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ABSTRACT Experimental studies have demonstrated that Ca21-regulated proteins are sensitive to the frequency of Ca21

oscillations, and several mathematical models for specific proteins have provided insight into the mechanisms involved.
Because of the large number of Ca21-regulated proteins in signal transduction, metabolism and gene expression, it is desirable
to establish in general terms which molecular properties shape the response to oscillatory Ca21 signals. Here we address this
question by analyzing in detail a model of a prototypical Ca21-decoding module, consisting of a target protein whose activity is
controlled by a Ca21-activated kinase and the counteracting phosphatase. We show that this module can decode the frequency
of Ca21 oscillations, at constant average Ca21 signal, provided that the Ca21 spikes are narrow and the oscillation frequency is
sufficiently low—of the order of the phosphatase rate constant or below. Moreover, Ca21 oscillations activate the target more
efficiently than a constant signal when Ca21 is bound cooperatively and with low affinity. Thus, the rate constants and the Ca21

affinities of the target-modifying enzymes can be tuned in such a way that the module responds optimally to Ca21 spikes of a
certain amplitude and frequency. Frequency sensitivity is further enhanced when the limited duration of the external stimulus
driving Ca21 signaling is accounted for. Thus, our study identifies molecular parameters that may be involved in establishing the
specificity of cellular responses downstream of Ca21 oscillations.

INTRODUCTION

Cell signaling induced by extracellular stimuli is often ac-

companied by an increase in the cytosolic calcium concen-

tration [Ca21]c that, ultimately, regulates a plethora of

cellular processes, including secretion, contraction, learning,

and proliferation (1–4). Such regulation is mediated by

Ca21-dependent enzymes that, in turn, modify downstream

targets commonly by phosphorylation. In many cell types,

changes in [Ca21]c occur as repetitive spikes that increase

their frequency with the strength of the stimulus (5,6). Infor-

mation can also be encoded in the amplitude of Ca21 oscil-

lations, which may change with the extracellular stimulus

(7–9) and may also depend on the subcellular localization

of the target (10,11). Understanding how an extracellular

stimulus, encoded in the frequency and amplitude of Ca21

oscillations, is interpreted by different physiological pro-

cesses is one of the major challenges in the study of Ca21

signaling.

Various experiments have suggested that Ca21 oscilla-

tions may be advantageous compared to a constant rise in

[Ca21]c because they increase the efficiency of gene expres-

sion at low levels of stimulation (12,13). A long-standing

question is how a ubiquitous messenger like Ca21 achieves

specificity in its action. Recent data indicate the ability of

calmodulin and protein kinase C (PKC) to decode the am-

plitude of Ca21 oscillatory signal into an appropriate cellular

response (14,15). It has been shown that the sensitivity to

Ca21 oscillations of different transcription factors such as the

nuclear factor of activated T cells (NFAT), nuclear factor

kappa B (NFkB) (12,13,16), Ca21-dependent enzymes such

as calmodulin (CaM) kinase II (17), and mitochondria (18,19),

can depend on the oscillation frequency. Moreover, when the

stimulus is transient, the effect of Ca21 oscillations can be

maximized within a certain range of frequencies (13,16,20).

In Ca21 oscillations, higher frequency implies a higher

density of practically uniformly shaped Ca21 spikes and thus

also a higher average [Ca21]c. Thus, the question arises

whether the observed increases in target response with rising

oscillation frequency are simply due to an increase in the

average Ca21 signal or present a true frequency decoding.

Previous theoretical work has focused on how frequency-

encoded information is processed by Ca21-regulated proteins

(21–23). Frequency decoding is characterized by higher aver-

age levels of phosphorylated protein when the frequency of

Ca21 oscillations is increased. Detailed models of protein

phosphorylation driven by regular Ca21 oscillations have

been developed for CaM kinase II (14,24,25), glycogen

phosphorylase (26,27), and mitogen-activated protein kinase

cascades (28,29). Decoding of Ca21 signals more complex

than periodic spiking (e.g., bursting oscillations) has been re-

cently theoretically explored (30,31). Numerical simulations

have shown that Ca21 oscillations can be more efficient for

protein phosphorylation compared to constant Ca21 signals

of equal average [Ca21]c. The nonlinear dependence of pro-

tein activation on Ca21 stimulation, arising from diverse

mechanisms, such as cooperative Ca21 binding or zero-order
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ultrasensitivity, turns out to be of major importance for an

efficient processing of oscillatory signals. Furthermore, these

models predict that the Ca21 oscillation frequency can dis-

criminate among different signaling pathways.

Although these theoretical studies have provided insight

into the mechanisms involved in calcium decoding, their

conclusions are based on numerical simulations of detailed

models for specific proteins (reviewed in (32)). Because of

the large numbers of Ca21-regulated proteins in signal trans-

duction and gene transcription, it is desirable to establish in

general terms which molecular properties shape the response

to Ca21 oscillations. Investigating Ca21 decoding in an ana-

lytically tractable model may provide more insight into the

following issues:

How sensitively can a target protein respond to changes

in the frequency of calcium oscillations?

Under which conditions are Ca21 oscillations more potent

than a constant signal in activating a target protein?

Which properties determine the existence of an optimal

activating signal for a particular target?

Under which conditions can target proteins be differen-

tially activated by Ca21 signals?

