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ABSTRACT An understanding of the factors favoring the maintenance of duplicate genes in microbial genomes is essential
for developing models of microbial evolution. A genome-scale flux-balance analysis of the metabolic network of Saccharomyces
cerevisiae has suggested that gene duplications primarily provide increased enzyme dosage to enhance metabolic flux
because the incidence of gene duplications in essential genes is no higher than that in nonessential genes. Here, we used
genome-scale metabolic models to analyze the extent of genetic and biochemical redundancy in prokaryotes that are either
specialists, with one major mode of energy generation, or generalists, which have multiple metabolic strategies for conservation
of energy. Surprisingly, the results suggest that generalists, such as Escherichia coli and Bacillus subtilis, are similar to the
eukaryotic generalist, S. cerevisiae, in having a low percentage (,10%) of essential genes and few duplications of these
essential genes, whereas metabolic specialists, such as Geobacter sulfurreducens and Methanosarcina barkeri, have a high
percentage (.30%) of essential genes and a high degree of genetic redundancy in these genes compared to nonessential
genes. Furthermore, the specialist organisms appear to rely more on gene duplications rather than alternative-but-equivalent
metabolic pathways to provide resilience to gene loss. Generalists rely more on alternative pathways. Thus, the concept that the
role of gene duplications is to boost enzymatic flux rather than provide metabolic resilience may not be universal. Rather, the
degree of gene duplication in microorganisms may be linked to mode of metabolism and environmental niche.

INTRODUCTION

Microorganisms appear to have multiple strategies to provide

resilience to mutations (1–5). One possibility is gene family

buffering in which microorganisms carry duplicate genes for

the same function. Another approach is pathway buffering, in

which distinct sets of enzymes catalyze functionally equivalent

metabolic pathways. Although the relative importance of these

two strategies has been intensively investigated in eukaryotes,

and in particular, Saccharomyces cerevisiae (5–11), there has

been less investigation of prokaryotes.

Therefore, we investigated the relative importance of gene

family buffering versus pathway buffering in the microor-

ganisms Escherichia coli, Bacillus subtilis, and Geobacter
sulfurreducens as well as S. cerevisiae. These organisms

were chosen because they inhabit distinct environments and

because detailed, constraint-based, genome-scale models

of their central metabolism are available (2,12–14). These

models not only accurately predict growth under different

environmental conditions, but have also successfully pre-

dicted the phenotype of strains in which genes have been

experimentally deleted (78.7% of 13,750 cases in E. coli (15),

82.6% of 4154 cases in S. cerevisiae (14), 94% of 772 cases

in B. subtilis (16) and 78% of 72 cases in G. sulfurreducens
(D. Segura, unpublished data). The S. cerevisiae model in

particular has been the basis for several studies analyzing

the role of gene duplications in metabolic networks (8,17).

Furthermore, a suite of methods has been developed for in-

vestigating the metabolic capabilities of these genome-scale

networks, (18) including the analysis of alternate biochemical

pathways (19).

The different habitats of these organisms have selected

distinct metabolic strategies. E. coli utilizes a variety of high

energy complex substrates and can grow both aerobically as

well as anaerobically via mixed acid fermentation (20). In a

similar manner, S. cerevisiae metabolizes a variety of sub-

strates aerobically and can grow anaerobically via fermen-

tation that produces ethanol (21). B. subtilis can also grow

anaerobically (22,23) and can obtain energy for growth from

a broad range of substrates under aerobic conditions (24). In

contrast, G. sulfurreducens has low metabolic diversity and

specializes in anaerobically oxidizing acetate, a low energy

substrate, with the reduction of extracellular electron accep-

tors such as Fe(III) oxide and electrodes (25,26). Further-

more, E. coli, B. subtilis, and S. cerevisiae can grow rapidly

(doubling time ;20 min), requiring high metabolic flux (8),

whereas G. sulfurreducens grows much slower, with a

doubling time of ;8 h on soluble electron acceptors and

;192 h on its natural electron acceptor, Fe(III) oxide (25).

MATERIALS AND METHODS

Determining essential, conditionally active, and
nonessential reactions

Model constraints were based on previously defined constraints for the re-

spective models with the exception that all reactions that represent the

substrates available for growth were allowed to be active by setting the
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appropriate constraints (lower bound �50 mmol/gdw h and upper bound 50

mmol/gdw h). The list of essential reactions was obtained by using the flux

balance analysis (FBA) assumption of optimal growth for each of the models

(27). The inactive reactions were calculated by utilized the FBA without any

additional constraints as outlined in Mahadevan and Schilling (19) and

Burgard et al. (28). The reactions that were not essential or inactive are either

nonessential or conditionally active reactions. Hence, all reactions can be

classified as being either 1), essential or 2), inactive reactions, or 3), con-

ditionally active and nonessential reactions. Some reactions are active only

in a specific environment. These reactions are classified as conditionally

active reactions. The nonessential reactions are those reactions that can have

a nonzero flux, but are not essential for growth. The nonessential reactions

can further be classified into 1), reactions with ‘‘exact alternates’’ and 2),

those with ‘‘suboptimal alternates’’. The gene-protein-reaction associations in

the metabolic models were used to determine the presence of gene duplicates.

