inc., Bedford,
MA) following the instructions of the manufacturer.

RNA lIsolation and Northern Blot Analysis. 48 h before RNA
extraction, HOC were cultured in serum and phenol red—free
DME for 24 h, after which the medium was replaced by serum
and phenol red—free DME with or without additional glucocorti-
coids (as detailed below). After 24 h continuous treatment with
glucocorticoids, total RNA was isolated for Northern blot analy-
ses. Culture dishes were rinsed in ice-cold PBS, and total RNA
was extracted by the guanidinium thiocyanate method (14) with
subsequent CsCl gradient centrifugation for 16 h.

Frozen femoral head biopsies were also used for RNA isola-
tion. These frozen biopsies were ground under liquid nitrogen,
and the resulting bone powder was suspended in 4 M guanidin-
ium thiocyanate solution. This suspension was centrifuged at low
speed twice to separate insoluble fractions, and the supernatant
was loaded onto a CsCl gradient.

Total RNA was quantitated by absorption at 260 nm, and
equal RNA samples were denatured with 2.2 M formaldehyde,
50% formamide, 5 pg/ml ethidium bromide, and loading dye in
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1X MOPS buffer (40 mM morpholinolpropanesulfonic acid, pH
7.0, 10 mM sodium acetate, and 0.5 mM EDTA) at 65°C for 15
min. 15 pg total RNA was fractionated on a 1.0% formaldehyde-
MOPS agarose gel. RNA was transferred overnight to Hybond
N (Nycomed Amersham plc, Little Chalfont, Buckinghamshire,
UK) by capillary action with 20X SSC (1X = 0.15 M sodium
chloride and 0.015 M sodium citrate, pH 7.0) and immobilized
by heating for 2 h at 80°C.

Complementary DNA probes for 285 RNA (Ambion Inc.,
Austin, TX), ETR, (provided by Dr. Haendler, Schering AG,
Berlin, Germany), and ET1 (American Type Culture Collection)
were labeled with [32P]JdCTP by the random priming method us-
ing the Prime-a-gene labeling kit (Promega Corp.). The RNA
filters were prehybridized in 50% formamide, 5X SSPE (1X =
150 mM NaCl, 10 mM NaH,PO,, 1 mM EDTA, pH 7.4), 5X
Denhardt’s (1X = 0.2% of Ficoll, BSA, and polyvinyl pyrroli-
done), 100 p.g/ml denatured herring sperm DNA, and 0.1% SDS
for 3 h at 42°C. Hybridizations were performed for 24 h at 42°C
in the prehybridization solution containing 5 X 10% cpm/ml of
the radiolabeled denatured cDNA probe. Filters were washed at
42°C four times for 5 min with 2 SSC/0.1% SDS and twice for
10 min with 0.2X SSC/0.1% SDS before exposure to Agfa curix
HT 1.000G films at —80°C for 24 h (28S) and 4 d (ETR,), re-
spectively. The autoradiographs were quantitated using a densi-
tometer (Bio-Rad Laboratories, Hercules, CA) and Molecular
Analyst software. The mRNA signals were normalized against
28S RNA signal and expressed as relative units.

Endothelin Enzyme Immunoassay. ET1 concentrations in cul-
ture supernatants and in human plasma were measured by an
ELISA (Biomedica, Vienna, Austria). 200 wl of undiluted super-
natant from control and dexamethasone-treated cultures was as-
sayed in five replicates and corrected for protein contents. For de-
tection of plasma ET1, 200 pl of human EDTA-plasma was
assayed in three replicates. ET1, if present in the sample, binds to
the precoated polyclonal capture rabbit antiendothelin antibody
and forms a sandwich with antiendothelin mAbs. After a washing
step, horseradish peroxidase—conjugated anti-mouse 1gG antibody
detects the presence of detection mAb. Tetramethylbenzidine is
added as substrate, and ET1 is quantitated by an enzyme-cata-
lyzed color change on an ELISA reader at 450 nm. The measur-
ing range of the assay is 0.05-15.6 fmol/ml. The cross-reaction
with endothelin 2, endothelin 3, and big endothelin was 100, 5,
and 1%, respectively.

Measurement of Cell Proliferation. HOC were plated for 24 h
in DME, 10% CS, 1% PS in 48-well plates with 2 X 10* cells/
well. After 24 h preincubation with vehicle and 10 nM dexa-
methasone in DME supplemented with 1% CS and 1% PS, me-
dium was changed and cells were treated for an additional 24 h in
DME containing 1% CS/1% PS in the presence of increasing
concentrations of ET1 (1, 10, 100, and 1,000 pg/ml). Cells were
trypsinized, and each well was counted separately using a hema-
cytometer. Mean values from six wells of two separate experi-
ments were calculated and expressed as percentage of control *+
SD. Cultures pretreated with vehicle and 10 nM dexamethasone,
respectively, without subsequent addition of ET1 were used as
control values. The Student’s t test was applied, and statistical sig-
nificance was accepted at P < 0.05.

