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Suat Özdirekcan,* Thomas K. M. Nyholm,* Mobeen Raja,* Dirk T. S. Rijkers,y Rob M. J. Liskamp,y

and J. Antoinette Killian*
*Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, and yMedicinal Chemistry and Chemical Biology,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

ABSTRACT Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to
be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the
lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we
tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic
transmembrane peptide (acetyl-GW2(LA)8LW2A-NH2) with model membranes of dimyristoylphosphatidylcholine. Two striking
observations were made. First, using 2H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or
8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin
bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3� to 2.5�, as measured by 2H
NMR on Ala-d4 labeled peptides. The ‘‘straightening’’ of the peptide was accompanied by an increased exposure of Trp to the
aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle
was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase
the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a
Lys-flanked analog (acetyl-GK2(LA)8LK2A-NH2) with the lipid bilayer. These results emphasize the importance of interfacial
anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as
anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.

INTRODUCTION

Membrane proteins are involved in a large variety of cellular

processes, where they fulfill many different functions. Most

membrane proteins are embedded in the membrane with one

or more hydrophobic segments that are in contact with the lipid

acyl chains. It has been shown that the extent of matching

between the length of these hydrophobic transmembrane

segments and the hydrophobic thickness of the bilayer can

influence the activity and/or structural properties of proteins

and peptides in membranes (1–5). However, it is not only the

consequences of hydrophobic mismatch itself that can result

in modulation of membrane protein structure and function. A

mismatch also results in a change in the positioning of the

residues that flank the hydrophobic transmembrane segments

with respect to the lipid-water interface. Thus, hydrophobic

mismatch may in addition affect the behavior of membrane

proteins by disturbing any ‘‘anchoring’’ interactions of these

flanking residues with the interfacial region of the membrane.

Such anchoring interactions may be particularly relevant for

aromatic amino acids, which in virtually all integral mem-

brane proteins are found to be preferentially positioned at the

lipid-water interface (6–8). It was even suggested that

interfacial anchoring interactions could dominate over effects

of hydrophobic mismatch in the case of Trp-flanked trans-

membrane segments (9,10).

On a molecular level, relatively little is known about how

interfacial anchoring interactions can influence properties of

membrane proteins. A useful approach to gain insight into

this is to use synthetic peptides that mimic the transmembrane

segments of membrane proteins. Such peptides typically

consist of an a-helical hydrophobic region, e.g., a sequence

of alternating leucine and alanine, with variable length and

with different flanking residues (9–14). Examples are the so-

called WALP peptides, which are flanked on both sides with

Trp, and the KALP peptides, which are flanked by lysine

residues (15,16). By using these peptides, it was possible to

demonstrate that interfacial interactions indeed play a role in

membrane organization. For example, for the Trp-flanked

WALP peptides, it was shown that a positive mismatch, i.e.,

the situation in which the hydrophobic length of the peptide

is larger than the hydrophobic thickness of the bilayer,

results in small but systematic increases in acyl chain order

with increasing mismatch (9,17), whereas for the analogous

Lys-flanked peptides, no significant stretching of the lipids
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was observed. In addition, both the extent and direction of tilt

of these peptides in lipid bilayers were found to depend on

the nature of the flanking residues (18,19).

The importance of interfacial anchoring interactions for

membrane organization suggests that molecules that modify

the physicochemical properties of the membrane-water inter-

face may thereby also modify the behavior of integral

membrane proteins. Candidate molecules that partition at the

interface and therefore may interfere with interfacial anchoring

include short-chain alcohols such as TFE. These molecules,

which are known to have anesthetic properties, can strongly

influence properties of membrane proteins. An example is the

high potency of TFE and other small alcohols to dissociate

oligomeric membrane proteins (20,21). As a possible mech-

anism for this effect, it was proposed that the partitioning of

these alcohols in the interfacial region changes the packing

properties of the lipids (22,23) or the lateral pressure profile

across the lipid bilayer (20,21), thereby affecting the lipid-

protein interactions. However, alternatively, it is possible that

small alcohols act by interfering with the interfacial anchoring

properties of membrane proteins. In this work, we investigated

this possibility by analyzing how modification of the interface

by addition of TFE affects peptide-lipid interactions for Trp-

flanked WALP and Lys-flanked KALP peptides in zwitterionic

model membranes. In particular, we have chosen the 23 amino-

acid-long peptides WALP23 and KALP23 in di-C14:0-PC

bilayers because these systems have been well characterized

experimentally and because they form stable bilayers

(9,10,18,19). One advantage of using these model peptides

instead of a large natural membrane protein is that it allows

detailed analysis of the effects of the alcohol on a molecular

level using different biophysical approaches. An even more

important advantage is that it facilitates interpretation of the

results because the behavior of these single-span peptides is

expected to be insensitive to changes in lateral pressure. This is

because effects of lateral pressure are believed to be transmitted

through changes in shape- or depth-dependent cross-sectional

area of membrane proteins (24,25). In multispan proteins this

can be accomplished by changes in tilt and rotation angles of

individual transmembrane segments. However, for single-span

peptides, the cross-sectional area will be largely unchanged as

long as the peptide retains its a-helical conformation.

The results show that the presence of TFE strongly affects

the membrane interaction of WALP peptides by interfering

with their acyl chain ordering effect and by influencing their

orientation in the membrane. In contrast, TFE does not affect

the membrane interaction of analogous KALP peptides. These

results provide new insights into the importance of interfacial

anchoring interactions for the structure and function of

membrane proteins and may help to explain the molecular

mechanism by which small solutes such as alcohols may act

as general anesthesia.