Some challenges for such analysis are the nonstationarity of

the Ca21 signal and the nonlinearity of the Ca21 dependent

processes. The description of Ca21 oscillations using a piece-

wise constant function can facilitate an analytical solution of

the kinetic equations (31,33,34). Indeed, such square-shaped

pulses have been used in several experiments (12,13,17) and

for numerical simulations (20,35).

In this article, we attempt to establish in general terms

which molecular properties determine the target response

to oscillatory Ca21 signals. To this aim, we employed an

analytically tractable model of a prototypical Ca21-decoding

module, consisting of a target protein controlled by a Ca21-

activated kinase and the counteracting phosphatase. The

modeling of Ca21 oscillations by square-shaped pulses

allowed the derivation of a general formula for the target

activity as a function of three dimensionless parameters.

Using this formula, we first asked whether a true frequency

decoding, at constant average Ca21 signal, is possible. We

then examined the conditions under which oscillatory signals

are more potent in activating the target protein than constant

signals with the same average calcium. To assess the kinetics

of the target, we defined an activation time that quantifies

the time necessary to reach the maximal target activity. The

expressions for the activation time and target activity were

used to analyze signaling specificity. In particular, we inves-

tigated which molecular parameters determine the optimal

signal shape for a limited amount of calcium. Collectively,

our results demonstrate that the nonlinear activation of a

protein by a Ca21-dependent kinase represents a core system

for decoding Ca21 oscillations, and rationalize why oscilla-

tory stimuli increase the efficiency and specificity of cell

signaling.

MATHEMATICAL MODEL

We consider an activation-inactivation cycle of a target pro-

tein X (Fig. 1 A). Its activation is induced by phosphorylation

through a Ca21-dependent kinase Y, and it is inactivated by

dephosphorylation. Cooperative activation of the kinase by

Ca21, as observed, for example, for Ca21/CaM-dependent

kinases (36,37), is described by the binding of n ions of

Ca21. The fractions of active kinase Y and phosphorylated

(active) target protein X obey, in the simplest model,

dY

dt
¼ aYSðtÞnð1� YÞ � bYY; (1)

dX

dt
¼ aXYTYð1� XÞ � bXX; (2)

where YT represents the total concentration of kinase, S(t)
describes the time course of the Ca21 signal, aY and bY are the

rate constants of Ca21 binding and release, and the rate con-

stants of phosphorylation and dephosphorylation are denoted

by aX and bX, respectively.

In many cases, Ca21 binding will be much faster than

(de)phosphorylation reactions, so that we can assume the

binding equilibrium, dY/dt � 0. Equation 2 then becomes

dX

dt
¼ aðSÞ � ðaðSÞ1 bÞX; (3)

where, for simplicity, b ¼ bX. Between calcium spikes, the

kinase activity is negligible so that the response time of the

target protein is b�1.

The dependence of the phosphorylation rate constant on

Ca21 concentration takes the form of the Hill equation

aðSÞ ¼ â
ðS=KSÞn

ðS=KSÞn 1 1
; (4)

with the maximal value â ¼ aXYT; the half-saturation constant

KS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bY=aY;

n
p

and the Hill-coefficient n. Hill equations

provide good fits for more realistic Ca21 binding mechanisms,

in which case n can take noninteger values (20,30).

Cytosolic Ca21 oscillations consist of a series of spikes

separated by intervals of resting Ca21 concentration (38). To

enable analytic treatments, Ca21 oscillations are described

by a piecewise constant function

SðtÞ ¼
S0; iT # t , iT 1 D

0; iT 1 D , t , ði 1 1ÞT

�
i ¼ 0; . . . ; N; (5)

characterized by period T, amplitude S0, and spike width D

(Fig. 1 B). For simplicity, the basal Ca21 concentration has

been set to zero.

RESULTS

The mean activity of the target protein depends
on three dimensionless parameters

Let us assume that before the onset of calcium oscillations, the

target protein is completely inactive (i.e., unphosphorylated).
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The target’s response to the oscillations goes through an

initial transient to reach an (approximately) periodic state

(Fig. 1 C). The mean target activity �Xi during the ith

oscillation cycle is

�Xi ¼
1

T

Z ði11ÞT

iT

XðtÞdt: (6)

The average is a good measure of the target protein’s re-

sponse if the amplitude of the protein activity oscillations is

not too large, that is, when the system integrates the

oscillations. This has been seen in the responses of gene

expression rates and of mitochondrial metabolism to calcium

oscillations (12,16,18,19). However, even if the target

amplitudes were large, the average is a useful diagnostic of

how sensitively the system responds to the oscillatory signal.

The approximation for the Ca21 spikes (see Eq. 5) allows

the derivation of an analytic expression for the average �Xi:
After some algebra, one finds for its stationary value
�X ¼ lim

i/N
�Xi (see Appendix A):

�X ¼ Xmax g 1
vs

1 1 s

ð1� e
�gð11sÞ=vÞð1� e

�ð1�gÞ=vÞ
1� e

�ð11gsÞ=v

" #
: (7)

This equation shows how the original parameters combine

into three dimensionless parameters that govern the response

of the system, as follows here.

The effective activation rate s during the calcium spike

s ¼ â

b

ðS0=KSÞn

1 1 ðS0=KSÞn
; (8)

measures how the calcium amplitude S0 is sensed by the

kinase with respect to binding affinity (1/KS) and coopera-

tivity of kinase activation (Hill coefficient n), and how fast

phosphorylation of the target is compared to its dephospho-

rylation (â=b).