125]-ET1 Binding Analysis. HOC were plated in culture
dishes (78 cm?) with DME containing 10% CS and 1% PS. After
growing to 90% confluence, cultures were maintained for 24 h in
serum-free, phenol red—free DME before treatment with 100 nM
dexamethasone or vehicle control for 24 h. Cells were rinsed
with ice-cold PBS containing 1.25 mg/ml BSA and incubated for
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2 h at 4°C in serum-free, phenol red—free DME containing 1.25
mg/ml BSA with increasing concentrations of 151-ET1 (5-1,000
pM, specific activity 2,200 Ci/mmol; DuPont-NEN, Dreieich,
Germany). Nonspecific 11-ET1 binding was determined in the
presence of 1 wM unlabeled ET1 for all concentrations. At the
end of the 2-h incubation period, the cultures were rinsed in ice-
cold PBS/BSA and solubilized in 0.5 M NaOH before counting
the adherent activity with a gamma counter. Measurements were
obtained in six replicates and evaluated by Scatchard analysis (15).

Results

Effect of Dexamethasone on ETZ1-induced HOC Proliferation.
ET1 stimulates HOC proliferation in a dose- and time-
dependent fashion (11). To determine the effect of dexa-
methasone on ET1-induced HOC proliferation, cells were
counted in the absence and presence of dexamethasone.
The cultures were pretreated with vehicle and 10 nM dexa-
methasone, respectively, in DME supplemented with 1%
CS/1% PS. After 24 h incubation, medium was changed to
DME containing 1% CS/1% PS, and HOC were incubated
for 24 h in the presence of 1, 10, 100, and 1,000 pg/ml
ET1. ET1 stimulated HOC proliferation in a dose-depen-
dent manner, and pretreatment with 10 nM dexametha-
sone enhanced the mitogenic effect of ET1 (Fig. 1). This
suggests a link between the systemically acting steroid hor-
mones and the mechanism of action of the paracrine regu-
lator of bone cell metabolism, ET1.

To examine whether the positive effect of dexametha-
sone on the ET1-stimulated HOC proliferation is mediated
by the induction of ET1, ET1 expression in HOC was de-
termined. After pretreating HOC cultures with various
concentrations of dexamethasone, the ET1 concentration
in the culture medium was measured by ELISA and the
ET1 mRNA expression after dexamethasone treatment
was analyzed by Northern blots using an ET1 cDNA
probe. ET1 mRNA and ET1 protein could not be de-
tected in HOC or in HOC culture supernatants before or
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Figure 1. Effect of dexamethasone on ET1-induced HOC prolifera-

tion. Subconfluent HOC were pretreated for 24 h with vehicle and 10
nM dexamethasone, respectively, and subsequently incubated for 24 h
with various concentrations of ET1 (1, 10, 100, and 1,000 pg/ml). Cells
were counted in six replicates and calculated as percent of control = SD.
n.s., Not significant (control = preincubation with vehicle and dexa-
methasone, respectively, without subsequent addition of ET1; vehicle
control 24,500 + 710 and dexamethasone control 16,000 = 1,410 cells/
well).
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Figure 2. (A) ET1 plasma concentrations (fmol/ml) before and after a 5-d intravenous treatment with prednisolone (n = 17; 10 males and 7 females;
mean age 51.3 yr). Before glucocorticoid treatment (mean + SE): 0.58 = 0.05; after 5 d glucocorticoid treatment: 0.89 + 0.08; P < 0.014. (B) ET1
plasma concentrations before and after a 5-d intravenous treatment with diclofenac, tetrazepam, and tramadol but without prednisolone (n = 8; four
males and four females; mean age 44.2 yr): pretreatment 0.43 =+ 0.08 fmol/ml (mean * SE); ET1 plasma concentration after 5 d treatment 0.44 =+ 0.07

fmol/ml (P not significant).

after dexamethasone treatment. Dexamethasone did not af-
fect ET1 mRNA levels or ET1 concentrations in HOC
cultures (data not shown).

Effects of Prednisolone on ET1 Plasma Concentrations In Vivo.
Glucocorticoids increase ET1 plasma concentrations in a
rat model (7). To determine whether glucocorticoid treat-
ment also increases ET1 in humans, plasma ET1 concentra-
tions were measured in 17 patients with back pain (arising
from spondylosis) before and 5 d after treatment with intra-
venous prednisolone (50 mg prednisolone on day 1, 25 mg
on days 2 and 3, and 10 mg on days 4 and 5). Patients also
received intravenous diclofenac (75 mg), tetrazepam (12.5
mg), and tramadol (50 mg) and had no other acute or
chronic disease. It was found that prednisolone treatment
increased ET1 plasma levels by 50% (Fig. 2 A), whereas the
control group of patients similarly infused but not receiving
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prednisolone showed no significant change in plasma ET1
levels after 5 d treatment (Fig. 2 B).