EXPERIMENTAL PROCEDURES

Materials

WALP23 and KALP23 (for amino acid sequence, see Table 1) were

synthesized using Fmoc/tBu solid-phase peptide synthesis as described

elsewhere (26). The peptides were purified by HPLC using a reverse-phase

C4 column with an aqueous phosphoric acid/triethylamine buffer at pH 2.25.

The purity of the peptides was generally higher than 95%. Purification and

mass spectrometric analysis of the peptides were carried out as described

elsewhere (26,27). Deuterated d4-Ala was obtained from Sigma Aldrich, and

Fmoc was used to protect its amino functionality (28) before it was used in

the synthesis. Deuterium-labeled peptides were isotopically labeled with one

deuterium-labeled alanine residue at different positions in the transmem-

brane domain. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (di-C14:0-PC)

and 1,2-dimyristoyl-glycero-3-phosphocholine with a perdeuterated sn-2
chain (1-myristoyl-2-perdeuteriomyristoyl-sn-glycero-3-phosphocholine;

di-C14:0-PC-d27) were purchased from Avanti Polar Lipids Inc. (Alabaster,

AL) and used without further purification. TFA and TFE were obtained from

Merck (Darmstadt, Germany). Deuterium-depleted water was obtained from

Cambridge Isotope Laboratories. All other chemicals were of analytical

grade. Water was deionized and filtered with a Milli-Q Water purification

system from Millipore (Bedford, MA).

Methods

NMR sample preparation

Lipid stock solutions were prepared of ;10 mM phospholipid in chloroform,

and the exact concentrations of the phospholipid stocks were determined by a

phosphorus assay (29).

For 2H NMR experiments on Ala-d4-labeled peptides and for 31P NMR

measurements with unlabeled WALP23 and KALP23, samples were

prepared as follows. An amount of 1 mmol of peptide was dissolved in

1 ml of TFE and dried to a film in a rotavapor twice to remove residual traces

of TFA. The peptide films were dissolved in 1 ml of TFE, transferred to glass

tubes, and mixed with lipid solutions containing 30 or 100 mmol of

phospholipid to achieve peptide/lipid molars of 1:30 or 1:100 for 31P NMR

and 2H NMR, respectively. The mixtures were stirred with a vortex mixer and

dried to films under a nitrogen flow to evaporate solvents more efficiently.

Traces of solvent in samples were further evaporated overnight under vacuum

(0.5–1310�2bar). The lipid-peptide films were hydrated in 500 ml of

deuterium-depleted water, kept at room temperature for at least 1 h in a N2

atmosphere to equilibrate, and centrifuged 10–20 min at 2880 3 g to collect

the maximal amount of sample at the bottom of the tubes. Subsequently, the

samples were lyophilized overnight. The lipid-peptide films were then

hydrated in 100 ml of deuterium-depleted buffer (25 mM HEPES, 100 mM

NaCl, pH 7.4), and the suspensions were transferred to NMR glass tubes. The

tubes were airtight sealed under a N2 atmosphere with silicon stoppers. Samples

were freeze-thawed at least 10 times to promote sample homogeneity.

TABLE 1 Amino acid sequences of the peptides used

Peptide Design

Ac-WALP23-d4-Ala-NH2 Acetyl-GWWLALALALALALALALALWWA-NH2*

Ac-KALP23-d4-Ala-NH2 Acetyl-GKKLALALALALALALALALKKA-NH2*

*Underlined letters indicated in bold are positions where the peptides have been labeled with d4-Ala.
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For the determination of acyl chain parameters by 2H NMR, the procedure

was identical with the following exceptions. Unlabeled WALP23 or KALP23

(0.1 mmol) in 60 ml TFE was mixed to a lipid solution containing 3 mmol of

di-C14:0-PC-d27 in 300 ml chloroform to achieve a peptide/lipid molar ratio

of 1:30. The mixtures were vortexed and dried to a film with solvents

evaporated under a constant N2 flow. The samples were vacuum-dried

overnight, after which they were hydrated in 200 ml of deuterium-depleted

buffer (25 mM TRIS, 100 mM NaCl, pH 7.4) and transferred to NMR glass

tubes. The tubes were sealed under a N2 atmosphere with a silicon stopper and

were freeze-thawed at least 10 times. The same procedures were used for the

preparation of samples containing only the di-C14:0-PC-d27 suspensions.

To study the influence of TFE, all the samples were reopened after the

initial NMR measurements. Next, 4, 8, 15, 30, or 50 vol % TFE was added,

and the samples were resealed and freeze-thawed 10 times as described above.

To check whether any residual TFE from the sample preparation protocol

could contribute to the measured effects, we compared 31P NMR and 2H

NMR spectra of pure lipid systems prepared with and without TFE in the

procedure. The similarity in the spectra confirmed that residual TFE did not

significantly affect the NMR spectral shapes (data not shown).

NMR measurements

NMR experiments were carried out on a Bruker Avance 500-MHz NMR

spectrometer. Samples were allowed to equilibrate at 40�C for at least 10

min before measurements. 31P NMR experiments were performed as de-

scribed (18) on all samples used.
2H NMR experiments on deuterated peptides were performed at 76.78

MHz using a quadrupolar echo sequence as described previously (18). The

measurements were performed with a 5.8-ms 90� pulse, an echo delay of 40

ms, a recycling delay of 100 ms, 1 MHz spectral width, and 4096 data points.

