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ABSTRACT Continuum electrostatic models have had quantitative success in describing electrostatic-mediated phenomena
on atomistic scales; however, there continues to be significant disagreement about how to assign dielectric constants in mixed,
nonhomogeneous systems. We introduce a method for determining a position-dependent dielectric profile from molecular
dynamics simulations. In this method, the free energy of introducing a test charge is computed two ways: from a free energy
perturbation calculation and from a numerical solution to Poisson’s Equation. The dielectric profile of the system is then
determined by minimizing the discrepancy between these two calculations simultaneously for multiple positions of the test
charge. We apply this method to determine the dielectric profile of a lipid bilayer surrounded by water. We find good agreement
with dielectric models for lipid bilayers obtained by other approaches. The free energy of transferring an ion from bulk water to
the lipid bilayer computed from the atomistic simulations indicates that large errors are introduced when the bilayer is
represented as a single slab of low dielectric embedded in the higher-dielectric solvent. Significant improvement results from
introducing an additional layer of intermediate dielectric (;3) on each side of the low dielectric core extending from ;12 Å to 18 Å.
A small dip in transfer free energy just outside the lipid headgroups indicates the presence of a very high dielectric. These
results have implications for the design of implicit membrane models and our understanding of protein-membrane interactions.

INTRODUCTION

Our present understanding of biomolecular function would

not have been possible without reference to a hierarchy of

simplified theoretical and computational models. Continuum

electrostatic theories and models occupy a prominent place

in this hierarchy. These theories deal with the response of a

complex material such as water and solvated ions to an ex-

ternal electric field usually through the Poisson or Poisson-

Boltzmann equation. These theories are useful by virtue of

being relatively simple and intuitive. They are analytically

solvable for simple geometries, and rapid methods exist for

their numerical solution in problems containing complex

geometries. From their solution, the free energy of solvation

can be directly determined, which is difficult in more detailed

models. Although fundamentally macroscopic theories, they

have had widespread quantitative success for describing

electrostatic-mediated phenomena on atomistic scales such

as predicting free energies of solvation of ions and small

ligands, computational docking and drug design, predicting

pKa shifts of chemical groups, predicting the effects of

added salt, and predicting changes in protein folding and

binding stability by charge mutations. Continuum electro-

statics has also been combined with molecular dynamics

simulations to study the folding of peptides and small

proteins, usually through the application of the generalized

Born approximation. The literature describing these theories

and applications is vast; however, a number of recent re-

views exist on the application of continuum electrostatics

theory to biomolecules (1–5) and methods based on the

generalized Born equation (6).

A crucial parameter in continuum electrostatics is the

relative dielectric susceptibility or dielectric constant. The di-

electric constant describes the local polarizability of the

medium in response to an external electric field. It is assumed

frequently that the polarization response is linear, local in

space, in the direction of the applied field and isotropic. The

dielectric constant also has a frequency dependence, al-

though the relevant quantity is usually its zero frequency

value. In all instances the dielectric constant is a function of

position, although many systems are sharply divided into

solvent and solute regions and each region has a nearly con-

stant value of dielectric. In this situation, one must choose

the two dielectric constants for solute and solvent and the

location of the dielectric boundary, a choice that is known to

strongly affect the results of continuum calculations (7). It is

often useful to represent a portion of the system explicitly but

treat the remainder of the system implicitly with continuum

electrostatics. In this context, the dielectric constant is not a

universal parameter, but rather a function of what aspects of

the system response are treated implicitly and what aspects

of the system response are treated explicitly (8). There is

wide choice in the explicit/implicit division. In some instances

one might choose to treat only the high-frequency electronic

polarizability implicitly and to treat the lower frequency

vibrational and orientational polarizability explicitly. More

commonly, one might choose to treat the response of the

surrounding solvent bath, usually water and ions, implicitly

and any solute molecules explicitly. For systems with lipid

bilayers, one can even treat the lipid molecules implicitly as a
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continuum dielectric (9,10). In such a system, the dielectric

constant must vary continuously from its large value in the

surrounding water to a low value in the bilayer interior.

If continuum electrostatics is to be reliable as a predictive

theory, then the choice of dielectric constant should be nearly

consistent for different types of problems. For example, the

choice of dielectric constant that properly models pKa cal-

culations in a protein should be similar to the choice of

dielectric constant that works for studying electrostatic sta-

bilization of protein complexes and similar to the macro-

scopic dielectric constant of bulk protein—provided that all

the explicitly represented charge rearrangements are prop-

erly accounted for. That being said, adjusting the dielectric

constant for the particular problem of interest, i.e., fitting,

will clearly result in better agreement for that problem.

