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Summary

Interleukin (IL)-4, a crucial modulator of the immune system and an active antitumor agent, is
also a potent inhibitor of angiogenesis. When incorporated at concentrations of 10 ng/ml or
more into pellets implanted into the rat cornea or when delivered systemically to the mouse by
intraperitoneal injection, IL-4 blocked the induction of corneal neovascularization by basic fi-
broblast growth factor. IL-4 as well as IL-13 inhibited the migration of cultured bovine or hu-
man microvascular cells, showing unusual dose—response curves that were sharply stimulatory
at a concentration of 0.01 ng/ml but inhibitory over a wide range of higher concentrations.
Recombinant cytokine from mouse and from human worked equally well in vitro on bovine
and human endothelial cells and in vivo in the rat, showing no species specificity. 1L-4 was se-
creted at inhibitory levels by activated murine T helper (T40) cells and by a line of carcinoma cells
whose tumorigenicity is known to be inhibited by IL-4. Its ability to cause media conditioned by
these cells to be antiangiogenic suggested that the antiangiogenic activity of IL-4 may play a

role in normal physiology and contribute significantly to its demonstrated antitumor activity.

Key words:
assay

nterleukin (IL)-4 is a potent lymphokine able to modu-

late the activity of cells in all hematopoietic lineages (1).
It is best known for its ability to support the T2 arm of the
T cell immune response and enable B cells to produce the
IgE that plays a prominent role in the pathogenesis of aller-
gic reactions and in resistance to parasitic infections (2, 3).
The effects of IL-4, at least on cells of hematopoietic lin-
eage, are species specific (4, 5) and result from the activa-
tion of a dimeric receptor consisting of a high affinity «
subunit (IL-4Ra) that is specific for IL-4 and a second sub-
unit (yc) that is also shared by receptors for IL-2, IL-7, IL-9,
and IL-15 (6).

In contrast to its general stimulatory effects on lympho-
cytes, IL-4 inhibits the tumorigenicity of a variety of tumor
cell lines, including those of lymphoid origin (7). Occa-
sionally its effects may be direct in that the in vitro growth
of the tumor cells themselves is also sensitive to 1L-4 (8—
10). More typically, IL-4 acts through a host-dependent
mechanism on IL-4—insensitive tumor cells. When such tu-
mor cells are engineered to secrete IL-4 or are coinjected
with IL-4—generating cells, they often attract an eosino-
phil-rich inflammatory infiltrate and, although some active
immunity can develop (7), inhibition is eosinophil depen-
dent (11, 12). However, there are other instances, usually
when IL-4 is delivered systemically rather than directly to
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the tumor bed, where a reduction in tumor growth is seen
in the absence of eosinophil infiltrates (13, 14), suggesting
that IL-4 has alternate ways to curtail tumor growth.

All tumors must generate a brisk angiogenic response to
support their progressive growth (15), and it is possible that
IL-4 limits tumor growth in part by inhibiting angiogene-
sis. Two observations in the literature suggest that IL-4
might have such an inhibitory activity. First, tumor cells
that secrete IL-4 can induce concomitant tumor resistance
(16). For example, the growth of B16F10 melanoma cells
engineered to secrete IL-4 at one site in a mouse can retard
the growth of parental cells implanted at a distant site (17).
In other systems, this ability to hold distant tumors in check
has been shown to be due to the production by the first tu-
mor of inhibitors of angiogenesis that accumulate in the
circulation (18-20). A possible antiangiogenic role for IL-4
is also supported by the recent finding that vessel density in
tumors resulting from the injection of C6 glioma was
halved if the tumor cells were secreting I1L-4 (21).