Typically, between 200,000 and 1,000,000 scans were collected. Acquisi-

tion was started at the echo maximum and further processed by zero-filling

to 16,384 data points, and using a 100-Hz exponential multiplication

followed by Fourier transformation.
2H NMR experiments on di-C14:0-PC-d27 phospholipid samples were

carried out using the same quadrupolar echo sequence with identical

parameters as above, except that a spectral width of 500 kHz and a recycling

time of 600 ms were used.

Calculation of peptide structural parameters

Quadrupolar splittings (Dnq, kHz) of seven or four labeled positions were

measured from 2H NMR spectra of WALP23 and KALP23, respectively

(Table 1). 2H NMR signals were assigned to the deuterons of the alanine

side-chain methyl group as in previous work because the splitting of the

backbone deuteron was not observed (30). The Dnq-values for unoriented

samples were fitted to a model a-helix to determine the tilt (t), rotation (r),

and the labeled alanine side chain (ek) angles (18,19).

The tilt angle is defined as the angle between the peptide helical axis and

the bilayer normal, and ek is the angle between the peptide helix axis and

the Ca-CbD3 bond vector. The angle r is the angle of rotation around the

a-helical axis that is necessary to minimize the root mean-square deviation

(RMSD, kHz) between experimental and simulated Dnq-values for discrete

values of t and ek (17). The fitting procedure was based on the Dnq-values of

the labeled positions as indicated in Table 1 using an in-house computer

program written in Python 2.3. The errors in t, r, and ek were estimated with

deviations 60.4�, 63�, and 60.3�, respectively (19).

Analysis of 2H NMR spectra for determination of acyl
chain parameters

The recorded 2H-NMR powder spectra were numerically deconvoluted to

yield the u ¼ 0� spectra (31,32), resulting in so-called de-Paked spectra.

Using the Peak-Fitting Module in Origin 7.5, we deconvoluted the de-Paked

spectra to assign the peaks to carbon atoms along the sn-2 acyl chain. The

quadrupolar splittings determined from the de-Paked spectra were used to

calculate the order parameter, SCD(i), according to:

DnQðiÞ ¼
3

4
ðe2

qQ=hÞð3cos
2
u� 1ÞSCDðiÞ; (1)

where e2qQ/h ¼ 167 kHz for u ¼ 0� (31). From the determined order

parameters, we estimated the hydrocarbon thickness of one monolayer

according to the method described in (33–35). To estimate the hydrocarbon

thickness per monolayer the following equation was used:

DC ¼
nCl0

q
; (2)

where the factor nC is the number of carbons per acyl chain (i.e., 14 for di-

C14:0-PC), and the maximum segmental projection l0, was 1.27 Å. The

factor q was approximated from:

q � 3� 3Æcosbæ 1 Æcos
2
bæ; (3)

described by Brown and co-workers (33). In Eq. 3, the first Æcosbæ and

second moments Æcos2bæ are given by:

Æcosbæ ¼ 1

2
1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8SCD � 1

3

r !
(4)

Æcos
2
bæ ¼ 1� 4SCD

3
; (5)

where the order parameter, SCD of the plateau region is used to avoid

complication of chain upturns, early terminations, and interdigitation (33–35).

Steady-state fluorescence

All fluorescence experiments were performed at 30�C using a QuantaMaster

QM-1/2005 spectrofluorometer (Photon Technology International, Birming-

ham, NJ) in a quartz cuvette. The samples were excited at 295 nm, and

emission spectra were collected between 300 and 400 nm. The bandwidths

for both excitation and emission monochromators were 5 nm. Acrylamide

quenching of tryptophan fluorescence was performed to check the acces-

sibility of tryptophans in lipid bilayers as a function of TFE. Samples for

fluorescence experiments were prepared as follows: di-C14:0-PC and

WALP23 were mixed in TFE/chloroform at a peptide/lipid molar ratio of

1:100. The mixture was dried to a film that was rehydrated in buffer (25 mM

TRIS, 100 mM NaCl, pH 7.4). The samples were freeze-thawed 10 times,

extruded through a 200-nm membrane filter (Anotop 10, Whatman,

Maidstone, UK), and diluted in 1.25 ml of buffer to achieve a final

WALP23 concentration of 2.5 mM. The samples were treated with 4 or 8 vol

% TFE. Acrylamide was added in aliquots from a 3 M stock solution to each

sample up to a concentration of ;70 mM. The Stern-Volmer equation was

used to analyze the quenching data (36):

F0=F ¼ 1 1 KSV½Q�; (6)

where F0 is the Trp fluorescence in the absence of quencher and F is the

observed fluorescence at the concentration [Q] of the quencher. KSV is the

collisional quenching constant, which was determined from the slope of

Stern-Volmer plots. As a control, similar experiments were performed for

a L-Trp solution (10 mM). All data were corrected for inner filter effects

as described previously (36).

RESULTS

Influence of TFE on phospholipid bilayer

Before studying how TFE influences the interaction between

WALP and KALP peptides with lipid bilayers, we first
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analyzed the influence of this small alcohol on the properties

of the lipids themselves. For this purpose, 31P NMR exper-

iments were performed at 40�C on samples made of di-C14:

0-PC in the absence of peptides at different TFE concentrations.

All spectra up to 30 vol % TFE showed an anisotropic

pattern with a low field shoulder and a high field peak, which

are typical of multilamellar vesicle (MLV) bilayers in the

liquid crystalline phase (37). Selected spectra are shown in

Fig. 1 A. As plotted in Fig. 1 B, the chemical shift anisotropy

(CSA) decreases gradually on addition of TFE in the range of

0 to 30 vol % TFE. At 50 vol % TFE, vesicles are disrupted,

resulting in an optically clear solution of di-C14:0-PC, which

gives rise to an isotropic peak (Fig. 1 A).