The relative oscillation frequency v,

v ¼ 1

bT
; (9)

expresses how fast the oscillations are compared with the

basal response time of the protein b�1 (see Eq. 3). Thus, the

parameter combines the two timescales in the problem. Large

v means fast calcium oscillations and/or a slow response

time of the phosphorylation cycle, in which case the phos-

phorylation cycle will integrate over the oscillations and the

amplitude of the oscillations in target activity is small. Con-

versely, if v is small, the target activity will closely follow

each cycle of the calcium oscillations.

The duty ratio of the oscillations g,

g ¼ D

T
; (10)

gives the part of the oscillation period during which calcium

is elevated and the kinase is active. Hence, the average

calcium concentration in the oscillations is

�S ¼ gS0: (11)

The maximal activity of the target protein Xmax is a function

of s,

Xmax ¼
s

1 1 s
: (12)

Target activity is sensitive to the frequency of
narrow calcium spikes

It turns out that the mean target activity �X is a monotonically

increasing function of all three parameters on their natural

intervals s 2[0,N), v 2[0,N), and g 2[0,1). Increases in the

activation rate, oscillation frequency, or duty ratio would

therefore all raise the target activity. As experiments on many

cell types show that the dose of the external stimuli (e.g.,

FIGURE 1 Model for the decoding of Ca21 oscillations

by a target protein. (A) Model scheme. (B) Oscillations in

the Ca21 concentration S(t) have period T, amplitude S0,

spike width D, and average �S: (C) The calcium signal

induces oscillations in the phosphorylated (active) target

protein. After an initial transient, the time-average target

activity reaches the steady value �X:
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hormones and local mediators) controls primarily the fre-

quency of calcium oscillations and leaves the amplitude

unchanged, we asked how sensitively the target protein can

respond to variations in frequency. In the limit of slow

oscillations (or a rapidly responding protein), we obtained

the target activity as

�Xðv/0Þ ¼ g Xmax ¼
sg

1 1 s
: (13)

For fast oscillations (or a slowly responding protein), we

found

�Xðv/NÞ ¼ ð1 1 sÞg
1 1 sg

Xmax ¼
sg

1 1 sg
: (14)

The frequency sensitivity of the target’s response to calcium

oscillations with constant amplitude becomes maximal,

maximize
g

�Xðv/NÞ � �Xðv/0Þ½ �; (15a)

s ¼ const:; (15b)

when the duty ratio obeys

gopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 1 s
p

� 1

s
: (16)

The optimal duty ratio gopt lies between 0.5 (for s¼ 0) and 0

(for s / N). Hence, calcium oscillations whose frequency

can efficiently drive changes in target activity have duty

ratios below 0.5, i.e., the spikes occupy less than half of the

oscillation. Interestingly, the observed calcium oscillations,

for example in liver cells, have duty ratios between 0.05 and

0.5 (39).

Importantly, when activation rate s and duty ratio g are

constant and only the relative oscillation frequency v is

varied, the average calcium concentration �S remains constant

(Fig. 2 A). Therefore, the system can respond purely to

changes in the frequency of the calcium signal if the calcium

spikes are sufficiently narrow compared to the period of the

oscillations. An example of this true frequency decoding is

shown in Fig. 2 B. Note that the asymptotic value �Xðv/NÞ
is practically reached already for v $ 1. This implies that the

target protein activity becomes frequency-insensitive when

the oscillation period gets in the range of the basal response

time of the target protein (see Eq. 9). We have found this to

be the typical behavior for a wide range of parameter values.

These results demonstrate that true frequency decoding, at

constant average Ca21 signal, can occur provided that the

Ca21 spikes are narrow and the oscillation frequency is of

the order of the target inactivation rate or below.

Oscillations are more potent than constant signals
when the kinase binds calcium cooperatively and
with low affinity

Given a certain amount of calcium per unit time, what is the

signal shape that best activates the target protein? For the

piecewise constant oscillatory signal (Eq. 5), the shape at a

given calcium average �S is uniquely defined by fixing period

T and duty ratio g, where the latter automatically defines the

amplitude S0 ¼ �S=g: Setting the frequency, the optimal sig-

nal shape is therefore the solution of

maximize
g

�X; (17a)

�S ¼ gS0 ¼ const: (17b)

Using Eq. 14, for high-frequency oscillations, one obtains

the maximal target response for

gmax ¼
�S=KSffiffiffiffiffiffiffiffiffiffiffi
n� 1n
p : (18)

If calcium activation of the kinase is noncooperative or neg-

atively cooperative, n # 1, there is no gmax. Indeed, for

n # 1, �X is a monotonically increasing function of g when

the average calcium signal is constrained (Eq. 17b). Therefore,

the maximal response will be obtained at g ¼ 1 (that is, the

constant calcium signal).

However, when calcium activation of the kinase displays

positive cooperativity, n . 1, gmax can be below 1. There-

fore, an oscillatory signal can be more potent in activating

the target than a constant signal. The critical case occurs

obviously when the maximum is attained for g ¼ 1 (constant

signal). From Eq. 18, we then found that if the condition

KS .
S0ffiffiffiffiffiffiffiffiffiffiffi

n� 1n
p (19)

holds, the maximum of �X occurs for 0 , g , 1, and hence

oscillations with the duty ratio given by Eq. 18 activate

the target most strongly. In particular, this oscillatory signal

FIGURE 2 Target activity is sensitive to the fre-

quency of narrow calcium spikes. (A) True frequency

encoding occurs when the relative frequency v

changes while both amplitude S0 and average �S stay

constant. (B) An example of true frequency decoding is

shown here. The mean target activity �X is plotted

against v using Eq. 7. The values of �X in the limit of

very slow and very fast oscillations (Eqs. 13 and 14,

respectively) are indicated by dashed lines. Parameters:

s ¼ 10, g ¼ 0.25.
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is more potent than a constant signal of the same average

calcium.