Although they lack the IL-4R+yc receptor subunit char-
acteristic of lymphocytes, endothelial cells do express het-
erodimeric IL-4 receptors consisting of IL-4R« and IL-
13Ra. Both IL-4 and IL-13 act on endothelial cells via this
receptor. Unlike the situation in cells cultured from large
vessels (22-24), IL-4 does not induce vascular cell adhesion
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molecule 1 (VCAM-1)! in the microvascular cells that give
rise to new vessels during tumor angiogenesis (25-27), but
such cells are sensitive to IL-4 as it can depress the expres-
sion of VCAM-1 in the microvessels of cardiac allografts
(28) and stimulate capillary endothelial cell growth in vitro,
at least over a narrow concentration range (29). Although
the latter finding had suggested that IL-4 might be ex-
pected to induce angiogenesis in vivo, here we report that
IL-4 is a potent inhibitor of angiogenesis, able to act both
locally and systemically to block neovascularization. An
analysis of media conditioned by T0 lymphocytes and by
cells whose tumorigenicity has been curtailed by overex-
pression of IL-4 suggests that the inhibition of angiogenesis
by IL-4 could play a role in normal physiology and contrib-
ute significantly to its long-recognized antitumor activity.

Materials and Methods

Reagents. Human recombinant basic fibroblast growth factor
(bFGF), murine recombinant IL-4 (mulL-4), and goat anti—
human IL-4 were from R & D Systems (Minneapolis, MN). Hu-
man recombinant IL-4 (hulL-4, specific activity 5 X 106 U/mg)
was from Peprotech Inc. (Rocky Hill, NJ), as was human 1L-13.
Additional mulL-4 was purchased from Sigma Chemical Corp.
(St. Louis, MO). Neutralizing rat mAb 11B11 (30) was a gift
from Millennium Pharmaceuticals (Cambridge, MA) and was used
as an ascites fluid. The mulL-4 used for systemic treatment of
mice was generously supplied by Schering Plough Research Insti-
tute (Kenilworth, NJ). It had a specific activity of 2.24 x 10° U/
mg and was >99% pure as judged by silver stained SDS-PAGE
reducing gels.

Conditioned Media. Mouse mammary adenocarcinoma line
K485 (31) and derivatives transfected with pSV7Neo (F1-1) or
with pLT.IL-4 and pSV7Neo (D2-B1, E2A5, and E2AG6; all de-
scribed in reference 32) were grown in DME supplemented with
10% fetal bovine serum (FBS) and 2 mM glutamine. Serum-free
conditioned media were collected as previously described (33),
concentrated using a membrane with a 3-kD cut off, and then the
protein was assayed with a Bio-Rad kit (Bio-Rad Laboratories,
Hercules, CA).

T.0 supernatants were generated from short-term spleen cell
cultures derived from BALB/c congenic o3 T cell receptor trans-
genic mice (D011.10) in which >85% of the CD4 T cells are
specific for ovalbumin. Erythrocyte-free splenic cells (4 X 108/ml)
from 8-10-wk-old mice were cultured with 18 wM ovalbumin
in 24-well culture plates in Click’s media (Irvine Scientific, Santa
Ana, CA) supplemented with 5 X 10° 2-mercaptoethanol, 3 mM
glutamine, and 1% Nutridoma (a serum supplement from Boeh-
ringer Mannheim Corp., Indianapolis, IN). After 72 h of culture
at 37°C in 10% CO,, supernatants were pooled, sterile filtered,
and assayed for 1L-4 and for angiogenic activity. All supernatants
were dialyzed against PBS before use in angiogenesis assays as un-
dialyzed Click’s medium was stimulatory. Culture supernatants
were assayed for IL-4 and IFN-y using commercial ELISA Kkits
(Endogen, Woburn, MA) and data analyzed with SoftMax Pro
software (Molecular Devices, Palo Alto, CA). Test samples were

1Abbreviations used in this paper: bFGF, basic fibroblast growth factor; FBS,
fetal bovine serum; HMVEC, human dermal microvascular endothelial
cells; hu, human recombinant; mu, murine recombinant; VCAM-1, vas-
cular cell adhesion molecule 1.
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diluted to fall within a standard curve containing five to seven di-
lution points on each assay plate.