The observed decrease in CSA may imply either a

decrease in particle size, which would result in motional

averaging from Brownian tumbling of the entire vesicles and

lateral diffusion of the lipids (38) or a decreased order in the

lipid headgroup region of the bilayers. To discriminate

between these two possibilities, we performed 31P NMR

experiments with flat-oriented bilayers of di-14:0-PC (18). In

these systems the motional axis of the phospholipids is

oriented parallel to the magnetic field, giving rise to a low-

field 31P NMR peak. On addition of TFE, we observed an

upfield shift of this peak (data not shown). In these systems

averaging of the CSA by a decreased particle size is excluded

because the motional axis of the phospholipids will remain

parallel to the magnetic field. Therefore, the most logical

explanation for the decreased CSA is that TFE affects the

order in the headgroup region of the phospholipid bilayer.

We performed 31P NMR experiments similar to those

above by adding TFE to MLV suspensions made of WALP23

or KALP23 in di-C14:0-PC in a peptide/lipid molar ratio of

1:30. All samples gave rise to typical ‘‘bilayer’’ spectra up to

a TFE concentration of 30 vol %. Fig. 1 B shows that the

presence of either KALP23 or WALP23 in di-C14:0-PC

slightly reduces the CSA when no TFE is present. However,

when TFE is added, the effect of peptides on the CSA is

removed, and samples of pure lipids and lipids containing

peptides behave similarly regardless of the amount of TFE

that is added. This indicates that the presence of peptide does

not interfere with the influence of TFE on the lipid headgroup

organization.

Influence of TFE on the order in the phospholipid
acyl chains

Recent work showed that the presence of TFE in a membrane

increases the disorder of the acyl chains of unsaturated

phospholipids (20). Here we investigated the effect on the

saturated lipid di-C14:0-PC by performing 2H NMR on di-

C14:0-PC-d27 (sn-2 chain deuterated) bilayers, as described

in (17,27,33). Experiments were first performed in the

absence of peptide. 2H NMR spectra of di-C14:0-PC-d27

multilamellar vesicles with and without TFE are shown in

Fig. 2 A. The line shape and the quadrupolar splittings from

the different labeling positions along the acyl chains for the

pure lipid dispersion are in good agreement with results from

a previous study of di-C14:0-PC-d27 (17,27,33). The addi-

tion of 4 vol % of TFE clearly reduces all the splittings,

indicating an increased averaging of the signals from the acyl

chains. In addition, some changes are observed in the 2H

NMR line shape, which can be ascribed to a depth-dependent

influence of TFE on the di-C14:0-PC bilayers.

To facilitate data analysis and assignment of the quad-

rupolar splittings that were difficult to resolve, the spectra

were de-Paked (Fig. 2 B). The resulting spectra would

correspond to aligned bilayers with their normals parallel to

the magnetic field. Assuming a monotonic variation of the

order parameters (S
ðiÞ
CD) along the acyl chains, the peak

assignment was based on the sequence of the labels along the

acyl chain. The largest splittings were assumed to be from

the labels closest to the headgroup region in the membranes.

From the splittings, corresponding S
ðiÞ
CD-values were

calculated of the di-C14:0-PC-d27 lipids in the absence and

presence of TFE (Fig. 3). A plateau region characterizes the

order profile of the lipids in the absence of TFE, indicating a

relatively high chain order near the bilayer interface. This is

followed by a rapid decrease toward the end of the acyl chain

in the core of the bilayer. As shown in Fig. 3, the order

parameters are in general reduced by the addition of TFE.

FIGURE 1 Influence of increasing concentration of TFE

on 31P NMR CSA of di-C14:0-PC bilayers at 40�C. (A)

Selected spectra of di-C14:0-PC multilamellar vesicles. (B)

Graph of the 31P NMR CSA versus TFE vol % of di-

C14:0-PC for pure lipids (;), for lipids with WALP23

(d), and for lipids with KALP23 (s). The precision of the

data is estimated to be 60.3 ppm, based on measurements

of duplicate samples.
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Note also that adding TFE shortens the plateau. Increasing

the TFE concentration up to 8 vol % resulted in a further

reduction of the order of the acyl chains.

Next, we used the order parameters to estimate the bilayer

thickness as described previously (33–35). As shown in

Table 2, the estimated bilayer thickness of di-C14:0-PC-d27

membranes at 40�C decreases from 25.0 Å to 21.2 Å on

addition of 8 vol % TFE, showing that the TFE-induced

disorder in the membrane results in a significant reduction of

the bilayer thickness.

Effects of peptide incorporation on lipid order in
the presence of TFE

To investigate the influence of TFE on the interaction of the

peptides with the lipids, we performed 2H NMR experiments

on samples of WALP23 and KALP23 in di-C14:0-PC-d27.

After recording the 2H NMR spectra of the lipid-peptide

suspensions, further measurements were performed on the

same samples with 4 or 8 vol % TFE added. Fig. 4 shows

selected de-Paked deuterium spectra. Experiments without

peptide in the membrane are included for comparison.

Introduction of WALP23 at a 1:30 peptide/lipid molar

ratio increases the order in the acyl chains. This is illustrated

by the increase of 2H NMR quadrupolar splittings with

respect to those in the pure di-C14:0-PC-d27 suspension,

which is in good agreement with previous observations (27).