The function
ffiffiffiffiffiffiffiffiffiffiffi
n� 1n
p

lies between 1 and 1.321 for a co-

operative calcium decoder with 2 , n , N (the maximum is

attained at n ¼ 4.5911). Therefore, an efficient decoder must

have comparatively weak calcium affinity, with dissociation

constant KS lying around the peak concentration of the cal-

cium spike S0 or above.

Equation 19, for the superiority of oscillations over con-

stant calcium signals, holds for any duty ratio. However,

calcium oscillations typically have rather low duty ratios

(g , 0.5). In this case, the requirement for calcium affinity

becomes less stringent. At a given duty ratio g, oscillations

are superior over constant signals if the calcium sensitivity

of the kinase, relative to the spike amplitude, satisfies (see

Appendix B):

KS

S0

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

n � g
n11

g � g
n

n

s
: (20)

The decrease of the critical dissociation constant with de-

creasing duty ratio is shown in Fig. 3 for two distinct values

of n. So far, all expressions were derived for the case of high-

frequency oscillations. We obtained very similar expressions

for the general case (Appendix B).

In summary, our theory shows that Ca21 oscillations acti-

vate the target of a Ca21-dependent kinase more efficiently

than a constant signal if 1), Ca21 acts cooperatively on the

kinase (n . 1); and 2), the Ca21 affinity of the kinase is rather

low. As an example, we consider typical cytoplasmic Ca21

spikes with S0¼ 800 nM and g¼ 0.3, yielding a critical KS of

300–440 nM for Hill coefficient of 2–4. Indeed, a range of

prominent calcium-activated enzymes appears to satisfy the

conditions as an efficient oscillation decoder (Table 1).

Target responses to modulations of Ca21

frequency and amplitude

The case of true frequency decoding, in which the shape of

Ca21 oscillations is varied but the average Ca21 concentra-

tion seen by the protein remains unchanged, has been ex-

perimentally studied by means of an engineered control of

calcium oscillations. However, in biological reality this case

does not seem characteristic. Calcium spikes have a typical

width, which is independent of the oscillation period (39).

Therefore, an increase in the spike frequency at constant

spike amplitude will be accompanied by an increase in the

duty ratio g and hence the average calcium level �S: We have

designated this case as biological frequency encoding.

Changes in oscillation period T affect v as well as g (since

D ¼ const.) while s ¼ const. (Fig. 4 A).

We compared the target activity achieved with constant

signals and frequency-encoded oscillatory signals of the

same average calcium �S: In the absence of cooperativity in

Ca21 binding (n ¼ 1), a constant signal (Fig. 4 B, dashed
line) is always more efficient in activating the target protein

than an oscillatory signal (solid lines). On the contrary, when

the kinase is activated cooperatively by Ca21 (shown for

FIGURE 3 Critical Ca21 sensitivity for an efficient decoding by oscilla-

tions. The critical Ca21 dissociation constant KS (relative to the spike

amplitude S0), above which Ca21 oscillations are more potent than a

constant Ca21 signal, is plotted as a function of the duty ratio g. Curves were

obtained using Eq. 20. Parameters: n ¼ 2 (dashed line), n ¼ 4 (solid line).

TABLE 1 Examples of calcium-regulated proteins

Protein Hill coefficient, n Dissociation constant, KS Localization References

Phospholipase Cd 2–3 0.4–2 mM Cytoplasm, plasma membrane (50,51)

Protein kinase Cb* 2.3 35 mM Cytoplasm, plasma membrane (52)

Calmoduliny 1.8 25 mM Cytoplasm (53)

Ca21/Calmodulin-dependent protein kinase IIz 4.4 1.6–5.8 mM Dendritic spines (54)

Calcineurinz 2.8–3 0.6–1.3 mM Cytoplasm (55)

Troponin C§ 2.8 4.3 mM Muscle (56)

Mitochondrial Ca21 uniporter 2 10–70 mM Mitochondria (57)

*Ca21 binding to the C2 domain of PKC was measured in vitro in the absence of phospholipids (52).
yCalmodulin contains four Ca21 binding sites. In vitro experiments by Linse et al. (53) suggest dissociation constants of 20, 0.6, 40, and 5 mM at

physiological salt concentrations. The values shown in the table correspond to the effective Hill coefficient and dissociation constant assuming a sequential

binding of Ca21 (58).
zEffective dissociation constant and Hill coefficient for calcineurin bound to calmodulin.
§Troponin C has two low-affinity and two high-affinity Ca21 binding sites. The reported dissociation constants range from 0.2 to 1 mM for the low-affinity

sites and from 15.6 to 40 mM for the high-affinity sites (56). The value shown in the table corresponds to the contraction of a reconstituted muscle.

Decoding of Ca21 Oscillations 1207
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n ¼ 4), the detection of Ca21 oscillations with lower aver-

age concentration is considerably enhanced compared to the

constant signal (Fig. 4 C, solid and dashed lines, respec-

tively). In particular, targets with slow activation-inactivation

cycles are more efficiently activated than rapidly responding

targets (compare the solid lines in Fig. 4, B and C).