For an inhomogeneous system, a difficult problem is how

to compute the position-dependent dielectric constant, which

will be referred to as the dielectric profile. Examples of such

systems include a protein in aqueous solvent or small mol-

ecules in a lipid bilayer surrounded by aqueous solvent. For

bulk materials, the dielectric constant is typically determined

using the Fröhlich-Kirkwood theory (11–13). This method

uses the fact that spontaneous polarization fluctuations of a

material induce a dielectric response or reaction field from

the surrounding medium, which then acts to further polarize

the material. The bulk dielectric constant of a material can

then be assessed from the correlation of spontaneous polar-

ization with its own reaction field. In inhomogeneous sys-

tems, the response of a system to its own reaction field is

complex and a direct application of the Fröhlich-Kirkwood

theory is not possible; but, for systems with enough spatial

symmetry, variants of the theory have been applied with

some success. For example, two calculations have been

made of the dielectric profile of an implicit lipid bilayer sur-

rounded by solvent. In the first calculation, it was assumed

that dipole fluctuations in different layers of the bilayer are

not directly coupled but only indirectly through interactions

with the reaction field of the surrounding medium (14). A

later study found an analytic solution for the polarization

response of this system to an external electric field that did

include direct electrostatic interactions between different

parts of the bilayer/water system. This analytic result was

used to compute a dielectric profile from simulations (15). In

this manuscript, we present a new approach to determining

the dielectric constant of inhomogeneous systems. As a proof

of concept, we apply this method to determining the dielec-

tric profile of a lipid bilayer surrounded by water. In our

approach, test particles are used to determine the local aver-

age electrostatic field and its fluctuations. The dielectric

profile of the system is then determined by matching the field

fluctuations to the response expected by a numerical solution

of Poisson’s equation. This method has a number of advantages:

1. There is no need for an analytic solution of the polari-

zation response of the system to an applied electric field.

The polarization response is determined rapidly using

numerical methods. Because numerical methods are used

to determine the dielectric profile, this method can be

easily applied to systems with complex, nonsymmetric

geometries.

2. Although the optimal choice of dielectric constant for dif-

ferent problems should be roughly consistent with each

other, some differences will arise from inherent limita-

tions of the continuum electrostatics model. In this case,

the best choice of dielectric constant is the one that best

fits the problem being modeled. In most microscopic

calculations, the primary interest is the free energy of

solvation of small molecules, ligands or peptides. By

fitting our dielectric constant to reproduce the local sol-

vation free energy, we are more likely to accurately

model these types of problems. The determination of di-

electric constants based on large-scale dipole fluctuations

is a very different type of problem, less likely to produce

quantitatively precise estimates of free energies of

solvation.

In the following sections, we describe our approach and

apply it to determine the dielectric profile of a lipid bilayer

surrounded by water.

METHODS

The atomistic simulations are carried out with the GROMACS suite of

programs (16). Our system is composed of 128 POPC (1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine) molecules, 64 lipids per leaflet, oriented with

the bilayer normal in the z direction. This is surrounded on both sides by

4204 water molecules. Two uncharged Leonard-Jones (LJ) particles are

added to the system. The initial bilayer structure was generated by starting

from a previously equilibrated POPC bilayer with 32 lipids (17) and

doubling the system along each direction in the plane of the bilayer to a total

size of 128 lipids. Additional waters were added away from the bilayer. The

box dimensions are ;60 Å 3 60 Å 3 78 Å. The G45A3 force field was used

for the POPC lipids (18) with the partial charges of Chiu et al. (19). We used

the SPC water model (20). The system was simulated in the NpgT ensemble

at 300 K with 1 bar of external pressure and zero surface tension. Particle-

Mesh-Ewald was used for the electrostatics calculations (21,22) with a 14 Å

cutoff, a 64 Å 3 64 Å 3 96 Å grid, fourth order Lagrange interpolation, a

Gaussian screening function with a width of 4.48 Å, and tinfoil boundaries at

infinity. Leonard Jones interactions are switched off smoothly between 12

and 14 Å. A 16 Å pair-list was updated every 10 integration steps. A 4 fs

integration time step was used. All bonds involving hydrogen were held

rigid with the LINCS algorithm (23). Water molecules were held rigid with

the SETTLE algorithm (24). Temperature and pressure were maintained

with a Nose-Hoover thermostat (25,26) and the method of Andersen,

Parrinello and Rahman (27,28) with uniform box scaling in the plane of the

bilayer and independent box scaling in the z direction. Center of mass

motion was removed every 10 integration steps.