When 4% TFE is added, the quadrupolar splittings are

reduced, but now the spectra are very similar in the absence

and presence of peptide. Similar behavior was observed for

8 vol % TFE (spectra not shown).

The loss of the ordering effect is also apparent from the

order parameter profiles (Fig. 5 A). When no TFE is added,

incorporation of the peptide results in a plot that is charac-

terized by a plateau region with higher S
ðiÞ
CD-values than for

the pure di-C14:0-PC-d27 suspensions, indicating an increased

order in the acyl chains. Toward the bilayer core, the order

parameters of both types of samples converge gradually. In the

presence of TFE, the order parameter profiles of di-C14:0-PC-

d27 and di-C14:0-PC-d27/WALP23 samples look very similar.

As shown in Table 2, the incorporation of WALP23 in di-

C14:0-PC-d27 causes an estimated increase in bilayer thickness

from 25.0 to 26.4 Å, in agreement with previous observations

(27). Addition of TFE reduces the estimated bilayer thickness

to values that are very similar to those obtained in the absence

of peptide. These results clearly show that TFE dissipates the

ordering effect and hence interferes with the lipid-peptide

interactions in case of WALP23.

Previously, it was observed that KALP23 peptides, in

contrast to WALP23, do not significantly influence lipid chain

FIGURE 2 2H-NMR spectra of di-C14:0-PC-d27 at 40�C

with or without 4 vol % TFE in TRIS buffer, pH ¼ 7.4. (A)

Original spectra. (B) De-Paked deuterium spectra obtained

as described (32) using the GRAMS software.

FIGURE 3 Order parameter profiles in di-C14:0-PC-d27 bilayers at 40�C

in TRIS buffer with pH ¼ 7.4. Plotted values were calculated as described

(31–33) for di-C14:0-PC-d27 (d), di-C14:0-PC-d27 1 4 vol % TFE (s), and

di-C14:0-PC-d27 1 8 vol % TFE (;).

TABLE 2 Estimation of the di-C14:0-PC bilayer thickness at 313

K deduced from order parameters

Sample

Bilayer thickness*

2 3 DC
y (Å)

di-C14:0-PC 25.0 (25.6z and 24.0§)

1 4% TFE 23.4

1 8% TFE 21.2

WALP23 26.4

1 4% TFE 23.2

1 8% TFE 21.6

KALP23 25.2

1 8% TFE 21.0

See Petrache, Dodd, and Brown (33).

*The peptide/lipid molar ratio of samples containing peptides was 1:30.

The estimated precision of the results is 6 0.1 Å, based on a standard error

of 0.2 kHz in 2H NMR measurements from duplicate samples.
yDC represents the distance in Å of the carbonyl atom to the center of the

bilayer (31–33).
zData at 30�C (33).
§Data at 50�C (33).
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order in di-C14:0-PC (27). Our results show that the order

parameter profiles (Fig. 5 B) or the bilayer thickness (Table 2)

in the presence of TFE are also unaffected by KALP23.

Influence of TFE on tilt angle of WALP23
and KALP23

We next investigated how the presence of TFE affects

properties of the peptides. In particular, we used 2H NMR on

d4-Ala-labeled peptides to monitor effects of TFE on tilt

angles of the peptides. Each peptide was labeled with a sin-

gle d4-Ala as indicated in Table 1 for WALP23 and KALP23

at seven and four different positions, respectively. The la-

beling positions were chosen to enable precise determination

of the tilt angles of the peptides in membrane bilayers and

the direction in which they tilt, as represented by rotation

angles of the a-helix axis with respect to the plane of tilt

(18,19,30). Selected 2H NMR spectra are shown in Fig. 6 for

two labeling positions of both the WALP23 and the KALP23,

with 0 and 8 vol % TFE in the di-C14:0-PC suspensions.

For both peptides in the absence of TFE, the spectra with cor-

responding quadrupolar splittings were in good agreement

with earlier results (18,19). When 8 vol % TFE was added,

changes in the quadrupolar splitting values could be ob-

served for all the labels of WALP23 (Table 3). This effect

was much less pronounced for KALP23, which was rather

insensitive to the presence of TFE.

We calculated the tilt (t), the rotation (r) and the labeled

side chain angles (Ek) in the absence and the presence of TFE

assuming a regular a-helical geometry of the peptides, as

described (18,19,30). The results are shown in Table 4.

When no TFE is added, a relatively small tilt angle of 5.3� is

observed, in agreement with previous results (19). The pres-

ence of 8 vol % TFE results in a decrease of the tilt angle

to 2.5� without a significant change of the rotation angle. In

contrast, for KALP23 the addition of 8 vol % TFE changes

neither the tilt angle nor the rotation angle.

Table 4 also shows that the angle ek of the labeled alanines

of WALP23 decreases slightly when TFE is added. A similar

effect was recently also observed for WALP23 and a Trp-

flanked polyleucine analog of this peptide (WLP23) on

reducing the bilayer thickness from di-C14:0-PC to di-

C12:0-PC (19). In this case the reduction of ek was proposed

to be a possible indication of a reduction in the length of the

backbone of Trp-anchored transmembrane peptides to help

the system to adapt to mismatch when the phospholipid bi-

layers are too thin to accommodate the whole hydrophobic

length of a transmembrane peptide. In the case of KALP23,

ek appears to be insensitive to the presence of TFE. This is in

line with the previous observation that ek in KALP23 is in-

sensitive to bilayer thickness (19). These results might sug-

gest that WALP23 senses mismatch more than KALP23 even

though it does not react to it by tilting as much as KALP23.