Differences in spike amplitudes are particularly relevant in

the context of subcellular localization of the target, because

in restricted spaces such as between the ER and nearby

mitochondria the calcium amplitude can be much higher than

in the bulk cytoplasm. Thus, we have defined this second

strategy to activate the target protein as biological amplitude

encoding. The calcium amplitude S0 (and hence s) varies,

while v ¼ const., g ¼ const. This has the consequence that

average calcium �S ¼ g S0 also varies (Fig. 4 D). In the

absence of cooperativity (n ¼ 1), as for frequency encoding,

a constant signal (Fig. 4 E, dashed line) is more efficient in

activating the target protein than an oscillatory signal (solid
lines). In the presence of cooperativity (n ¼ 4, Fig. 4 F),

oscillations enhance signaling efficiency by shifting the

activation threshold of the target protein to weaker Ca21

stimuli (lower values of �S). However, the maximal value of

the mean target activity �X is then also reduced.

Thus, at low levels of stimulation, Ca21 oscillations can

be more potent in activating a target than constant signals of

the same average calcium irrespective of whether the infor-

mation is transmitted by the amplitude or by the frequency

of oscillations. However, this requires cooperativity in the

calcium binding.

Calcium oscillations increase the specificity of
target activation by sensing its response kinetics

So far, we have examined the activation of a single target

protein. A long-standing question is how a ubiquitous mes-

senger like Ca21, with a large number of downstream targets,

can elicit selective responses. Experiments suggest that such

specificity may arise from differences in Ca21 sensitivity and

response kinetics among the downstream targets. Therefore,

we compared a slow, insensitive phosphorylation cycle 1

with a fast, sensitive cycle 2 (b1 , b2, KS1 . KS2).

When the Ca21 concentration remains constant, the more

sensitive protein 2 will be preferentially activated (Fig. 5 A).

If both phosphorylation cycles differ only in their response

kinetics, their target proteins would be equally activated. The

question arises whether oscillations can sense the response

kinetics of phosphorylation cycles and so increase target

specificity compared to a constant signal. Can oscillatory sig-

nals upregulate one target protein and downregulate another

and vice versa? We demonstrated above that, at a given

FIGURE 4 Encoding and decoding

of Ca21 frequency and amplitude. (A)

Biological frequency encoding: Oscil-

lation period T changes, and therewith

the calcium average �S; while amplitude

S0 remains constant. (B and C) Fre-

quency decoding: Target activity �X in

response to oscillatory (solid lines) or

constant (dashed line) Ca21 signals.

For the oscillatory signal, the average

Ca21 concentration �S is increased by

reducing the oscillation period T. (B and

C) Correspond to noncooperative (n ¼
1) and cooperative (n ¼ 4) calcium

binding, respectively. (D) Biological

amplitude encoding: Oscillation ampli-

tude S0 changes, and therewith the

calcium average �S; while the period T
remains constant. (E and F) Amplitude

decoding: Target activity �X in response

to oscillatory (solid lines) or constant

(dashed line) Ca21 signals. For the

oscillatory signal, �S is changed by

increasing the oscillation amplitude S0.

Panels E and F correspond to nonco-

operative (n ¼ 1) and cooperative

(n ¼ 4) calcium binding, respectively.

Parameters: â=b ¼ 10; KS ¼ 1 mM,

S0 ¼ 1.5 mM, D ¼ 10 s; in panels B
and C, b ¼ 0.01, 0.1, 1/s; in panels E

and F, b¼ 0.1/s, and g ¼ 0.1, 0.25, 0.5.
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calcium average, a maximal target activity is obtained for an

oscillatory signal of amplitude S0 ¼ KS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=ðâ=b 1 1Þn

p
(see Appendix B). This optimal amplitude depends not

only on Ca21 sensitivity but also on the response kinetics

of the cycle. The activities of proteins 1 and 2 become max-

imal at distinct signal amplitudes and thus they are selec-

tively activated by Ca21 oscillations (Fig. 5 B).

In the case of amplitude-encoded signals, protein 2 pre-

vails at low levels of stimulation due to its stronger Ca21

sensitivity, whereas the slowly responding protein 1 predom-

inates at higher Ca21 concentrations (Fig. 5 C). On the other

hand, frequency encoding provides three different scenarios,

depending on the oscillation amplitude. At sufficiently low

or sufficiently high amplitudes, one of the two proteins

prevails irrespective of the oscillation period. For middle

amplitudes, however, protein 1 and protein 2 will be pref-

erentially activated at low and high oscillation frequencies,

respectively (Fig. 5 D). Thus, Ca21 oscillations ensure a

more specific regulation of target proteins because they can

also sense the response kinetics of phosphorylation cycles.