Endothelial Cell Migration. Human dermal microvascular en-
dothelial cells, (HMVEC; Clonetics, San Diego, CA) were
grown in endothelial basal medium supplemented with amphot-
ericin and gentamycin sulfate, each at 50 wg/ml, 0.1 wg/ml hu-
man epidermal growth factor, 0.01 wg/ml hydrocortisone, 120
rg/ml bovine brain extract, and 5% FBS and, unless stated other-
wise were used at passage <10 after starvation overnight in the
same media without serum containing 0.1% BSA. Bovine adrenal
capillary endothelial cells, BACE (a gift from Judah Folkman,
Harvard University) were grown in DME supplemented with
10% donor calf serum, 2 mM glutamine, and endothelial cell mito-
gen at 50 pg/ml and used at passage 15 after starving overnight in
serum-free media containing 0.1% BSA. Cells were harvested,
suspended in DME with 0.1% BSA and plated at 1.75 X 10*
cells/well on the lower surface of a gelatinized membrane with 5-
pm pores in a modified Boyden chamber (Neuroprobe, Cabin
John, MD). After attachment, chambers were inverted, test mate-
rial added to the top of the well and chambers incubated 3-4 h at
37°C to allow migration. Membranes were recovered, fixed,
stained, and the number of cells migrated to the top of the filter
in 10 high powered fields counted. All samples were tested in
quadruplicate. Conditioned media from tumor cells were used at
20 pg/ml, bFGF at 10 ng/ml, and anti—IL-4 at 10-20 w.g/ml.

Endothelial Cell Proliferation. HMVEC were plated into 96-well
plates at 2.5 X 103 cells/well in Clonetics EBM containing 2%
FBS and gentamycin and allowed to adhere for 4-6 h. Test sub-
stances were then added, cells incubated for 72 h, and growth
measured using Cell Titer 96 (Promega Corp., Madison, WI).

Corneal Assays. Neovascularization in the rat cornea was as-
sayed as previously described (34). Hydron pellets containing,
where indicated, bFGF at 100 ng/ml, murine IL-4 at 100 ng/ml,
human IL-4 at 0.1-100 ng/ml, and/or anti-murine IL-4 at 40
wg/ml were implanted into the avascular cornea of the rat. 7 d
later vessels were filled with colloidal carbon, the corneas were
excised, and the growth of new vessels was assessed. Vigorous in-
growth from the limbus towards the pellet was considered a posi-
tive response.

To measure systemic effects of IL-4 in the mouse, five BALB/c
mice (Jackson Laboratories, Bar Harbor, ME) were given intra-
peritoneal injections twice a day to give a dose of 15 pg/d/animal
of murine recombinant IL-4. This dose was chosen in consulta-
tion with Dr. Bob Coffman (DNAX, Palo Alto, CA) to be satu-
rating but not yet toxic. Five mice were treated similarly with ve-
hicle saline only. On the second day, hydron/sucralfate pellets
containing bFGF at 50 ng/pellet were implanted into their cor-
neas as described (35), and vessels were observed using a slit lamp
on days 3 and 5 after implantation.

Results

Inhibition of Neovascularization by Local and Systemic IL-4.
When tested in the classic rat cornea assay, locally released
IL-4 prevented vessels from sprouting from the surround-
ing vascular limbus into the normally avascular cornea in
response to the inducer basic fibroblast growth factor
(bFGF; Fig. 1; Table 1). Both murine and human IL-4
were active in this rodent assay and inhibition was dose de-
pendent and sensitive to a mAb against mulL-4, 11B1,
which is known to neutralize other activities of 1L-4 (36).
As concentrations of IL-4 were reduced, inhibitory activity



bFGF + IL-4

bFGF + IL-4 + anti-IL-4

Figure 1. Local IL-4 blocks neovascularization in vivo in the rat cor-
nea. Hydron pellets containing bFGF at 100 ng/ml, recombinant murine
IL-4 at 100 ng/ml or the combination with or without anti-IL-4 anti-
body at 40 wg/ml were implanted into the avascular cornea of the rat. 7 d
later vessels were filled with colloidal carbon and corneas photographed.
Note the vigorous angiogenic response to bFGF and its inhibition by IL-4.

fell off and at the lowest concentration of 0.1 ng/ml IL-4
by itself displayed a weak ability to induce neovasculariza-
tion. Simple diffusion calculations indicate that the concen-
tration of a compound that actually reaches the vascular
limbus in such cornea assays is reduced by 10-50-fold sug-
gesting that the stimulatory concentration of IL-4 at the
endothelial cell is <0.01 ng/ml.