FIGURE 4 De-Paked 2H-NMR spectra of di-C14:0-PC-d27 and di-C14:0-

PC-d27 with WALP23 at 40�C with or without 4 vol % TFE in TRIS buffer,

pH¼ 7.4. De-Paking the spectra was performed using the GRAMS software

as described (30).

FIGURE 5 Order parameter profiles in di-C14:0-PC-d27 bilayers at 40�C

in TRIS buffer with pH ¼ 7.4. The order parameters for di-C14:0-PC-d27

(dashed gray line, gray circle) and for di-C14:0-PC-d27 1 4 vol % TFE

(dashed gray line, s) are plotted for comparison issues in panels A and B.

Plotted values for di-C14:0-PC-d27 1 WALP23 (solid line, ;) and di-

C14:0-PC-d27 1 WALP23 1 8 vol % TFE (solid line, n) are represented in

panel A. Order parameter profiles for di-C14:0-PC-d27 1 KALP23 (solid

line, ;), and di-C14:0-PC-d27 1 KALP23 1 8 vol % TFE (solid line, n) are

shown in panel B.
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Influence of TFE on the positioning of
the tryptophans

The deuterium NMR results suggest that WALP23 reduces

its tilt angle when TFE is added, even though the bilayer gets

thinner. To determine whether TFE has an influence on the

positioning of tryptophans in lipid bilayers, we performed

tryptophan fluorescence experiments. In di-C14:0-PC mem-

branes, WALP23 exhibits an emission maximum at ;334

nm, which is typical for positioning of tryptophans in the

interfacial region (39). When TFE is added to samples

containing large unilamellar vesicles composed of WALP23

and di-C14:0-PC in a 1/100 peptide/lipid molar ratio, the

fluorescence intensity decreases (Fig. 7 A). In addition, a red

FIGURE 6 2H NMR spectra for labeled alanines at positions 9 and 13 of

WALP23 and 13 and 15 of KALP23, incorporated in di-14:0-PC without

and with 8 vol % of TFE at a peptide/lipid ratio of 1:100. The isotropic peak

in the middle of the spectra is assigned to residual deuterium in H2O.

TABLE 3 Measured 2H NMR splittings of d4-Ala-labeled

WALP23 and KALP23 peptides in unoriented PC bilayers with

and without addition of TFE in kHz

Peptide/

phospholipid

TFE

vol %

Labeled residue

5 7 9 11 13 15 17 19

WALP23/

di-14:0-PC

0 4.3 0.7* 6.8 0.9 7.5 – 6.9 1.0

8 2.2 0.0* 3.5 0.2 4.0 – 3.8 1.7

KALP23/

di-14:0-PC

0 3.2 9.6 – – 0.5y 3.9 – –

8 2.5 9.6 – – 0.0y 5.0 – –

The error of the splittings is estimated to be 0.2 kHz, based on measurements

of duplicate samples.

*Quadrupolar splittings that could not be resolved and for which an estimated

value is given.

TABLE 4 Fit results using data from the four-labeled positions

summarized in Table 3 for WALP23 and KALP23

Fit parameters*

Peptide/

phospholipid

TFE

(%)

Tilt

angle

Rotation

angle

ek
angle

RMSD

(kHz)

WALP23/di-14:0-PC 0 5.3 162 58.4 0.4

8 2.5 154 56.8 0.8

KALP23/di-14:0-PC 0 7.8 278 58.5 0.4

8 7.5 286 58.7 0.3

*The estimated precisions (19) for the tilt angle t, the rotation angle r, and

ek are 60.4�, 63�, and 60.3�, respectively.

FIGURE 7 The effect of TFE on fluorescence emission spectra of

WALP23 in di-C14:0-PC (A) and L-Trp in buffer (B). The peptide/lipid ratio

of WALP23 in di-C14:0-PC was 1:100. The corrected spectra and the effects

of 4 and 8 vol % TFE on the fluorescence intensities are shown.
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shift of the emission spectrum (;2 nm) is observed,

indicating a more polar environment. This decrease in

fluorescence intensity is not a direct effect of TFE because

for free L-Trp in buffer, which shows an emission maximum

at 350 nm in a more hydrophilic environment, neither the

fluorescence intensity nor the wavelength of the emission

maximum is affected by this solvent (Fig. 7 B).

The effects of TFE on the local environment of Trp were

further investigated by monitoring Trp accessibility using the

aqueous quencher acrylamide. Fig. 8 A shows the Stern-

Volmer quenching plots of WALP23 in di-C14:0-PC (1:100

molar ratio), in which F0/F is plotted against the acrylamide

concentration in the absence and presence of TFE. Addition

of 4 vol % TFE increased the quenching constant (KSV) from

5.2 6 0.2 to 6.0 6 0.1 M�1, and at 8 vol % it was further

increased to 6.7 6 0.5 M�1. A qualitatively similar effect

was observed for a sample with a higher peptide/lipid molar

ratio of 1:30 (data not shown). Again this was not a direct ef-

fect of TFE because experiments on L-Trp in buffer (Fig. 8 B)

show no effect of TFE addition on acrylamide accessibility

(KSV ¼ 20.7 6 1.4 M�1 in the absence of TFE and 20.5 6

1.1 M�1 and 20.4 6 0.4 M�1 in the presence of 4 and 8 vol%

TFE, respectively). Thus, the fluorescence data are fully

consistent with an increased exposure of Trp in WALP

peptides to the aqueous environment and support our notion

that TFE addition results in a more upright position of

WALP peptides in a di-C14:0-PC bilayer.