Determining reactions with exact alternates

Equivalent reaction sets were determined using FBA (19). In this approach,

the flux through every reaction in the model is maximized and minimized,

subject to a constraint that the growth rate is optimal to calculate the range of

variation possible in the flux. The reactions with a nonzero range can have

different flux values at the same optimal growth rate. Consequently, even if

these reactions are deleted, the growth rate does not change as there are

alternate biochemical pathways that can be substituted for the deleted

reaction without any impact on the growth rate. Such reactions are classified

as ‘‘reactions with exact alternate’’.

Determining reactions with suboptimal alternates

These were defined as the set of reactions, which when deleted lead to a

nonzero but suboptimal growth rate relative to the wild-type growth rate.

Even though the reactions that substitute for the deleted reaction are not

exactly equivalent to the deleted reaction, they do provide a limited degree of

buffering. The statistical significance of the differences between the average

flux through G. sulfurreducens reactions with and without gene duplicates

was also evaluated. For the statistical analysis, the two sided Wilcoxon rank

sum test in MATLAB (The MathWorks, Natick, MA) was used. Flux

distribution in metabolic networks has been shown to follow the power-law

distribution (29), and hence the Wilcoxon rank sum test was used instead of

the standard t-test that requires normality. The P-value was calculated to be

0.38, suggesting a lack of statistical significance at a 5% significance level,

even though the average flux for the reactions with gene duplicates (4.98

mmol/gdw h, n¼ 63) was lower than the rest of the reactions (5.4 mmol/gdw

h, n ¼ 168).

RESULTS

Metabolic reactions of microorganisms can be categorized

as: 1), reactions that are essential under all conditions, 2),

condition-specific and nonessential reactions, and 3), reac-

tions predicted to be inactive under all conditions (27,28).

The percentage of essential metabolic reactions was much

higher for the specialist organism, G. sulfurreducens, than it

was for the more metabolically diverse E. coli, B. subtilis,

and S. cerevisiae (Fig. 1 a). Methanosarcina barkeri
represents another more metabolically specialized organism,

converting acetate or hydrogen to methane. Although the

constraint-based genome-scale model for the metabolism of

M. barkeri (30) has not been as fully evaluated as the other

organisms under consideration here, the proportion of essen-

tial reactions in this specialist organism is similar to that of

G. sulfurreducens (Fig. 1 a). This distribution of essential

reactions is consistent with studies that have shown that gen-

eralists evolve under varying environments, whereas spe-

cialists are selected for in-constant regimes and have a

narrower range of metabolic capabilities that are all essential

in environments considered (31).

Not only do the metabolic specialists, G. sulfurreducens
and M. barkeri, have a higher proportion of essential reactions

than the generalists, they also have a significantly higher

percentage of essential reactions that have gene duplicates

(Fig. 1 b). S. cerevisiae also appears to have a relatively high

percentage of duplicates in essential reactions, but this result

is skewed by the low number of essential reactions in this

organism. In contrast, when other classes of reactions or all

reactions are considered, there is no significant difference

between the specialists and the generalists (Fig. 1 b).

Furthermore, a higher proportion of the metabolic reac-

tions in the specialists are essential reactions that are cat-

alyzed by gene duplicates (Fig. 2). However, the network

size and the total number of gene duplicates are different

among the organisms. The network size varies from 1176

reactions, of which 231 have gene duplicates in S. cerevisiae,

to 524 reactions, of which 111 have gene duplicates in

G. sulfurreducens. To normalize for these differences, we

calculated the Genetic/Pathway Redundancy Ratio:

Genetic=Pathway Redundancy Ratio ¼
Extent of Buffering due to Genetic Redundancy

Extent of Buffering due to Alternate Biochemical Pathways
;

where,

Extent of Buffering due to Genetic Redundancy ¼
Number of Essential Reactions with Gene Duplicates

All Reactions with Gene Duplicates

and

Extentof Bufferingdue toAlternateBiochemicalPathways¼
Number of BiochemicalReactionswithAlternates

AllReactions
:

A Genetic/Pathway Redundancy Ratio .1 indicates that

the extent of genetic redundancy-based buffering is more

significant than the extent of biochemical pathway-based

buffering and vice versa. This ratio was calculated for all

reactions in the network and for a subset of reactions that can

be active in the network. In both the cases, this ratio was

much greater for the specialists, G. sulfurreducens and

M. barkeri, than for the generalists (Fig. 3).

Further, the analysis of the magnitude of the flux in the

network revealed that in G. sulfurreducens, the flux through

the reactions that have gene duplicates, on average, are no

higher than the rest of the reaction network. This result

suggests that the function of these gene duplicates in

G. sulfurreducens is not to boost enzymatic flux and contrasts

with the suggested role for gene duplicates in S. cerevisiae
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(8,11). Specialists appear to have a much higher relative

reliance on gene duplicates than alternative pathways to pro-

vide resilience to gene mutations.