The LJ particle in each simulation was restrained by a potential of the

form 1 kJ=mol=Å
2
3 z� z0ð Þ2; the average z coordinate of all the nitrogen

atoms in the POPC molecules was defined as the zero value of z. The second

LJ particle is restrained by the same type of potential, but with z0 replaced by

z0 � 30 Å. The LJ particles are free to move in the plane of the bilayer.

Separate simulations were carried out for both the small and the large LJ

particles at each value of z0 from 0 to 30 Å in steps of 2 Å.

The simulations for the large LJ particles were begun by placing the

particles approximately at their target depths. This was followed by a short
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minimization, equilibration of 4.2 ns, and a production run of 10 ns (14.2 ns

total). The small LJ particle simulations were begun by replacing the large

particles with small ones in the final state found after 14.2 ns of simulation.

This was followed by an additional equilibration of 2.3 ns and a production

run of 4.0 ns (6.3 ns total).

The free energy of charging was determined by computing the energy

change for the system created by adding a test charge to each LJ particle

individually of �0.01jej, �0.001jej, 0.001jej, or 0.01jej. In addition, 0.0jej
was added as a reference. The free energy change, determined from Eq. 1

was fit to a quadratic form to determine the quadratic dependence of free

energy on the charge. The average free energy change at �30 Å and 130 Å

was subtracted to determine the free energy for transferring a charged

particle from water to any given depth in the bilayer (ignoring the linear free

energy component due to the static electrostatic potential created by the

bilayer).

The Poisson equation was solved with APBS (29–31) using a uniform

grid of dimension 161 Å 3 161 Å 3 161 Å with a grid spacing of 0.3 Å. A

multi-grid cycle was used for minimization with four levels. The potential at

the grid boundaries was fit to the result from a single Debye-Huckel

calculation with an exterior dielectric of 61 (to match SPC water). Tests

indicate that replacing the anisotropic membrane/water environment with a

single bulk continuum beyond 24 Å (as done here) results in an error of

,1 kJ/mol of total free energy. For comparing to the atomistic simulations,

the energy change was computed for transferring the LJ particles from bulk

water to the desired depth in the bilayer, which required two calculations, a

reference calculation without a bilayer, and a calculation with the dielectric

modified outside the LJ particle to represent the bilayer. The variable

dielectric of the bilayer was introduced by modifying the dielectric grids

produced by APBS. No dielectric smoothing was used. Particle charges were

smoothed over several grid points using a 4th order spline fit. The dielectric

inside the LJ particles was set at a value of 1. The radius of the particles was

set at the appropriate Born radius needed to match the average charging free

energy at �30 Å and 130 Å: 2.5 Å for the large particle and 1.27 Å for the

small particle. It should be noted that these radii match closely the radii

necessary to reproduce the transfer free energies from water to the bilayer

center.

For fitting of the dielectric constant, Fletcher-Reeves conjugate gradient

minimization (32) was used as implemented in the Gnu Scientific Library

(http://www.gnu.org/software/gsl/). The actual quantity that was minimized

was

+
N

i¼1

ðGpoissonðxiÞ�Gpoisson;bulk-waterÞ�ðGFEPðxiÞ�GFEPð30AÞÞ
� �2

;

where Gpoisson(x) is a calculation of the free energy of charging a test particle

at a position x relative to the bilayer center; Gpoisson,bulk-water is the free

energy of charging that test particle in an infinite bath of water; and GFEP(x)

is the free energy of charging a test particle from free energy perturbation.

The sum is over all test charges: both large and small test particles at

distances ranging from 0 Å to 30 Å from the bilayer center.

THEORETICAL BACKGROUND

In a system, the introduction of a small test charge dq is

going to change the energy in proportion to the local elec-

trostatic potential fðrÞ. The local electrostatic potential is a

function of the instantaneous conformation of the bath. In

our example problem, the bath is lipid bilayer plus sur-

rounding water. Over a long period of time, the instanta-

neous potential takes on a distribution r½fðrÞ� of values at

each position r. Because the energy change due to the test

charge is proportional to the potential, this also determines

the distribution of energy changes that would result when a

test charge is introduced.

The change in free energy of the system created by adding

a small test charge can also be determined from standard free

energy perturbation formulas: (33)

DG¼�RT lnÆe�DE=RTæ0 (1)

¼ ÆDEæ0 1
1

2RT
Æ DE� ÆDEæ0½ �2æ0 1 ÆOðDE

3Þæ0 (2)

¼ Æfæ0dq1
1

2RT
Æ f� Æfæ0½ �2æ0ðdqÞ2 1Oðdq

3Þ (3)

�Adq1BðdqÞ2 (4)

DG is the change in the Gibbs free energy for adding charge,

R is the ideal gas constant, T is the temperature, DE is the

change in energy due to adding the test charge, and square

brackets indicate an average over the unperturbed system

(i.e., without the test charge). For small charges, we can

truncate this expression after the second term. For systems

without mobile charges, the response of the bath in con-

tinuum electrostatic models is assumed to be linear in the

applied charge. For systems that satisfy linear response this

quadratic expression holds regardless of the magnitude of the

test charge.