Systemic IL-4 also had an antiangiogenic effect. When mice
received intraperitoneal injections of mulL-4, they became
unable to mount a corneal angiogenic response to an implant
containing an inducing concentration of bFGF (Table 2).

Effects of IL-4 on Cultured Endothelial Cells. To determine
if the antiangiogenic effect of IL-4 was due to a direct in-
teraction of the cytokine with endothelial cells, its effects
on cultured cells were tested. mulL-4 inhibited the migra-
tion of bovine adrenal capillary endothelial cells towards
bFGF at concentrations of 1 ng/ml and greater (Fig. 2 A).
hulL-4 gave an identical dose-response curve using these
cells (data not shown). When their receptor message levels
were measured by semiquantitative RT-PCR using prim-
ers described in references 23 and 37, human capillary
endothelial cells expressed IL-4Ra and IL-13Ra subunits.
These cells did not express the 1L-4R~c, the receptor sub-
unit thought to be involved in the species-specific action of
IL-4 on lymphocytes (6). The message levels of the recep-
tors were not altered by treatment of the cells with IL-4 or
with bFGF.
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Table 1. Inhibition of Corneal Neovascularization by Local IL-4
in the Rat
Positive corneas/
total implanted
Anti-murine
Test sample  Concentration IL-4 Alone + bFGF
ng/ml
hulL-4 0.1 - 3*/3 3/3
1.0 - 1*/3 3*/5
10.0 - 0/3 0/3
mulL-4 100 - 0/2 0/3
100 + nd 2/3
Controls — - nd 4/4
- + 0/2 nd

Pellets were formulated containing the indicated substances, including
anti-murine IL-4 at 40 pg/ml and bFGF at 10 pwg/ml, and implanted
into the avascular cornea of the rat. Vigorous ingrowth of new vessels
after seven days was scored as a positive response. nd = not done.
*Positive responses that were weak with only a few vessels growing in
from the limbus.

hulL-13, the cytokine thought to activate the same
dimeric receptor on endothelial cells as does IL-4 (38), was
also inhibitory (Fig. 2 B) although a higher concentration was
required. Differential effects of IL-4 and IL-13 on cells like
endothelial cells that lack the yc subunit of the IL-4 receptor
may be explained by overproduction of IL-13Rp, a recently
identified molecule that binds IL-13 with high affinity but
fails to transduce signals and may sequester 1L-13 (39). Both
mulL-4 and hulL-4 also blocked the migration of human mi-
crovascular cells (Fig. 2 C), although these cells required a cy-
tokine concentrations of >10 ng/ml to achieve complete in-
hibition. As has been seen before with other inhibitory
cytokines (40), both IL-4 and IL-13 exhibited biphasic
dose-response curves. Exceedingly low doses stimulated the
migration of endothelial cells (Fig. 2, A-C). hulL-4 was also
effective at blocking the migration of human microvascular
endothelial cells towards 100 pg/ml of the inducer VEGF and