Regulation of ETR, mRNA Expression in HOC by Gluco-
corticoids. To determine whether dexamethasone en-
hances the mitogenic effect of ET1 by increasing ETR4
expression, the effect of dexamethasone on the ET1-spe-
cific ETR, mRNA level in HOC was evaluated.

Culture of HOC in the presence of 1 pM, 100 pM, 10
nM, and 1 .M dexamethasone for 24 h resulted in an in-
crease of ETR, mRNA transcripts, with greatest response
at 1 uM dexamethasone (4.7-fold over control, as deter-
mined by densitometry; Fig. 3 A). The effect was observed
as early as 12 h after addition of 10 nM dexamethasone
(Fig. 3 B) and continued to increase at least until 48 h.
Therefore, dexamethasone upregulates ETR, mRNA lev-
els in a dose- and time-dependent fashion.

Figure 3. Dose response (A) and time course (B) of ETR, mMRNA
upregulation in HOC by dexamethasone. HOC were incubated for
24 h with increasing concentrations of dexamethasone (1 pM-1 M)
(A). HOC were also treated for 2-48 h with 10 nM dexamethasone
(B). 15 pg/lane of total RNA from control and treated cells was
loaded on MOPS agarose gel, transferred on nylon membrane, and
hybridized to 32P-labeled human ETR, mRNA cDNA probes. To
assess loading differences, the filters were hybridized with a 28S probe.
Arrows, left, Position of 28S and 185 RNA. The corrected ETR,
MRNA signal in relative densitometry units expressed as percentage
of control is plotted against dexamethasone concentration (A) and in-
cubation time (B). The shown data are representative of the repeats of
three identical experiments.
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To evaluate the effect of dexamethasone on the ETR,
mRNA level in comparison with other glucocorticoids
which possess a lower affinity to the glucocorticoid recep-
tor, the effects of equal concentrations (10 nM) of dexa-
methasone, deflazacort, and prednisolone on ETR, mRNA
expression were determined after 24 h treatment (Fig. 4, A
and B). Equal glucocorticoid concentrations produced sim-
ilar effects on ETR, mRNA expression after 24 h treat-
ment but of different magnitude. The effects of the used
glucocorticoids on the ETR, mRNA expression corre-
spond to the affinity of the examined glucocorticoids to the
glucocorticoid receptor, i.e., prednisolone has a lower af-
finity than dexamethasone to the glucocorticoid receptor
and elicits a smaller increase of ETR, mMRNA levels than
dexamethasone, whereas deflazacort, which has the lowest
affinity to the glucocorticoid receptor, shows the smallest
effect on the ETR, mMRNA levels compared with pred-
nisolone and dexamethasone (16).

Effect of Glucocorticoid Treatment on ETR, mRNA in Ex
Vivo Human Bone Biopsies.  To investigate whether the ef-
fect of glucocorticoids on ETR, mMRNA expression in
HOC can also be observed in vivo, total RNA extracts
were prepared from femoral head biopsies of asthmatic and
polymyalgia patients with osteonecrosis of the hip due to
several months of treatment with high doses of glucocorti-
coids. Total RNA extracts of femoral head biopsies from
glucocorticoid-treated patients showed threefold higher
ETR, mMRNA levels compared with extracts of femoral

Figure 5. Ex vivo studies of ETR,

mMRNA expression in human femoral

head biopsies. Total RNA was extracted

from human femoral head biopsies.

Northern blot analyses were performed

= a «—ETR with 15 pg/lane total RNA and hybrid-

A ized with 32P-labeled ETR, cDNA and

28S probes. In lanes 1-3, total RNA ex-

tracts of femoral head biopsies from pa-

tients with coxarthrosis (1), glucocorti-

coid-induced osteonecrosis (2), and

traumatically induced osteonecrosis (3)

288 - were loaded. Arrows, left, 28S and 18S

rRNA position. The analyzed RNA in

each lane is the total RNA extract of one bone biopsy. The data in each

lane are representative of two separate bone biopsies of different patients.