DISCUSSION

In this work, we have used NMR to investigate how TFE

influences the structure of PC bilayers and how it affects the

interactions of the lipids with peptides that mimic trans-

membrane segments of membrane proteins. The results show

that TFE has drastic effects on membrane organization. We

first discuss the consequences of the partitioning of TFE in

the interfacial regions of the bilayer for the properties of the

lipids. Next, we describe how TFE can affect the properties

of the peptides by interfering with their interactions with the

lipid-water interface. Finally, we propose a model for the

mechanism by which TFE influences anchoring interactions,

in particular of Trp-flanked peptides with the lipid-water

interface.

Partitioning of TFE into the membrane-water
interface and implications for the behavior of
the lipids

In the first part of this study, we observed that the presence of

TFE decreases the order of both the lipid headgroups and the

acyl chains in PC bilayers. Similar disordering effects were

previously also observed in different phospholipid bilayers

for diverse short-chain alcohols such as ethanol (20,23). Like

ethanol, TFE is amphiphilic and has an octanol-water par-

titioning coefficient and dielectric constant favorable for

localizing in a relatively hydrophobic environment such as

membrane-water interfaces (22,40–43). However, TFE has a

stronger hydrogen-bond-donating hydroxyl group than eth-

anol (44) and a higher octanol-water partitioning coefficient,

which may favor the distribution in the interface more than

its nonfluorinated analog (41), explaining the larger efficacy

of TFE to influence the order of the acyl chains as measured

by 2H NMR (20) and, consequently, to reduce bilayer

thickness (23,45). It is important to note that these effects of

TFE on lipid packing imply that TFE also affects other

properties of the membrane such as the lateral pressure

profile. Moreover, the bilayer partioning of TFE, with its

relatively large dipole moment of 2.52 D (46), will affect the

dielectric properties of the interfacial region and the surface

tension, thereby also affecting bilayer elastic properties such

as the bending and compressibility moduli or its deformation

energy. In principle, all these parameters can play an important

role in lipid-peptide interactions (47–49 and references

therein).

FIGURE 8 Stern-Volmer plots of Trp fluorescence quenching by acryl-

amide. Both WALP23 in di-C14:0-PC (A) or L-Trp in buffer (B) and were

investigated with or without 4 or 8 vol % TFE. The WALP23:di-C14:0-PC

ratio was 1:100. Mean 6 SD from three experiments are given.
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Effects of TFE on the behavior of
transmembrane peptides

In the second part of our study, we analyzed the influence of

TFE on the interaction of the peptides with lipid bilayers by
2H NMR and fluorescence techniques. From the NMR

experiments, several striking results were obtained. First, we

found that addition of TFE results in a complete loss of the

acyl chain ordering effect of WALP23. A possible explana-

tion for this is that TFE inhibits acyl chain adaptation by

interfering with the anchoring interactions of Trp with the

interface. Under conditions of positive mismatch, the peptide

thus behaves similarly to a KALP peptide, which does not

have strong interfacial anchoring interactions. The second

striking observation is that the presence of TFE affects the tilt

angle of WALP23 but not of KALP23, suggesting that this

effect somehow also involves anchoring interactions with the

interface. Finally, although the bilayer becomes more disor-

dered and hence is expected to become thinner on TFE

addition, WALP23 was found to tilt less. This result, based on
2H NMR, was supported by results from fluorescence

quenching experiments, which showed an increased exposure

of Trp to the aqueous environment on TFE addition. How can

we understand this behavior?

In principle it is possible to explain the smaller tilt angle, as

observed by the 2H NMR studies, by assuming that the

presence of TFE in the lipid bilayer results in an increased

mobility of WALP23 with large fluctuations around average

tilt and rotation angles. This would lead to an increased

motional averaging of the observed quadrupolar splittings

and consequently to an underestimation of the ‘‘true’’ tilt

angle. However, in that case one would also expect this

apparent reduction of tilt angle to occur for KALP23. We

found that the tilt angle of KALP23 is insensitive even to high

concentrations of TFE (up to 30 vol %; data not shown).

Moreover, if the presence of TFE indeed leads to increased

motional averaging of WALP23, this should lead to a

reduction of all the quadrupolar splittings, which is not

observed, as illustrated by the effects of TFE on label 19 (see

Table 3).

Thus, the intriguing question remains of why TFE affects

the tilt angle of WALP23 and not of KALP23, and why

WALP23 would tilt less if the bilayer becomes thinner. One

likely explanation is that TFE actively drives WALP23 to

adopt a more upright orientation because of packing

constraints in the interfacial region. The bulky indole rings

of Trp require much space in the tightly packed lipid-water

interface, and partitioning of TFE into this region will reduce

the available space even more. Such packing constraints are

not present for KALP peptides, which require only the

charged amine groups of the lysines to reach the hydrophilic

surface of the membrane (9).

Another possible alternative to explain the decreased tilt

involves interference of TFE with the interfacial anchoring

interactions of Trp residues. Properties of the interfacial

region that are important for anchoring interactions include

the characteristic polarity gradient (50) and the electrostatic

properties of the lipid-water interface, which offer possibil-

ities for dipolar and quadrupolar interactions and for hydro-

gen bonding (9). Like ethanol, TFE will displace interfacial

water molecules and thereby change the electrostatic prop-

erties and render the polarity gradient at the interface less steep

by distributing in a gradient-like manner toward the exterior

of the membrane. As a result of these changes, the preference

for a specific orientation and localization of the indole groups

may become lost, which ultimately may result in a reduction

of the tilt angle.