Table 2. Inhibition of Corneal Neovascularization by Systemic
IL-4 in the Mouse

Positive corneas/total implanted

Systemic treatment Day 4 Day 5 Day 6
Saline 3/5 5/5 5/5
Murine IL-4 0/5 0/5 0/5

Mice were treated systemically with saline or with 15 wg/d/animal of
mulL-4, their corneas implanted with pellets containing 1 wg/mli
bFGF, and the induction of corneal neovascularization scored by slit
lamp examination on the indicated days after implant. Vigorous growth
of vessels into the pellet was scored as a positive response.
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Figure 2. The biphasic, serum-dependent effect of recombinant 1L-4

on the migration of capillary endothelial cells. (A) Serum-starved bovine
adrenal capillary endothelial cells were allowed to migrate towards murine
IL-4 in the absence (circles) or in the presence (triangles) of an inducing
concentration of bFGF. Identical results were obtained using recombinant
human IL-4. (B) IL-13 tested as was IL-4 in A. (C) Serum-starved human
dermal capillary endothelial cells were allowed to migrate towards murine
IL-4 (open symbols) or towards human IL-4 (filled symbols) in the absence
(circles) or presence (triangles) of bFGF. Note: In all graphs, dotted lines in-
dicate migration seen towards vehicle (0.1% bovine serum albumin, BSA)
or towards 10 ng/ml bFGF (bFGF); bars indicate SE.
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did so with an EDs, similar to that with which it inhibited
migration towards bFGF (data not shown).

IL-4 did not have any inhibitory effect on the growth of
endothelial cells. The proliferation of human dermal capil-
lary endothelial cells (Fig. 3) and of large vessel human um-
bilical vein endothelial cells (data not shown) was unaf-
fected over a wide range of doses of hulL-4.

Antiangiogenic Activity of IL-4 in Complex Biological Flu-
ids. To determine if IL-4 is present in biological fluids in
sufficient concentrations to be antiangiogenic, supernatants
from two types of cells were tested. Serum-free condi-
tioned media were collected from mouse mammary carci-
noma tumor cell line, K485, and from its subclones that
expressed IL-4 and as a result are known to produce slower
growing tumors in vivo (32). Media from a vector-trans-
fected control (F1-1, making no detectable IL-4, <0.001
ng IL-4/pg protein) and from two IL-4—transfected sub-
clones that expressed low levels of IL-4 (E2A5 producing
0.18 ng IL-4/ g protein and E2A6 producing 0.06 ng IL-
4/p.g protein) were angiogenic and not sensitive to neu-
tralizing antibody against the cytokine (Fig. 4 A). If this
concentration of IL-4 were used by itself in a migration as-
say it would be weakly stimulatory. In contrast, medium
conditioned by the IL-4 transfectant that produced high
levels of IL-4 (D2B1 secreting 15 ng IL-4/ g protein), the
line that was most severely retarded in in vivo tumorigenic-
ity assays (32), was antiangiogenic despite the background
of tumor angiogenic factors (Fig. 4, A-C; Table 3). The
D2B1 conditioned medium blocked migration in vitro
(Fig. 4 A) even towards media conditioned by the tumori-
genic parent (Fig. 4 B) as well as neovascularization in vivo
(Table 3; Fig. 4 C) induced by bFGF. 1L-4 was the major
inhibitor in this medium for its neutralization revealed un-
derlying angiogenic activity and rendered the samples un-
able to inhibit angiogenesis induced by bFGF.
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Figure 3. Effect of IL-4 on the proliferation of human capillary endo-

thelial cells. Human dermal microvascular endothelial cells were allowed
to grow over 72 h in the presence of increasing concentrations of IL-4
(open circles) or the combination of IL-4 and 100 ng/ml bFGF (filled circles)
and proliferation quantitated. Note: Dotted lines indicate growth in the
absence of any cytokine additions (no proliferation) and growth in the
presence of 100 ng/ml bFGF (bFGF). Similar results were obtained if se-
rum was used instead of bFGF or HUVEC cells instead of HMVECs.
Bars indicate SE.
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In a second experiment, supernatants of stimulated mu-
rine T 0 cells were tested for angiogenic activity. These su-
pernatants that contained 21 ng/ml of IFN-y and 7.7 ng/ml
of IL-4 were antiangiogenic due to the presence of IL-4
(Fig. 5). When IL-4 was neutralized they became able to
induce the migration of capillary endothelial cells and were
no longer able to inhibit migration induced by bFGF.