Patients with coxarthrosis and traumatically induced osteonecrosis did not

receive glucocorticoids at any time. Patients with glucocorticoid-induced

osteonecrosis of the femoral head had been treated with 10-20 mg of
prednisolone per day for 5 and 6 mo, respectively.
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Figure 4. Comparison of the effects of different glucocorticoids on
ETR, mRNA expression. HOC were treated for 24 h with 10 nM
deflazacort, dexamethasone, and prednisolone (lanes 2-4). Total
RNA was harvested from control and treated cultures, subjected to
Northern blot analysis (A), and hybridized with 32P-labeled ETR,
cDNA probes. Loading differences were determined by rehybridizing
with a 28S probe. Arrow, left, Position of 285 rRNA. The corrected
ETR, mRNA signal is shown in relative densitometry units expressed
as percent of control for the used glucocorticoids (B). The shown data
are representative of the results of two identical experiments.

head biopsies from patients with traumatically induced os-
teonecrosis and coxarthrosis (Fig. 5).

Binding Characteristics of 12°1-ET1 in HOC after Dexa-
methasone Treatment.  The effects of dexamethasone on the
binding characteristics of 2°I-ET1 to HOC were also stud-
ied. Saturation of ET1 binding capacity was observed at a
concentration of 1,000 pM. A 24-h pretreatment with 100
nM dexamethasone increased the ET1 binding sites per os-
teoblastic cell from ~25,300 to 62,800, i.e., 2.4-fold over
control (Fig. 6). Scatchard transformation of the binding
data was performed to calculate the Ky for ET1 binding.
There was no significant change in the binding affinity of
ET1 to the osteoblastic ETR, with and without dexa-
methasone treatment (134 vs. 177 pM).

Effect of RU486 on Dexamethasone-induced ETR, mRNA
Expression.  The stimulation of ETR, expression by dexa-
methasone, prednisolone, and deflazacort corresponds to
the binding affinity of the glucocorticoids to the glucocor-

70000
- -~ dexamethasone
[ ]
60000 - @—— control e
~
7
-
50000 | i
_ "B 62800/cell + 490
E] 7 Bruconoi= 25300/cell £ 440
P 40000 - yd K, dexa = 177 pM £ 22
= a K, control = 134 pM £ 37
2 30000 | /
°
<
el
20000
10000
0 —
Bound [cpm]
T T T | T T
0 200 400 600 800 1000 1200
125 | Endothelin-1 [pM)
Figure 6. Saturation binding and Scatchard plot of 1251-ET1 in control

and dexamethasone-treated HOC cultures. HOC were grown to 90%
confluence and treated for 24 h with 100 nM dexamethasone. Control
and treated cultures were incubated at 4°C for 2 h in serum-free medium
containing 1.25 mg/ml BSA with increasing concentrations of 251-ET1
(5-1,000 pM). Cells were washed with PBS/BSA, solubilized in NaOH,
and counted in a gamma counter. Data represent the mean of six determi-
nants. Curve fittings were performed by regression analyses.
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ticoid receptor, i.e., the higher the receptor affinity of the
glucocorticoid the greater the positive effect of the gluco-
corticoid on ETR, mRNA levels. To further demonstrate
that this positive effect of glucocorticoids on the ETR,
MRNA expression is mediated by a mechanism involving
glucocorticoid receptors, the receptor binding sites were
blocked with the nonspecific steroid hormone antagonist
RU486. 100 nM RU486 showed no positive effect on
ETR, mRNA level when given alone but completely
blocked the induction of ETR, mMRNA expression by 10
nM dexamethasone. There was no difference between the
ETR, mRNA levels of the dexamethasone plus RU486-
treated group and the control group (Fig. 7 A). To study
whether the effect of dexamethasone on ETR, mRNA
expression is mediated through a mechanism which re-
quires only short-term incubation with the glucocorticoid
present to start a postreceptor cascade leading to the ob-
served increase of ETR, mMRNA levels, combination ex-
periments were performed. After 6 h preincubation in the
presence of 10 nM dexamethasone and subsequent addition
of 100 nM RUA486 for the following 18 h, there was no
difference between the ETR, mMRNA levels of the dexa-
methasone/RU486-treated and the control cultures (Fig. 7
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Figure 7. Effect of the steroid hormone receptor antagonist RU486
on ETR, mRNA expression. (A) HOC were treated for 24 h with
vehicle (lane 1), 10 nM dexamethasone (lane 2), 100 nM RU486
(lane 3), and dexamethasone/RU486 coincubation (lane 4). (B) HOC
were incubated for a total experimental period of 24 h (changing me-
dium after 6 h) with vehicle (lane 1) and 10 nM dexamethasone (lane
2). The other experimental groups (lane 3-5) were incubated for 6 h
vehicle/18 h 100 nM RUA486 (lane 3), 6 h 10 nM dexamethasone/
18 h vehicle (lane 4), and 6 h 10 nM dexamethasone/18 h 100 nM
RUA486 (lane 5). Total RNA was extracted from control and treated
cells. Northern blot analyses were performed with 32P-labeled ETR,
and 28S cDNA probes. Arrows, left, 28S rRNA position. Data are rep-
resentative of three experiments. Lower panels show corrected ETR4
mRNA signals in relative densitometry units expressed as percent of
control.