The use of periodic boundary conditions does add one

complication: the total energy change is no longer a strictly a

linear function of the test charge because, 1), the reaction

field at infinity introduces a potential energy change that is

quadratic in the introduced charge, and 2), the total system

charge is no longer zero. These effects change the energy

quadratically in the introduced charge when Ewald summa-

tion is used (34–36). This introduces additional quadratic

terms in the free energy, so, strictly speaking, Eqs. 2 and 3

are no longer equivalent, but differ by terms quadratic in dq.

We will show numerically that these correction terms are

negligible for our particular problem.

We use molecular dynamics simulations to determine the

quadratic dependence of the free energy at the location of an

introduced test charge, viz. coefficients A and B. This can be

done by introducing a small test charge, determining the

change in free energy using Eq. 1 and fitting this to a qua-

dratic dependence. Alternatively, one can determine the co-

efficients by determining the distribution of electrostatic

potential values directly from Eq. 3.

We can determine the dielectric constant from the B
coefficient, which is a function of the position r. We treat the

static potential (i.e., the A coefficient) separately from the

potential fluctuations. One could attempt to replace the static

potential with a static charge distribution that would also

polarize the dielectric medium. We do not do that here

because we are interested primarily in the dielectric profile.

For a system in which the medium is described by Poisson’s

equation, that is a medium with a local, linear polarization

response and no mobile charges, the free energy of charging

varies quadratically with the charge. This quadratic depen-
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dence occurs, 1), because Poisson’s equation is linear, so

the electrostatic potential at each point in space is a linear

function of the introduced charge dq, and 2), because the

total free energy change is given by DG ¼ 1=2ðdqÞf}ðdqÞ2
(37). Thus there is a natural correspondence between the

quadratic dependence of free energy on the test charge as

determined by Poisson’s equation and the quadratic depen-

dence from free energy perturbation and linear response

theory. The dielectric constant as a function of position can

then be determined by requiring the coefficients of the

quadratic terms determined from a simulation and from the

solution of Poisson’s equation to match.

To summarize our method:

1. We simulate our system to determine the quadratic depen-

dence of the free energy on the magnitude of a test charge

introduced at multiple, pre-defined positions. This deter-

mines the B(r) coefficient at these positions. Alterna-

tively, electrostatic potential fluctuations may be used to

determine the coefficient B(r).

2. With trial values for the dielectric profile e(r), the Poisson

equation is numerically solved to determine the quadratic

free energy dependence at each test charge position. The

best result for e(r) is obtained by minimizing the discre-

pancy in free energy between the simulations and the

Poisson equation for all test charge positions simulta-

neously.

Simulations can be done with explicit test particles; alter-

natively, the atoms of the solute and solvent molecules can

be used directly as test-charge points. The latter method may

potentially introduce artifacts because the intramolecular

solvent response may be quite different from the solvent

response around an external particle. For that reason we

believe it is usually more appropriate to simulate the system

with an external test particle. This test particle is simulated

with zero charge, and a test charge is subsequently added to

its center. Multiple test charges may be included simulta-

neously in many instances as long as they are explicitly

modeled in the solution of Poisson’s Equation. Details of

implementation of our approach are given in Methods.

APPLICATION TO MEMBRANE DIELECTRIC

We apply our method to determine the dielectric profile of a

model lipid bilayer surrounded on both sides by water.

Although lipid bilayers are frequently modeled as simple

low-dielectric slabs, their actual dielectric profile is more

complex. Previous membrane simulations have revealed the

basic features of the dielectric profile (14,15). The most

important difference between these computed profiles and a

single-slab model is that a region of intermediate dielectric

constant extends deep into the bilayer core. This region of

intermediate dielectric creates the possibility for binding of

molecules to the lipid-water interface. This type of interfacial

binding has been studied intensely for a number of years and

reviewed in White and Whimley (38). Recent all-atom sim-

ulations (17) have suggested that interfacial binding can

occur because the region of low dielectric in the bilayer

center is much thinner than the region of low surface tension.

(Surface tension here is not the bilayer surface tension but

the free energy for introducing an uncharged nonpolar mol-

ecule into the bilayer/water system divided by the surface

area of that molecule.) This discrepancy creates an interfacial

region with a large dielectric constant but a low surface

tension that accommodates large molecules that are too polar

to enter the bilayer core. The different dependence of dielec-

tric constant and surface tension necessary to capture this

effect has also been incorporated into a generalized Born

model of the bilayer (39).