Discussion

Data presented above demonstrate that IL-4 is a potent
inhibitor of angiogenesis in vivo when introduced locally as
well as when injected systemically. It is among the most
potent inhibitors identified to date. Its EDs, measured in the
migration assay was between 0.015 and 0.15 nM, better than
that measured in the same assay for other potent antiangio-
genic agents such as thrombospondin-1 (0.5 nM, see reference
40) and angiostatin (7 nM, see reference 41). The dose of the
13-kD IL--4 that was needed to inhibit neovascularization
systemically in the mouse was a relatively modest 0.5 mg/kg/d
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100 —
75 Figure 4. IL-4 is responsible
for the lack of in vitro angio-
50 - genic activity in revertant K485
. cells. (A) Media conditioned by
K485 carcinoma cells transfected
25 - with vector (F1-1) or trans-
fected with murine 1L-4 and ex-
pressing the cytokine at low lev-
0 els (E2A5, E2A6) and at high

levels (D2B1) were tested for
ability to induce the migration of
bovine capillary endothelial cells
alone, when mixed with bFGF
(10 ng/ml) and/or with neutral-
izing anti-mulL-4 antibodies (32
wl/ml). Controls labeled DME
include tests of antibodies alone
(AB) and of murine IL-4 with
other components as indicated.
Note: dotted lines as in legend to
Fig. 1. (B) Supernatants of vector-
transfected line F1-1 and IL-4-
transfected revertant D2B1 were
mixed 1:1 and tested for the abil-
ity to induce the migration of
bovine capillary endothelial cells.
(C) Media conditioned by pa-
rental F1-1 and revertant D2B1
cells was incorporated into pel-
lets with the indicated additions
and tested in the rat cornea for
ability to induce neovasculariza-
tion. An asterisk indicates signifi-
| cant difference from parental

F1-1 line by unpaired Student’s

t test, P < 0.002.

D2B1 + bFGF + anti-IL-4

which compares favorably with the doses needed to produce
the same effect with other inhibitors of angiogenesis including
the 5-10 mg/kg/d needed for 450-kD thrombospondin-1
(20), the 6-100 mg/kg/d required for 38-45-kD angiostatin
(42, 43) and 20 mg/kg/d for 20-kD endostatin (44).

The inhibition of angiogenesis is a newly recognized
function for IL-4 and one that helps to explain a number of
its previously noted activities. Our ability to drive mice
into an antiangiogenic state with 1L-4 injections suggests
that a systemic, IL-4—dependent antiangiogenic effect may
contribute to the ability of IL-4 secreting cells to inhibit
the growth of distant tumors (45, 17). The inhibition of
angiogenesis may also play a role in the ability of I1L-4 to
ameliorate arthritis in animals (46) and reduce the cartilage
degradation in patients (47) that results in part from invad-
ing endothelial cells in the synovial pannus. The local anti-
angiogenic activity of IL-4 could account for the decrease
in tumor vessel density observed in IL-4 secreting gliomas
(21) and should enhance its effectiveness as a gene therapy
agent against tumor metastases (48).



Table 3. Secretions of IL-4—producing Revertants of Mammary
Carcinoma 287 Failed to Induce Neovascularization In Vivo due to
High Levels of IL-4

Added substances
—  Positive corneas/
bFGF anti-IL-4

Test media total implanted
IL-4—transfected
revertant
D2-B1 - - 0/3
D2-B1 + - 0/3
D2-B1 - + 2/3
D2-B1 + + 3/3
Vector-transfected
parental line
F1-1 (IL-4 deficient) - - 3/3
F1-1 + inhibitory TSP — - 0/3

Media conditioned by the indicated cells was incorporated into a Hy-
dron pellet at 200 wg/ml along with various additions, implanted into
the rat cornea and neovascularization assessed 7 d later. Concentrations
of additives as in legend to Table 1. TSP, human thrombospondin-1, a
known inhibitor of angiogenesis used as described in 53.