B). These results demonstrate that the induction of ETR,
mRNA by dexamethasone in HOC requires the continu-
ous presence of the glucocorticoid dexamethasone in the
culture medium.

Effect of Dexamethasone on ETR, mMRNA Half-life. To ex-
amine whether the effect of dexamethasone on ETR,
MRNA levels is due to changes in transcript stability, the
half-life of ETR, mRNA in transcriptionally arrested
HOC was determined. HOC were incubated for 24 h in
medium containing vehicle or 10 nM dexamethasone, re-
spectively, followed by an addition of 1 pwg/ml actinomy-
cin D for 0, 2, 4, 12, and 24 h, which inhibits RNA tran-
scription by intercalating in double-stranded DNA. There
was no consistent difference with regard to the half-life of
ETR, mRNA in control and dexamethasone-treated cul-
tures (Fig. 8). These results indicate that dexamethasone
does not affect the stability of ETR, mMRNA and therefore
that the increased ETR, mMRNA levels after dexametha-
sone treatment are not due to changes of the ETR,
MRNA stability.

Effect of Cycloheximide on Dexamethasone-induced ETR4
mRNA Expression. HOC were incubated with 10 pg/ml
cycloheximide for 24 h in control and dexamethasone-

Figure 8. Effect of 10 nM dexa-
methasone on ETR, mMRNA decay in
transcriptionally blocked HOC by acti-
nomycin D. HOC were treated for 24 h
with 10 nM dexamethasone before the
addition of actinomycin D. Total RNA
was extracted from control and treated
cultures after 0, 2, 4, 12, and 24 h 1 ng/
ml actinomycin D treatment. RNA was
analyzed by Northern blot and hybrid-
ized with %P-labeled ETR, cDNA
probes. Data are representative of three
experiments. Ethidium bromide staining
of rRNA was used to check equal RNA
loading. Arrows, right, 28S and 18S
rRNA positions (A). The signals were
analyzed by densitometry (B), and 0-,
2-, and 4-h ETR, mRNA levels were
plotted in logarithmic scale with linear

&——control
B------dexa
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regression as a percentage of the 0-h

tims (1) value against time (C).
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Figure 9. Effect of cyclohex-
imide on ETR, mRNA regula-
tion in HOC by dexamethasone.
Cultures were treated for 24 h
with vehicle (lane 1), 10 pg/ml
cycloheximide (lane 2), 10 nM
dexamethasone (lane 3), and 10
nM dexamethasone in the pres-
ence of 10 wg/ml cycloheximide
(lane 4). Total RNA was ex-
tracted, and Northern analyses
were performed with 32P-labeled

ETR, and 285 cDNA probes.
L2707 Arrow, left, Position of 28S
giwe rRNA (A). (B) The corrected
gl ETR, mRNA signal is plotted as
£ € 200 percent of control for the experi-
Y% e mental groups. The shown data

E 0 are representative of three identi-

cal experiments.

dexa/cyclo

cyclo dexa

containing medium (Fig. 9) to determine whether the ef-
fect of dexamethasone on ETR, mMRNA expression de-
pends on de novo protein synthesis. Cycloheximide alone
had a small inductive effect on the ETR, mRNA level.
Coincubation of 10 nM dexamethasone in the presence of
cycloheximide led to a superinduction of ETR, mMRNA
expression. These data demonstrate that the effect of dexa-
methasone on ETR, mRNA is not dependent on de novo
protein synthesis. Moreover, cycloheximide in combina-

A

5° (-3050} 75
CGACGGCCCGGGCTGGTACTTCTTAATCTTCAGCACTTTTTGTTCATGAAATCAAT

150
ACAATACTAACATGATGCCAAGATAAGTTCATTACAGTAATCCTCCACTTAGTGAGCTACTTGAACCAGAAGTCA
225

tion with dexamethasone in fact increases ETR, MRNA
levels in HOC more than dexamethasone treatment alone.

5'-flanking Region of the Human ETR, Gene and Promoter
Activity of Reporter Gene Constructs in HOC. A 3.1-kb frag-
ment of the 5’-flanking region of the human ETR, gene
was amplified by nested PCR using a gene-specific primer
pair and a manufacturer-provided adaptor primer pair. The
PCR product was cloned in a PCR cloning vector and au-
tomatically sequenced. The nucleotide sequence analysis of
the 5’-flanking region from —3050 to +48 (sequence data
available from EMBL/GenBank/DDBJ under accession
no. AF005637) extends our knowledge about the sequence
of the promoter region of the ETR, gene by 2.2 kb (41;
Fig. 10 A).

A basic analysis of the 3.1-kb ETR, 5’-flanking region
was performed by using a computer-aided search for gluco-
corticoid response elements (GRE). The sequence analysis
revealed the presence of four putative GRE sequences at
positions —2795, —2603, —1686, and —823 (Fig. 10 B).