Phosphorylation cycle integrates Ca21

oscillations when their frequency is larger than
the target inactivation rate

Phosphorylation cycles can either closely follow each cycle

of the Ca21 oscillations or rather integrate over the oscil-

lations. The phosphorylation cycle integrates the Ca21 signal

if the target activity continuously increases after each Ca21

oscillation. To investigate under which conditions a phosphor-

ylation cycle behaves as an integrator of Ca21 oscillations,

we need to evaluate how fast the target protein responds to

the Ca21 stimulus. Therefore, we defined the characteristic

time t (see Fig. 6 A)

t ¼ Q
�X
; with Q ¼ T +

N

i¼0

�X � �Xi; (21)

which describes the mean time needed to attain the stationary

target activity �X in response to an oscillatory signal. Equation

21 resembles the characteristic time previously defined for a

constant signal (40). A general expression for t has been

derived in Appendix A (Eq. 35). For fast oscillations, or a

slowly responding protein, one obtains

t

T
� v

1 1 sg
� 1� g

2
: (22)

As shown in Fig. 6 B, for a large range of periods, Eq. 22

(dashed lines) is a good approximation of the exact solution

(solid lines). The ratio t/T gives the mean number of Ca21

spikes needed to attain the stationary activity �X; and thus is a

measure of whether the phosphorylation cycles integrates

over the oscillations. When t/T , 1, the stationary activity �X
will be reached during the first oscillation; this is always the

case when v ¼ 1/bT , 1. Thus, when the oscillation period

is larger than the characteristic time 1/b of target inactiva-

tion, the Ca21 signal is not integrated by the system. More-

over, large signal amplitudes (large s) can also reduce the

number of spikes necessary to attain �X: Together, our results

show that phosphorylation cycles integrate Ca21 oscillations

if their amplitude is low and their frequency is larger than the

inactivation rate of the target.

FIGURE 5 Specificity of target activation. Pro-

tein 1 is less Ca21-sensitive and responds slower

than protein 2. (A) A constant Ca21 signal prefer-

entially activates protein 2. (B) When the average is

kept constant, an optimal oscillatory signal exists

for each target protein. (C) Amplitude-encoded

oscillatory signals activate primarily protein 2 at

low amplitudes and protein 1 at high amplitudes.

(D) Frequency-encoded signals preferentially acti-

vate protein 2 at low amplitudes and protein 1 at

high amplitudes, irrespective of the oscillation

period. Protein parameters: â1 ¼ 0:1=s;b1 ¼
0:01=s; â2 ¼ 10=s;b2 ¼ 1=s; n1 ¼ n2 ¼ 4;KS1 ¼
3 mM;KS2 ¼ 1 mM:Ca2 1 signal parameters: Spike

width D ¼ 20 s; in panel C, g ¼ 0.5; in panel D,

S0 ¼ 1,2,4 mM.
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Target kinetics and stimulus duration determine
the optimal signal shape when calcium amount
is limited

Generally the amount of Ca21 elicited by cell stimulation is

limited. Experiments show that in such a case the activation

of Ca21-dependent transcription factors like NFAT may be

optimized by releasing Ca21 in the form of pulses at short-

time intervals (13,16). This raises the question under which

conditions Ca21 release as pulses can be more effective than

a single continuous signal. Which molecular features deter-

mine the optimal signal shape when Ca21 amount is limited?

To this end, we compared the target activity in response to

Ca21 signals with the same Ca21 amount released either at

once or as uniformly-shaped pulses at regular time intervals.

The amount of calcium released is given by the total time

during which [Ca21]c remains elevated (Fig. 7 A). The effi-

ciency of decoding such signals can be evaluated by the

maximal target activity reached during the last oscillation

period.

We found that the optimal form of Ca21 release is pri-

marily determined by the rate of Ca21 binding to the kinase.

When Ca21 binding occurs much faster than target kinetics,

its activity becomes maximal by releasing Ca21 at once, i.e.,

optimal duty ratio gtr ¼ 1 (Fig. 7, B and D). On the contrary,

when the kinase is slowly activated, the target activity is

maximized by releasing Ca21 in the form of repetitive short

pulses, gtr , 1 (Fig. 7, C and E). While the first situation can

be considered as a single-step activation (Eq. 3 holds), in the

second case the target protein is activated by a two-step

kinetics (Eqs. 1 and 2 hold).

To elucidate which processes control this optimal signal,

we tried to simplify the full system (Eqs. 1 and 2) when Ca21

binds slowly to the kinase. In such a case, a tractable ap-

proximation for the kinase activation is

FIGURE 6 Kinetics of target activation by Ca21 oscillations. (A) Shown

is the time course of the active target X in response to an oscillatory signal

(solid line). The activation time t (Eq. 21) measures how fast the target

protein becomes activated. Depicted also are the mean target activity �Xi

during each oscillation i (dashed line) and the equivalent of the numerator Q
in Eq. 21 (shadowed area). (B) The ratio t/T is plotted against the relative

frequency v using the general expression (solid line) given in Eq. 35, and the

simplified solution (dashed line) in Eq. 22. Parameters: g ¼ 0.3, s ¼ 2, 10.

FIGURE 7 Decoding of signals with limited amount of calcium. (A)

Transient calcium signals: Ca21 stimulation is a single continuous 0.5 min

pulse (g ¼ 1) or 5 pulses of 0.1 min durations at 0.5 min (g ¼ 0.2), 1 min

(g ¼ 0.1), and 2.5 min (g ¼ 0.04) intervals. (B) When the kinase responds

fast to Ca21 changes (Eq. 3 holds), the optimal signal is a single continuous

Ca21 pulse (gtr ¼ 1). Shown are the time-courses of the target activity X in

response to the Ca21 signals depicted in panel A. (C) When the kinase is

slowly activated (Eqs. 1 and 2 hold), the target activity becomes maximal by

applying Ca21 pulses at intervals of 0.5 min (gtr ¼ 0.2). (D and E) Mean

target protein activity for the last oscillation versus the duty ratio g. A

maximal activity is obtained for the optimal duty ratio gtr. Parameters: n¼ 1,

S0¼ 2 mM, D¼ 0.1 min, m ¼ 5 spikes; in panels B and D, â ¼ 1=min; b ¼
0.2/min, KS ¼ 0.2 mM; in panels C and E, aX¼ 1/(mM min), bX¼ 0.2/min,

aY ¼ 20/(mM min), bY ¼ 4/min, YT ¼ 1 mM .