IL-4 inhibits angiogenesis by acting directly on endothe-
lial cells for it was able to block the migration of cultured
cells, as are most other direct inhibitors of angiogenesis
(49). At very low doses, 1L-4 was stimulatory to endothelial
cells in vitro and able to induce a weak neovascularization
response in vivo. Such a biphasic dose—response curve is
unusual although not unprecedented. TGF-B1 also has bi-
phasic effects on endothelial cell migration, stimulating at
picomolar doses but inhibiting at nanomolar concentrations
(40). Although this phenomenon of stimulation giving way

[ atone

B + vFGF

+anti-IL-4

Il + ©FGF and anti-IL-4

Figure 5. Supernatants of T,
cells are antiangiogenic due to
IL-4. Supernatants obtained from
splenic cells freshly derived from
D011.10 T cell receptor trans-
genic mice and incubated with
ovalbumin for 72 h were tested
for the ability to induce the
migration of bovine capillary
endothelial cells alone and with
""BSA either bFGF, anti-IL-4 or both.
Dotted lines indicate migration
of cells towards bFGF alone or
towards media alone (BSA). An
asterisk indicates significant dif-
ference from antibody-free con-
trol, P < 0.005.
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to inhibition has not been explained, there is an explana-
tion for one example of the inverse situation where inhibi-
tion of migration of endothelial cells at low concentrations
gives way to stimulation at high doses. This occurs with the
inhibitor of angiogenesis thrombospondin-1 and can be ex-
plained by the sequential activation of two distinct recep-
tors. An inhibitory receptor is active at low doses, but it is
easily cleared from the cells so that at high doses a second
more stable receptor with lower affinity is engaged and
transduces a stimulatory signal (50, 51). A dual receptor hy-
pothesis for IL-4 is supported by the observation that 1L-13
replicated the activity of IL-4 in the inducing phase of the
dose—response curve with reasonable fidelity yet required
10-fold more protein to reproduce the inhibitory portion.
Such an observation could be explained if endothelial cells
expressed a stimulatory receptor that had equal affinity for
IL-4 and IL-13 in addition to a second receptor, which
transduces inhibitory signals, that interacted more effec-
tively with IL-4 than with IL-13.

In contrast to the situation in hematopoietic cells where
IL-4 displays tight species specificity between mouse and
human, no species limitations were observed in our experi-
ments where human and mouse cytokines were equally ef-
fective on bovine and human endothelial cells and human
IL-4 was effective in the rat cornea assay. It is possible that
the species specificity that has been defined in lymphoid
cells depends on the yc subunit of the receptor that is ab-
sent from endothelial cells where it is replaced by an IL-13
receptor subunit.

Despite its effects on migration, 1L-4 did not appear to
have any effect on the growth of endothelial cells. Al-
though both the migration and the mitogenesis of endo-
thelial cells are frequently blocked by agents that inhibit an-
giogenesis, there is a small class of inhibitors that do not
seem to have major effects on mitogenesis (49). However,
it may be premature to assign IL-4 to this class given the
fact that another report, using microvascular endothelial
cells that were brought more severely to quiescence before
the start of the experiments, has described a modest mito-
genic effect of 1L-4 (29).

Although data presented here demonstrate most clearly
the inhibition of angiogenesis induced by bFGF, IL-4 was
also able to block angiogenesis induced by other factors for
it was effective against tumor cell conditioned media,
against the mix of inducers present in the T,0 cell superna-
tant as well as against media conditioned by activated mac-
rophages (data not shown).

In identifying IL-4 as a new inhibitor of angiogenesis
these results provide a new mechanism to explain its dem-
onstrated antitumor activity at both local and distant sites,
and suggest, as has been demonstrated for other inhibitors
of angiogenesis (52), that it may be particularly useful in
enhancing the effect of cytotoxic antitumor therapies. In
addition, the ability of IL-4 to be either a positive or a neg-
ative influence on neovascularization must now be taken
into account when explaining the induction and resolution
of the inflammatory angiogenesis that accompanies so
many pathological processes.
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