To demonstrate promoter activity of the sequenced 5'-
flanking region of the human ETR, gene, the DNA frag-
ment from —3050 to +48 was cloned upstream of a lu-
ciferase reporter gene in the pGL3 Basic vector without a
promoter (Fig. 11 A). The chimeric construct was cotrans-
fected with a glucocorticoid receptor expression plasmid
into primary HOC and treated with 100 nM dexametha-
sone and control medium for 24 h to determine the effect
of a glucocorticoid treatment on the reporter gene activity

1650

TGTGTCTGGCCACAGAGTGAATAAGGGCTGAAAT CCAGCACATGTCTCACGGGCCAAGATGTGAACTGCCTCTTT

1725

TGGGAGGAAGCAGTAAGTTTTTCTTTCCCGAAAATATTGTCAGCTTGCCAAGCCACATGCCCAAAGGGTCACCTT

1800

AGTGTGATCAGGATAGTTTCCCCGAAACCCACAAAACCTGCAAATCTGCATCCAACCCACTTTCCAGGGGAAAGA TTTTTAATATAAACAATGGCACTTATAAAGGCTATTAGTTATTCTGGTTGGCTGATTCTCCCTCCTAGAGAAGCT

300
AATARCCTTTGGAAGTCAAGTTGAAAAGCTTAGT CAAATATATTAATTATATGTTCTTTGAAAGTAAAAAGCATG
375
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GTAAGATTAGTGAACAGGGTAATATCTAGTCTAACCCTACTAGATGACTAT TAAGGCCTCTTTCAATGGTGGTTT

1950

TCTGTAGATCTCTTTGATGGTTTTACAAAATGGTCCCTAAATTCTTTGACACTCCTCACACTAAGGGTTGGGCTC
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Gene specific primer (+48) 3150
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GGTAC TGTYCT
-2795 TTAATTATATGTTCT
-2603 CATTTATGTTGTTCT
-1686 GCCAACACTTGTTCT
-323 AAARAACGAGCTGTCCC
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Figure 10.
from —3050 to +48 relative to the transcription start site. Arrow, Overlapping region
of the promoter sequence reported by Hosoda et al. (reference 41). (B) The 3.1-kb
ETR, 5’'-flanking region was analyzed by computer-aided search for GRE.

Nucleotide sequence of the human ETR, gene 5'-flanking region
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Figure 11. (A) Schematic demonstration of the chimeric construct of
the 5’-flanking region of the ETR, gene fused to luciferase gene in pGL3
Basic vector. (B) Reporter gene activity was assayed in HOC cotrans-
fected with reporter gene construct and glucocorticoid receptor expres-
sion plasmid and B-galactosidase expression plasmid, treated for 24 h in
parallel with 100 nM dexamethasone and control medium, and expressed
in corrected luciferase activity = SE.

(Fig. 11 B). Significant luciferase activity was detected in
cells transfected with the ETR, promoter/reporter gene
construct compared with cells transfected only with the
promoter-deficient vector pGL3 Basic (data not shown). A
treatment with 100 nM dexamethasone for 24 h led to an
induction of the luciferase reporter gene activity of ~2.6-
fold over untreated osteoblastic control cultures. Experi-
ments without cotransfection of glucocorticoid receptor
expression plasmid showed no significant difference in the
luciferase reporter gene activity between control and dexa-
methasone-treated cultures (data not shown).

Discussion

Glucocorticoid hormones modulate differentiated bone
cell functions and osteoclastogenesis to regulate the balance
of bone resorption and bone formation in the skeleton
(17). Supraphysiological concentrations of synthetic gluco-
corticoids disturb bone metabolic balance directly by anti-
proliferative effects on bone-forming cells and indirectly by
stimulating bone resorption (17-20). In vitro studies have
also shown that glucocorticoids have potent antiprolifera-
tive effects (21-23) on mesenchymal cells, including bone
cells at high concentrations in long-term experiments (24),
whereas at low concentrations short-term experiments
have shown that glucocorticoids stimulate osteoblastic pro-
liferation (21-23). Thus, the effects of glucocorticoids may
be related not only to dose and treatment duration but also
to the degree of cellular differentiation. At physiological
concentrations, glucocorticoids provide a basal stimulus for
differentiation, ensuring not only a continous stream of
mesenchymal stem cells maturing into proliferating osteo-
blastic precursor cells but also their differentiation into os-
teoblasts (25-27). The detrimental effects of supraphysio-
logical glucocorticoid concentrations on bone metabolism
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result from the inhibition of precursor cell growth by inter-
ference with paracrine signaling mechanisms by mitogenic
bone growth factors (17, 24), leading to a reduction in the
number of terminally differentiated bone cells.