1210 Salazar et al.

Biophysical Journal 94(4) 1203–1215



YðtÞ ¼ �Yð1� e
�t=tÞ; (23)

where �Y ¼ aYSn
0g=ðaYSn

0g 1 bYÞis the stationary kinase

activity and t ¼ ðaYSn
0g 1 bYÞ�1

its activation time. For the

target protein, one obtains

XðtÞ ¼ �X 1� e
�bXt � bXt e

�t=t

1� bXt

 !
; (24)

where �X ¼ �YaX=bX is the stationary target activity. The

term in brackets gives the fraction of �X attained after time t.
Changes in the duty ratio g exert opposite effects on these

two terms. On the one hand, the kinase activity �Y increases

with g leading to a higher value of �X: On the other hand,

because the total signal duration ttot ¼ mD/g (being m the

number of spikes) decreases with g, a lower fraction of �X
will be reached. The optimal signal shape arises from the

tradeoff between both opposing effects.

Using Eq. 24, we determined how this optimal signal

shape depends on the kinetics of the phosphorylation cycle

and on the time during which [Ca21]c remains elevated. If

the target protein is rapidly dephosphorylated (bX� 1), the

optimal signal shape will then be characterized by a rapid

succession of spikes and a short total duration (Fig. 8). Con-

versely, for slowly responding targets, the optimal signal

shape has a slow spiking frequency and lasts for longer. This

optimal signal is also affected by the time mD during which

[Ca21]c remains elevated. We found that the larger this time,

the higher the optimal duty ratio will be (Fig. 8). These

analytical results were confirmed by numerical simulation of

the full system (compare in the solid squares with the solid
lines in Fig. 8).

In summary, when Ca21 amount is limited, calcium release

in the form of spikes is more effective than a single continuous

release if target activation occurs in a two-step kinetics. This

condition is fulfilled when Ca21 binds slowly to the kinase.

The optimal signal shape is determined by the amount of

calcium and the kinetics of the phosphorylation cycle.

DISCUSSION

In this article, the decoding of Ca21 oscillations has been

theoretically analyzed in a minimal model of protein acti-

vation. Such a model comprises the activation-inactivation

cycle of a target protein controlled by a Ca21-dependent

kinase and the counteracting phosphatase. The mimicking of

Ca21 oscillations by square-shaped pulses allowed for an

analytical solution of the kinetic equations. To quantify how

sensitively the target protein responds to an oscillatory cal-

cium signal, we derived expressions for the mean target ac-

tivity and for the activation time. Both depend on three

dimensionless quantities that govern the response of the

system. Two of these dimensionless quantities (the effective

activation rate and the relative oscillation frequency) com-

bine kinetic properties of the target activation with charac-

teristics of the Ca21 signal. This fact indicates that the

timescales of Ca21 oscillations and target response are coupled

through the decoding mechanism and should not be analyzed

separately.

With our model we aimed to answer several questions

concerning the decoding of Ca21 oscillations:

How does a protein respond to changes in the oscillation

frequency and when does it function as a signal inte-

grator?

What are the advantages of having an oscillatory signal?

Under which conditions is the system response maxi-

mized?

To what extent do Ca21 oscillations confer target speci-

ficity?

These four issues will be discussed below.

Frequency sensitivity

Although an increase in the oscillation frequency, leaving the

amplitude and average unchanged, always causes an increase

in the mean target activity, the magnitude of these changes

depends on the inactivation rate of the target and on the duty

ratio of oscillations. In case target inactivation is faster than

the oscillation frequency, the target activity would simply

oscillate along with the Ca21 oscillation and the target does

not integrate the signal. By increasing the oscillation fre-

quency, such that Ca21 oscillations are faster than target in-

activation, the target protein would not fully inactivate between

each Ca21 oscillation and behaves as a signal integrator. In

FIGURE 8 Effect of kinetic parameters on the optimal transient signal.

Optimal duty ratio gtr of a transient Ca21 signal as a function of the

dephosphorylation rate constant bX of the target protein. The ratio aX/bX is

kept constant. If the target protein is rapidly inactivated (bX � 1), the

optimal Ca21 signal is characterized by a high duty ratio. The optimal duty

ratio will also increase by increasing the total duration of the Ca21 spikes

(upper line). The solid lines are calculated with the analytical approximation

(Eq. 24); the solid squares are obtained after numerically solving the full

system (Eqs. 2 and 3). Parameters: n ¼ 1, S0 ¼ 2 mM, D ¼ 0.2 and 0.4 min

(lower and upper line, respectively), m¼ 5 spikes; aX/bX/mM, aY¼ 1/(mM

min), bY ¼ 1/min, YT ¼ 1 mM.
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this case, one observes a continuous increase in the target

activity at each oscillation cycle. The critical point, over

which the target response becomes frequency-insensitive,

appears when the oscillation frequency gets in the range of

the target inactivation rate. Our analysis demonstrates that

true frequency decoding, at constant average Ca21 signal,

can indeed occur provided that Ca21 spikes are narrow and

the oscillation frequency is of the order of the target inac-

tivation rate or below.