Our system is composed of 128 POPC (1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine) molecules, 64 lipids

per leaflet. This is surrounded on both sides by 4204 water

molecules. Two uncharged Leonard-Jones (LJ) particles are

added to the system. These particles are free to move in the

plane of the bilayer, but their motion in the z direction, i.e.,

perpendicular to the plane of the bilayer, is harmonically

restrained, allowing motion of at most a few Angstroms. One

particle is harmonically restrained about a position z0 relative

to the bilayer center, defined as the average position of the

lipid choline nitrogen atoms on both leaflets. The other

particle is harmonically restrained about a position z0 � 30

Å, so that as one particle moves through one bilayer leaflet

away from the center, the other particle moves through the

other bilayer leaflet toward the center. Two sets of simula-

tions were carried out, with the radii of the test particles set to

different values. In each set of simulations, z0 varied from 0

to 30 Å in 2 Å increments. The system is periodic in three

dimensions and simulated in an NpgT ensemble. An illus-

tration of the system is shown in Fig. 1. Further details of the

simulation are provided in Methods.

After the simulations are finished, a small test charge is

added to each test particle, and the free energy change is

determined by free energy perturbation. (Because each sim-

ulation contains two test particles, charge was added to only

one test particle at a time.) This free energy is fitted to Eq. 4

to determine the A and B coefficients. The test charge is

either 10.001jej or �0.001jej. The distribution of electro-

static potential values, r½fðrÞ�; determined from these test

charges is shown in Fig. 2. (We show only the results for a

particle at the bilayer center and a particle at 30 Å from the

bilayer center.)

Analytic results show that the energy change due to the

introduction of a test charge dq into a neutral unit cell results

in a small quadratic deviation from Coulomb’s law (34–36).

We need to show that this does not materially alter our

results. Test charges of 10.01jej and �0.01jej were used to

compute r½fðrÞ� in addition to charges of 10.001jej and

�0.001jej as shown in Fig. 2. From this figure, we can see

that the relative differences in the distribution r½fðrÞ� deter-

mined from different-sized test charges are small, meaning
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that the errors introduced by using a nonneutral cell have an

inconsequential effect on our estimated distribution r½fðrÞ�.
Furthermore, Fig. 2 shows that the total energy change from

adding 10.01jej to a test particle is a small enough per-

turbation for the approximations in moving from Eqs. 1 to 2

to be valid.

The distribution r½fðrÞ� can be fitted to high accuracy

with a Gaussian distribution, which is consistent with our

assumption of linear response and the assumption of a fixed,

charge-independent dielectric constant. Because of the large

dielectric constant in the solvent, we can only be confident

that this result holds to ;0.1jej for test particles with jzj .
18 Å. Obviously dielectric saturation will eventually occur

for some large charges.

To compute the effect of charging our test particles using a

continuum description we need to assign a radius to our test

particles, which is not necessarily identical to the van der

Waals radius. We choose the radius of our test particles to be

equivalent to the Born radius of an ion (40) with the same

charging free energy as our test particle has when 30Å from

the bilayer center. The dielectric constant is chosen to be that

of bulk SPC water, 61 6 1 (41). In other words, the radii

for the continuum calculations are chosen to provide exact

agreement between the continuum electrostatic calculations

of an ion in an infinite bath of water and our free energy

perturbation calculations at 30 Å.

After choosing the appropriate test-particle radii, the free

energy for charging each of the test particles is computed by

FIGURE 1 Illustration of the simulated system used to determine the

dielectric constant. The system contains 128 POPC lipids, 4204 SPC waters,

and two uncharged LJ cavities. One cavity is harmonically restrained in its

z motion relative to the bilayer about a position z0. The other cavity is har-

monically restrained in its z motion relative to the bilayer about a point at z0�
30 Å. This allows both bilayer leaflets to be studied simultaneously from a

single simulation. A separate simulation was carried out for each value of z0

from 0 to 30 Å in 2 Å increments. The system is periodic in three dimensions.

FIGURE 2 Distribution of instantaneous values of the electrostatic poten-

tial for the simulation of large LJ particles at the center of the lipid bilayer (A)

and 30 Å from the center (B). The electrostatic potential is estimated for

convenience to be fðrÞ � dE=dq;where dE is the change in potential energy

of the system created by placing a charge dq on the Leonard-Jones test

particle. This expression is exact for a nonperiodic system but in error by a

term quadratic in dq for periodic systems. To show that these quadratic terms

are negligible, we show that the calculations are essentially identical for two

test charges of different magnitude: 0.001jej in squares and 0.01jej in circles.