This study provides evidence that long-term exposure to
pharmacological doses of systemically circulating glucocor-
ticoid hormones may interfere with paracrine signaling be-
tween bone tissue and the vascular system by affecting the
osteoblastic ETR, gene expression and increasing ET1
plasma concentrations. ET1 is a paracrine factor of the vas-
cular system secreted by vascular smooth muscle and en-
dothelial cells and was initially identified as a potent vaso-
constrictor (28, 10). ET1 does also exert biological activity
on various cell types (29), including osteoblastic cells (30).
ET1 stimulates type | collagen secretion and ALP expres-
sion in primary HOC and exerts a potent mitogenic action
on human bone cells (11). These effects on osteoblastic
cells are mediated by specific ETR,s, which are constitu-
tively expressed in HOC. The action of ET1 on differenti-
ated osteoblastic functions (e.g., type | collagen synthesis
and ALP expression) and the mitogenic effect of ET1 on
osteoblastic cells suggest a regulatory role of ET1 in human
bone formation and bone growth.

To investigate how glucocorticoids may interact with
the regulatory effect of ET1 on human bone cell metabo-
lism, HOC were pretreated with glucocorticoids and the
mitogenic effect of a subsequent ET1 treatment was deter-
mined. A glucocorticoid treatment enhanced the mito-
genic action of ET1. There are several possibilities for how
glucocorticoids may affect ET1-mediated actions.

(@) Glucocorticoids may induce the secretion of other
peptides, exerting a proliferative effect on bone cells, which
has been shown for other steroid hormones, e.g., progest-
erone, which increases insulin-like growth factor (IGF)-11
expression in bone cells (31). Growth factor release may
enhance ET1-induced cell proliferation in a concerted ac-
tion as observed in rat kidney fibroblasts for transforming
growth factor (TGF)-a and ET1 (32). However, there are
also reports demonstrating a downregulation of the osteo-
blastic secretion of bone cell mitogens by glucocorticoids
(33). A second mechanism by which glucocorticoids may
affect ET1-induced cell proliferation is a glucocorticoid-
induced increase in ET1 secretion, leading to higher ET1
concentrations in the culture medium which may increase
the cell proliferation of HOC in a dose-dependent manner.
However, there was no ET1 measurable in HOC cultures,
and ET1 expression was not stimulated by glucocorticoid
treatment in vitro. Because the culture medium was
changed after glucocorticoid pretreatment, it appears un-
likely that glucocorticoid-stimulated growth factor or ET1
release by osteoblastic cells contributes to the observed en-
hancement of ET1 action by glucocorticoids in vitro.
However, in vivo glucocorticoid treatment elevated plasma
ET1 concentrations significantly. This observation is con-
sistent with a stimulatory action of glucocorticoids on ET1
production by vascular cells, which was demonstrated in a
rat model (6). The significant interpatient variability in ET1
plasma level changes after glucocorticoid treatment (Fig. 2
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A) is reminiscent of the variability of changes in lympho-
cyte response, insulin resistance, and bone density among
glucocorticoid-treated patients (34-36).

(b) Glucocorticoids may also stimulate ET21-induced
human bone cell proliferation by affecting postreceptor
mechanisms. An interaction between glucocorticoids and
growth factors on the postreceptor level was demonstrated
recently in dexamethasone-treated fibroblastic cultures
where the activation of the glucocorticoid receptor inter-
feres with postreceptor processes of the IGF-I receptor
(37), impairing 1GF-l-mediated effects. To our knowl-
edge, there are no reports demonstrating glucocorticoid-
induced enhancement of growth factor actions by affecting
postreceptor mechanisms.

(c) Finally, glucocorticoid treatment may enhance osteo-
blastic ETR, expression, because other steroid hormones
(1,25(0OH),D,) have also been shown to modulate ETR,
mRNA expression in HOC (11). This possibility was
tested in a primary HOC system. The results demonstrate
that ETR, mMRNA expression is indeed upregulated by
dexamethasone in a dose- and time-dependent fashion. Ex-
periments with actinomycin D reveal that increased ETR,
MRNA levels are not due to increased transcript stability.
The slow time course of ETR, mMRNA induction by glu-
cocorticoids may be due to an unphysiologically low basal
ETR, mRNA level in vitro after a 48-h period of serum
deprivation, a short half-life of ETR, mMRNA, or to the re-
cruitment of transcription factors which are constitutively
present at very low basal concentrations (after a 48-h cul-
ture period in the absence of serum) and are required for
ETR, gene transcription.