DISCUSSION

In this study, we have evaluated the extent of genetic and

biochemical redundancy in microbial metabolic networks

using genome-scale metabolic models. We have shown that

the fraction of essential reactions in the different networks

clearly distinguishes the metabolic capabilities of the

organisms. In generalists such as B. subtilis, S. cerevisiae,

and E. coli, ,10% of the network is essential, whereas, in

contrast, .30% of the network is essential in the specialists

G. sulfurreducens and M. barkeri. These differences in the

fraction of essential reactions clearly reflect the versatility of

the generalists’ metabolism as compared to specialists.

FIGURE 1 (a) Frequency of predicted essential reac-

tions, conditionally active and nonessential reactions, and

inactive reactions in different microbial metabolic net-

works: 34% of G. sulfurreducens model reactions are

predicted to be essential under all growth substrates tested,

whereas only 0.4% of the S. cerevisiae reactions are

predicted to be essential. (b) Enrichment of gene duplicates

in essential reactions of G. sulfurreducens relative to the

conditionally active and nonessential reactions, inactive

reactions, or all model reactions as compared to other

microbial metabolic networks. The role of gene family and

biochemical buffering was analyzed by identifying the

gene duplicates associated with the essential reactions in all

the metabolic networks. The conditionally active and

nonessential reactions included those reactions for which

either a stoichiometrically and energetically equivalent

pathway/reaction (that does not affect the energy yield and

is an ‘‘exact alternate’’) or nonequivalent pathway/reaction

(that requires additional energy relative to the original

reaction/pathway and is a ‘‘suboptimal alternate’’) was

present in the network. Inactive reactions are those that are

predicted to be not active under any condition. More than

30% of the essential reactions in G. sulfurreducens have

gene duplicates as compared to 10% in E. coli and 20%

(5/20) in S. cerevisiae. However, the S. cerevisiae fraction

is partially skewed by the low number of essential reactions

under the conditions tested.
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Further analysis of the fraction of essential reactions that

have gene duplicates clearly points to additional differences

between the specialists and the generalists. The generalists

with the exception of S. cerevisiae have much lower fraction

(,11%) of gene duplicates in essential reactions, whereas

the specialists have a higher fraction of gene duplicates

(.20%) in essential reactions. In M. barkeri, the fraction of

essential reactions with gene duplicates is lower relative to

the fraction of inactive reactions with gene duplicates.

However, the genome-scale metabolic model of M. barkeri
has been recently developed and it has not been reconciled

with detailed experimental data. Consequently, there are

several gaps in the metabolic network that manifest as

reactions that are inactive or blocked reactions. Additionally,

the biomass reaction of this organism was constructed based

on available literature and the E. coli biomass reaction, and it

is possible that the biomass reaction is missing several

condition-specific growth components that have not yet been

characterized (30). Several of these inactive/incomplete

reactions could be required to synthesize such components.

The results also indicate that the specialists have a higher

fraction of essential reactions with gene duplicates relative to

the generalists, whereas E. coli and B. subtilis have a greater

number of reactions that are buffered due to the presence of

alternate biochemical reactions (either exact or suboptimal).

The normalized ratio of reactions buffered due to gene

duplicates relative to those buffered due to alternate bio-

chemical reactions is .1 for specialists. Therefore, specialists

appear to rely more on gene duplicates in essential reactions

rather than possessing alternate biochemical pathways to

maintain metabolic robustness to gene deletions. In contrast,

the generalists that have a diversity of metabolic pathways

appear to rely more on alternate biochemical pathways by

leveraging their metabolic diversity.

FIGURE 2 Extent of buffering from genetic redundancy

and alternate biochemical pathways across different mi-

crobial networks. The contribution of alternate biochemical

pathways (both optimal and suboptimal) ranges from 7 to

22% in all the networks, whereas the contribution of gene

duplicates in providing robustness (as measured by the

ratio of essential reactions that have gene duplicates to the

total number of reactions) is higher in G. sulfurreducens
(10%) and M. barkeri (7%) as compared to other

organisms (1% in E. coli and 0.4% in S. cerevisiae).

FIGURE 3 Relative significance of buffering due to genetic and bio-

chemical pathway redundancy. The Genetic/Pathway Redundancy Ratio is

.1 (when either all the reactions or the active subset is considered) for

G. sulfurreducens and M. barkeri as compared to the other ‘‘generalist’’

organisms.
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These results clearly demonstrate that selection for metabolic

strategies in different environments can lead to different ap-

proaches to maintain metabolic resilience. Continued analysis of

a broader range of microorganisms, as well as experimental

evolution studies, may help further define the factors favoring

gene duplication versus pathway redundancy as the optimal

strategy for maintaining robustness in metabolically diverse

organisms.
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