In principle another possibility to explain the reduction of

tilt could simply be that the presence of TFE, which results in

a less hydrophilic environment at the interface, might reduce

the penalty for mismatch, thereby allowing the peptide to be

less tilted. However, in that case one might expect that the

KALP peptides also become less tilted, which was not

observed. Similarly, if the effect of TFE would be exerted

indirectly by influencing other properties of the bilayer itself

such as the curvature and the elastic properties of the mem-

brane or the lateral pressure profile (47), we might expect

that the reduction of tilt angle would be observed for both

WALP23 and KALP23 peptides, which is not the case.

Biological implications

Like ethanol and other short-chain alcohols, TFE is believed

to act as an anesthetic in a lipid-mediated way, although direct

interactions with membrane proteins cannot be excluded (51–

53). Recently, an attractive mechanism was postulated for a

lipid-mediated effect, related to remodeling of the lateral

pressure profile of the lipids in the bilayer, which in turn can

influence the conformation of the transmembrane parts of

membrane proteins (20,24). By using single-span a-helical

transmembrane peptides, which are expected to be rather

insensitive to changes in lateral pressure profile, we inves-

tigated here whether small alcohols can also act by simply

interfering with interfacial anchoring properties of membrane

proteins. We found that the effect of TFE on properties of

transmembrane peptides depends specifically on the nature of

the flanking membrane-anchoring residues, indicating that

TFE indeed can influence transmembrane protein segments

by disturbing their interactions with the lipid-water interface.

Thus, although relatively high concentrations of TFE were

used compared with clinically relevant concentrations (4 to 8

vol % in this study, corresponding to ;0.6 to 1.1 M, versus an

EC50 value of 24.3 mM) (54), our results suggest a new

mechanism by which anesthetic molecules such as TFE may

act on membrane proteins. An implication of these results is

that membrane proteins that are rich in aromatic anchoring

residues may be more efficiently affected by the presence of

TFE or other small amphiphilic solutes, than proteins the

transmembrane segments of which are flanked by charged

residues such as Arg or Lys. It may also be interesting to study
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the influence of TFE on other types of anchoring interactions

such as electrostatic interactions between charged flanking

residues of model transmembrane peptides and anionic lipids

(55).

Recently, it was observed that TFE and other small

alcohols can influence the association of oligomeric mem-

brane proteins in a way that is related both to their anesthetic

potency and to their lipid-disturbing effect (20). Our results

suggest that interference with anchoring properties of

aromatic amino acids may be considered as an additional

factor involved in the ability of these small alcohols to

dissociate membrane protein complexes (21,56).

In conclusion, our results emphasize the importance of

specific lipid-peptide interactions at the complex lipid-water

interfacial region for the organization of proteins and lipids

in membranes, and they shed new light on the possible roles

of aromatic amino acids as flanking residues in membrane

proteins.
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1324 Özdirekcan et al.

Biophysical Journal 94(4) 1315–1325



31. Davis, J. H. 1983. The description of membrane lipid conformation,
order and dynamics by 2H-NMR. Biochim. Biophys. Acta. 737:117–171.

32. Sternin, E., M. Bloom, and A. L. Mackay. 1983. De-pake-ing of NMR
spectra. J. Magn. Reson. 55:274–282.

33. Petrache, H. I., S. W. Dodd, and M. F. Brown. 2000. Area per lipid and
acyl length distributions in fluid phosphatidylcholines determined by
2H NMR spectroscopy. Biophys. J. 79:3172–3192.

34. Henzler-Wildman, K. A., G. V. Martinez, M. F. Brown, and A.
Ramamoorthy. 2004. Perturbation of the hydrophobic core of lipid
bilayers by the human antimicrobial peptide LL-37. Biochemistry.
43:8459–8469.

35. Rajamoorthi, K., H. I. Petrache, T. J. McIntosh, and M. F. Brown.
2005. Packing and viscoelasticity of polyunsaturated v-3 and v-6 lipid
bilayers as seen by 2H NMR and x-ray diffraction. J. Am. Chem. Soc.
127:1576–1588.

36. Lackowicz, J. R. 1999. Principles of fluorescence spectroscopy,
Kluwer Academic/Plenum, New York.

37. Seelig, J. 1978. 31P nuclear magnetic resonance and the head group
structure of phospholipids in membranes. Biochim. Biophys. Acta.
515:105–140.

38. Burnell, E. E., P. R. Cullis, and B. de Kruijff. 1980. Effects of tumbling
and lateral diffusion on phosphatidylcholine model membrane 31P
NMR lineshapes. Biochim. Biophys. Acta. 603:63–69.

39. de Planque, M. R. R., E. Goormaghtigh, D. V. Greathouse, R. E.
Koeppe II, J. A. W. Kruijtzer, R. M. J. Liskamp, B. de Kruijff, and
J. A. Killian. 2001. Sensitivity of single membrane-spanning alpha-
helical peptides to hydrophobic mismatch with a lipid bilayer: effects
on backbone structure, orientation, and extent of membrane incorpo-
ration. Biochemistry. 40:5000–5010.

40. Holte, L. L., and K. Gawrisch. 1997. Determining ethanol distribution
in phospholipid multilayers with MAS-NOESY spectra. Biochemistry.
36:4669–4674.

41. Abraham, M. H., H. S. Chadha, G. S. Whiting, and R. C. Mitchell.
1994. Hydrogen bonding. 32. An analysis of water-octanol and water-
alkane partitioning and the Dlog P parameter of Seiler. J. Pharm. Sci.
83:1085–1100.
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