Solid curves are two-parameter Gaussian fits to the distribution with ad-

justable mean and standard deviation (s). The distribution of electrostatic

potential values is very close to a Gaussian distribution as predicted by linear

response theory and in agreement with the postulates underlying the de-

scription of continuum electrostatics as described by Poisson’s equation.
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numerically solving Poisson’s equation. The dielectric profile

is systematically adjusted to maximize agreement between

these continuum calculations and our atomistic simulations.

The bilayer/water dielectric profile is modeled as a series

of slabs of constant dielectric. Each slab is 2 Å in thickness.

Slabs extend from the bilayer center to 30 Å, and beyond 30

Å, the dielectric constant is assumed to take its bulk value of

61. Breaking the dielectric into slabs is a convenient discre-

tization and parameterization procedure. The dielectric con-

stants within the individual slabs are varied so that the free

energy of charging all large and small cavities as determined

from Poisson’s equation matches the free energy of charging

as determined from our atomistic simulations (discarding the

linear free energy term corresponding to the static membrane

electrostatic potential). The dielectric constants are initially

adjusted manually. This is followed by a round of conjugate

gradient minimization. Poisson’s equation is solved using

the APBS program (29–31). Details are provided in

Methods.

The dielectric profile resulting from this fitting is shown in

Fig. 3. The corresponding agreement between the Poisson

and molecular dynamics calculations of DDG are shown in

Fig. 4. There are a number of notable features in the dielec-

tric profile shown in Fig. 3. First, a region of high dielectric

constant extends deep into the bilayer. The lowest dielectric

core extends only out to ;12 Å from the center. Second, this

core region is bounded by a deep-interfacial layer of inter-

mediate dielectric, with a dielectric constant ;3, extending

to ;18 Å. Third, a region of very high dielectric extends

from this region to ;28 Å from the center. Our simulations

cannot definitively set the value of the dielectric constant in

this region, although it is several times larger than the value

of bulk water and is consistent with a peak value of infinity in

this region. The large dielectric is physically reasonable,

because the lipid headgroups contain a very large permanent

dipole between the positively charge choline groups and the

negatively charged phosphate groups. Beyond this high di-

electric region, the dielectric constant is similar to bulk water.

The existence of an intermediate dielectric layer flanking the

core has been observed in previous simulations (14,15) of

lipid bilayers. In addition, one simulation (15) also found a

region of higher-than-bulk-water dielectric near the lipid

phosphatidyl-choline groups.

To gain some insight into the dielectric profile shown in

Fig. 3, we computed the density profiles of water and the

various POPC chemical groups along the z axis. Fig. 5 shows

that the density of water becomes significant at ;12 Å from

the bilayer center and reaches bulk value at ;25 Å. The polar

carbonyl/glycerol groups also start ;10 Å from the bilayer

center and peak at ;16 Å. The presence of water, at a re-

duced density, and the carbonyl/glycerol groups perhaps

explains the intermediate value of the dielectric constant in

this region. The choline (net charge 1jej) and phosphate (net

charge �jej) groups, together forming a large dipole, are

centered near 20 and 21 Å, respectively. This region

approximately coincides with the region of high dielectric

(between 18 and 28 Å).

The transfer free energy obtained from the simulations,

shown in Fig. 4, allows us to directly address the question:

FIGURE 3 Dielectric profile fit to match the free energy of transfer from

Poisson calculations with the free energy of transfer from atomistic simu-

lations as closely as possible (Fig. 4). The dielectric profile is represented as 15

layers of constant dielectric of 2 Å in thickness from 0 to 30 Å. Beyond 30 Å,

the dielectric is assumed to take the bulk value of SPC water, 61. Bars indicate

approximate confidence limits. These are determined by fitting the large and

small cavities in each leaflet separately, four sets of independent data points.

The maximum value and minimum values from these four independent fits are

used as the upper and lower confidence limits. The value of the high dielectric

region between 22 and 24 Å cannot be precisely determined; however, its

value is larger than all the other surrounding layers. This multi-layer dielectric

profile can be approximated closely by a ‘‘two-slab model’’ in which the

dielectric constant from 0 to 12 Å takes a value of 1, the dielectric constant

from 12 to 18 Å takes a value of ;3, and the dielectric constant beyond 18 Å

takes the value of bulk water. The abrupt onset of the intermediate dielectric at

12 Å corresponds to the water boundary, and the high dielectric peak

corresponds approximately to the location of the POPC headgroups (Fig. 5).