Elevated ETR, mMRNA expression by glucocorticoids
translates into a greater number of ET1 binding sites in
HOC, whereas no change in the binding affinity for ET1
after glucocorticoid treatment was found. The observation
that the glucocorticoid-increased ETR, mMRNA expression
level correlates positively to the affinity of the used gluco-
corticoid to the glucocorticoid receptor supports the view
that the glucocorticoid-stimulated ETR, upregulation is a
receptor-mediated phenomenon that depends on the
ligand-activated glucocorticoid receptor protein. In vivo
experiments examining osteonecrotic femoral head biopsies
from glucocorticoid-treated patients demonstrate higher
ETR, mRNA levels compared with biopsies from patients
with traumatically induced osteonecrosis of the femoral
head and coxarthrosis. However, this observation of an in-
creased ETR, mMRNA level in total RNA extracts from
femoral head biopsies of glucocorticoid-treated patients
may in part also be a glucocorticoid effect on nonosteoblas-
tic cells, which are always present in bone tisssue (e.g., en-
dothelial or smooth muscle cells).

RU486, a nonspecific steroid hormone antagonist,
blocked the effect of dexamethasone on ETR, mMRNA ex-
pression in HOC, suggesting a direct glucocorticoid recep-
tor-mediated effect of the used compounds on ETR,
MRNA expression. Combination experiments with RU486
demonstrate that maximal upregulation of osteoblastic
ETR, mRNA levels by glucocorticoids depends on the
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continuous presence of the glucocorticoid. An increase of
ETR, mRNA in HOC by glucocorticoids does not re-
quire de novo protein synthesis, indicating that the media-
tion of the effect of glucocorticoids on ETR, mRNA ex-
pression does not require de novo synthesis of transcription
factors (e.g., AP-1 [38]). Moreover, superinduction of
ETR, mRNA levels in the presence of dexamethasone and
cycloheximide suggests that cycloheximide stabilizes ETR 4
MRNA transcripts by inhibiting the synthesis of a protein
responsible for mMRNA degradation, thereby leading to an
accumulation of ETR, mRNA. The necessity for a con-
tinuous presence of the glucocorticoid to observe the up-
regulation of the ETR, mRNA is consistent with a mech-
anism by which ETR, expression is upregulated by the
presence of ligand-activated glucocorticoid receptors serv-
ing as transcription factors after translocation into the HOC
nucleus. To test this hypothesis, a 3.1-kb fragment of the
5’-flanking region of the human ETR, gene was cloned
and automatically sequenced. Computer-aided sequence
analysis revealed the presence of four putative GRE
(—2795, —2603, —1686, and —823); two of them showed
high conservation to the GRE consensus sequence (39).
Transient transfections of HOC cultures with a chimeric
construct of the 5’-flanking region of the ETR4 gene fused
to luciferase reporter gene and a glucocorticoid receptor
expression plasmid showed a promoter-dependent expres-
sion of the reporter gene and regulation by dexamethasone.
With a 2.6-fold induction of luciferase activity by dexa-
methasone treatment, the results of the transfection experi-
ments correspond to the observed induction of ETR, by
dexamethasone on the mRNA and protein level. How-
ever, the dexamethasone-mediated induction of luciferase
activity required cotransfection with the glucocorticoid re-
ceptor expression plasmid, demonstrating that the basal
expression level of glucocorticoid receptor in transfection
experiments without cotransfection of glucocorticoid re-
ceptor expression plasmid is not sufficient to mediate in-
duction of reporter gene activity after dexamethasone treat-
ment. A low level of endogenous glucocorticoid receptor
gene expression may be due to the experimental design:
before dexamethasone treatment, cells were incubated in
the presence of serum, which could lead to downregulation
of glucocorticoid receptor expression by serum-derived
steroid compounds (40).

Some limitations of the presented work also arise from
experimental design and the experimental model (HOC)
used. Glucocorticoid treatment of HOC was not contin-
ued for more than 48 h; therefore, it is not clear when the
maximum ETR, mRNA level can be observed after glu-
cocorticoid treatment of primary HOC. Furthermore,
binding affinity for ET1 in HOC was reduced fivefold, an
effect which apparently conflicts with a higher previous es-
timate (11) of the ET1 binding affinity in HOC (Kp of 35
pM). This difference is likely to be due to the heteroge-
neous nature of primary HOC cultures, which are contam-
inated to various degrees (20-50%) by nonbone cells such
as fibroblastic and vascular cells (11). Thus, the secretion of
an unlabeled competing ligand by an unusually high per-



centage of contaminating nonbone cells may explain the
higher apparent Kp.

These data provide evidence that glucocorticoid-
induced upregulation of circulating ET1 plasma levels and
osteoblastic ETR, gene expression stimulate the osteoblas-

tic cell metabolism. However, ET1-induced potent vaso-
constriction may increase blood pressure (8) and could im-
pair bone perfusion (9) in metabolically activated skeletal
sites, which may contribute to the pathogenesis of gluco-
corticoid-induced osteonecrosis.
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