FIGURE 4 Free energy for transferring an ion with a charge of 1jej from

bulk water to a given depth in the bilayer. Points are computed from atomistic

simulations. Solid lines connect points computed from Poisson’s equation

using the dielectric profile of Fig. 3. The z position of each ion is taken to be the

mean position of the restrained test particles in their uncharged state.
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how accurate are models of the lipid bilayer that represent it

as a single low-dielectric slab? The results of replacing our

complex dielectric profile by a single-slab model of the

bilayer are shown in Fig. 6. In this calculation, the core of the

bilayer is given a dielectric of 1, and it extends to 13 Å from

the center. Beyond this, the dielectric constant is set to that of

bulk water. Although a single-slab model can properly

model the core, the region between 13 Å and 18 Å from the

bilayer center is improperly treated as bulk solvent. Transfer

free energies from water to this region are in error by as much

as 60 kJ/mol for the large LJ particle. Increasing the thick-

ness of the low dielectric core would not result in significant

improvement, because a comparable amount of error would

occur in the opposite direction, viz., over-estimation of the

free energy of transfer in this intervening region.

Replacing the single-slab model with a two-slab model

results in significant improvement (Fig. 6). In the two-slab

model, there is a low dielectric core with dielectric 1 ex-

tending to 12 Å. (The thickness of the low dielectric core

region was reduced from 13 to 12 Å to compensate for small

changes in the profile created by the reduction in dielectric

constant outside this region from 61 to 3.) This is surrounded

by a single interfacial region of dielectric 3 extending from

12 Å to 18 Å. Beyond 18 Å the dielectric constant assumes

the value of bulk water. This two-slab model captures nearly

all the variation in the transfer free energy. The only thing

missing from this model is the negative free energy of

transfer for particles moving from bulk water into the outer-

most interfacial layer. This negative free energy of transfer is

caused by the region of high dielectric interface not included

in the two-slab model. An additional high dielectric slab can

be added to capture this effect if desired.

DISCUSSION

We have applied a simple, intuitive method for determining

the dielectric profile in a complex, nonhomogeneous system,

which is to fit the dielectric profile to optimize the match

between Poisson’s equation and atomistic simulations in

charging free energy. The primary advantage of this over

existing methods is that no analytic solution for the response

of the system to an external electric field is necessary. Thus,

it can be applied easily to systems with complex geometries.

The primary limitation of the method is its requirement of

multiple simulations to place test particles at different posi-

tions. This difficulty can be partially overcome by carrying

out the simulation with multiple test particles simulta-

neously. This should not introduce much error provided the

test particles are widely separated. Furthermore, one could if

necessary solve Poisson’s equation with the other test par-

ticles present to correct for their effect. A much larger

perturbation might be introduced if one attempted to insert a

test particle into a well-packed system such as a protein core.

In instances such as this, it might be more prudent to use

the protein atoms themselves as sites for perturbing the

charge. Likewise, individual water molecules could be used

as sites for introducing excess charge. This approach has the

advantage that only a single simulation will provide multiple

sites for charge perturbation, one for each atom. We do not

know if the dielectric constant introduced in this way would

differ significantly from the dielectric constant determined

from using test particles due to the fact that the charge in-

troduced is within the same molecule or not. Certainly some

dielectric changes will occur with bonded and near-bonded

FIGURE 5 Distribution of water and phosphatidylcholine (PC) head-

groups along the z axis. The region of intermediate dielectric (;3) located

between 12 and 18 Å from the bilayer center seems to largely correspond to

the location of the carbonyl groups and water buried deep in the membrane.

The large dielectric peak that occurs between 18 and 28 Å corresponds

roughly to the region near the peaks of the negatively charged phosphate

groups and the positively charged choline groups, although it is shifted by a

few angstroms away from the bilayer interior.

FIGURE 6 Average free energy of transfer from bulk water to a particular

position from the bilayer center as determined from simulations using both

small and large LJ particles (squares). The curves are numeric solutions to

the Poisson equation using a single-slab model (solid) and a two-slab model

(dotted). In the single-slab model, the bilayer is modeled as a single slab with

a uniform dielectric constant of 1 extending from 0 to 13 Å embedded in the

higher-dielectric aqueous region. In the two-slab model, the central bilayer

core has a dielectric constant of 1 and extends from 0 to 12 Å, and this is

flanked by a region with a dielectric of 3 from 12 to 18 Å. Beyond that, the

dielectric takes on the value of bulk water.
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atoms, which might conceivably make the intramolecular

polarization different from the polarization experienced by

an external test particle.

In all instances, this method is bound by the limitations of

atomistic simulations. These simulations may miss long-time

relaxations. The long-time relaxations will most likely work

to reduce the apparent dielectric constant in the region of a

test particle, because shorter simulations will usually under-

estimate the fluctuations in the local electrostatic potential.

The most serious limitation of the current calculation is

that it is based on an atomistic model that does not include

electronic polarization. The dielectric constant in the bilayer

core has a dielectric constant of 1 in atomistic simulation,

when in reality electronic polarization should result in a di-

electric constant closer to that of bulk alkanes, which is ;2

(42). This factor of 2 will result in a factor of 2 difference in

the value of the electrostatic component of the transfer free

energy from bulk water to the bilayer interior.

Throughout the calculation, we have assumed that the

bilayer and water can be treated as an electrostatic continuum

with a local, linear, and isotropic dielectric response. These

assumptions are frequently made for small molecules in an

aqueous environment; however, significantly less confidence

can be given to them when the whole membrane is treated

implicitly. A number of significant differences exist between

pure aqueous solvent and the membrane/water environment.

The primary difference is that water molecules are smaller

than organic molecules, justifying the treatment of them as a

continuum; whereas, lipid molecules are often much larger

than the solute of interest. The large size of the lipid

molecules opens the possibility that the electrostatic inter-

actions for solutes smaller that the lipid molecules may be

quite different than electrostatic interactions for large sol-

utes. In particular, local interactions between the solute and

the lipid molecules may be communicated some distance

through the bonded structure of the lipid molecules. Some

attempts have been made to account for the finite size of

water solvent dipoles, e.g., the semi-microscopic Langevin

Dipoles model (see Shutze and Warshel for a review of these

and related methods) (8). The Langevin Dipoles model has

also been used to model a lipid bilayer and its surrounding

solvent (43), albeit without detailed information on the ap-

propriate dipole density and dipole magnitude to use in this

model. Although in this article we have matched continuum

electrostatic calculations and all-atom simulations, a similar

procedure could be applied to determine the proper param-

eters for a Langevin Dipole model. Further comparisons

between continuum calculations and atomistic simulation

will be needed, however, to determine the effective error in

treating the bilayer as a continuum.

A second potential difficulty with our continuum calcu-

lations is that lipids in a bilayer are arranged in a strongly

anisotropic local environment, which makes an anisotropic

polarization response a real possibility. Anisotropy in the

polarization fluctuations suggests that the correct local dielec-

tric constant is also anisotropic. Previous simulations of a

DPPC (di-palmitoyl-phosphatidylcholine) membrane have

found that the polarization fluctuations in the plane of the

bilayer are ;10 times greater than polarization fluctuations

in the direction of the bilayer normal (44). Although conver-

sion of these polarization fluctuations normal to the bilayer

into a spatially resolved anisotropic dielectric constant was

not possible, an average over the whole unit cell suggests a

mean value in the normal direction of ;3, significantly less

than the average value of 89 for directions in the bilayer

plane (15). Our calculation method can be used to determine

an anisotropic local dielectric constant; however, this cannot

be done precisely using a single test charge as done here.

Multiple pairs of test charges separated in the plane of the

bilayer and normal to the bilayer may, however, be able to

accurately determine the anisotropic response.

The use of multiple test charges would also allow us to

evaluate our choice of test particle radius. It is certainly

possible that the large lipid molecular size will necessitate

increasing the test particle radius at different positions in

the bilayer, or using a larger probe radius for determining a

molecular surface. The latter issue may be particularly im-

portant, considering that the large size of lipid molecules will

sterically exclude them from many cavities accessible to

water molecules. Unfortunately, simulations that use a sin-

gle, spherical test particle do not provide enough information

to separate the test particle radius from the local dielectric

constant with any degree of precision.

Considering this uncertainty, our calculated dielectric

profile is properly understood as a ‘‘best-fit’’ isotropic profile

for calculations on smaller solutes. Despite these caveats, our

estimated dielectric profile for a POPC bilayer agrees well

with the results of Stern and Feller (15) who used a method

based on Fröhlich-Kirkwood theory to compute the dielectric

profile of a DPPC (dipalmitoylphosphatidylcholine) bilayer

using a different force field. Their computed dielectric con-

stant is ;1 from 0 to 10 Å, 4 from 10 to 15 Å, 180 from 15 to

20 Å, 210 from 20 to 25 Å and like bulk water beyond 25 Å

[Table III of Stern and Feller (15)].

Despite their simplicity, continuum electrostatics treat-

ments have been enormously helpful for rapid quantitative

assessments and for intuitive explanations of complex phe-

nomena. Our method provides a quantitative approach to

assign dielectric profiles in nonhomogeneous systems, which

should go far in addressing ongoing debates about the proper

dielectric constants to assign to these systems.

This work was supported in part by National Institutes of Health grant No.

GM058187.
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