Oscillations versus constant signals

We compared the target response to a constant signal and to a

sustained oscillatory signal of the same average Ca21 con-

centration. Our analysis demonstrates that Ca21 oscillations

are more potent in activating the target protein than a con-

stant signal if 1), Ca21 acts cooperatively on the kinase; and

2), the Ca21 sensitivity of the kinase (expressed by the dis-

sociation constant) lies around the peak concentration of the

calcium spike or above. Under these conditions, Ca21 oscil-

lations reduce the effective threshold for the target activation.

Taking into account the typical values for amplitude and

duty ratio of Ca21 oscillations, the predicted critical affinity

values lie in the range of the experimentally measured Ca21

sensitivities. Furthermore, we found that target proteins are

more efficiently activated by oscillatory signals at low levels

of stimulation irrespective of whether the information has

been encoded in the amplitude or in the frequency of oscil-

lations. This study provides a theoretical support to the ex-

perimental findings on Ca21-dependent gene expression by

Dolmetsch et al. (12) and on Ca21-dependent enzyme acti-

vation by Eshete and Fields (41), Kupzig et al. (42), and to

the numerical simulations by Gall et al. (26).

Optimal signals and target specificity

We also asked, what is the calcium signal shape that best

activates a particular target protein? Our analysis demon-

strates the existence of an optimal shape, which is deter-

mined by the Ca21 sensitivity and kinetics of target response.

Thus, by varying the characteristics of Ca21 oscillations,

target proteins can be differentially activated. To investigate

this issue, we compared two phosphorylation cycles with dis-

tinct Ca21 sensitivities and (in)activation kinetics. We found

that under specific conditions, Ca21 oscillations can upreg-

ulate one protein and downregulate the other one and vice

versa. If the cycles only differ in their (in)activation kinetics, the

slowly responding protein would be always stronger-activated

by Ca21 oscillations than the rapidly responding protein. Such

a behavior has been observed experimentally for genes regu-

lated by the two calcium-dependent transcription factors NFAT

and NFkB, where the latter factor responds slower to changes

in calcium concentration (12).

Cellular responses depend not only on the frequency and

amplitude of Ca21 oscillations but also on the duration and

number of Ca21 spikes (43). Hence, we examined the

specificity of target activation using time-limited Ca21

oscillations. Specifically, we compared the target response

when Ca21 stimulation of the same total duration, i.e., the

time during which calcium concentration remains elevated,

is applied as either a single continuous stimulation or as

pulses of short duration at distinct time intervals. Releasing

Ca21 at once maximizes the target response when kinase

(in)activation or target (de)phosphorylation is fast compared

to the duration of the Ca21 transient. However, when the

proteins respond slowly, the target activity becomes maxi-

mal by releasing Ca21 in the form of pulses with an optimal

frequency. We demonstrated analytically that this optimal

oscillation frequency arises from the tradeoff between two

opposing effects. On the one hand, the kinase activity in-

creases with the oscillation frequency leading to a higher

stationary target activity. On the other hand, the total signal

duration decreases with the frequency so that a lower fraction

of the stationary target activity will be reached. Similar

conclusions were arrived at by Marhl et al. on the basis of

numerical simulations (28,34).

Our theoretical analysis of target activation by transient

Ca21 oscillations is also consistent with the experiments of

Li et al. (16) and Tomida et al. (13), who found that the

nuclear localization of the transcription factor NFAT is

optimized when the Ca21 pulses are applied at short-time

intervals. A determinant factor to achieve this effect is the

temporal dissociation between Ca21 signals and nuclear

translocation of NFAT. Ca21-dependent dephosphorylation

of NFAT proceeds faster than its nuclear translocation and

rephosphorylation (44). Consequently, Ca21 oscillations can

induce a buildup of dephosphorylated NFAT in the cyto-

plasm, allowing nuclear translocation of NFAT even during

the interspike interval, provided that this interval is shorter

than the lifetime of dephosphorylated NFAT (13). These

experiments point out to the existence of a molecular Ca21

memory in the mechanism of NFAT activation, where an

oscillatory input is transformed into a nearly stationary

output.

Molecular sensors of calcium signals

Diverse experiments on Ca21 decoding have suggested the

existence of molecular sensors capable of interpreting com-

plex temporal Ca21 signals into the correct physiological

response. A classic example of such decoders is the small

molecule calmodulin, which activates several kinases as well

as the phosphatase calcineurin (14,17). More recently, the

kinase PKC (15,45) and the small GTPase Ras (46,47) have

been also proposed as potential Ca21 decoders. These sen-

sors contain specialized Ca21-binding domains such as the

C2 domain with a high structural diversity, allowing the

binding of multiple targets with distinct Ca21 sensitivities

and activation kinetics. Other elements to consider are the

compartmentalization and cross-interactions among signaling
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molecules. So the question arises: what is the ideal processor

for decoding complex Ca21 signals, and what minimal

features should it have?

Our study demonstrates that a system consisting of the

nonlinear regulation of a target protein by a Ca21-activated

kinase and the counteracting phosphatase contains the

minimal features required for deciphering temporal Ca21

signals. Autophosphorylation of the target protein (e.g., CaM

kinase II) can be considered as a special case of this model,

where the Ca21-dependent kinase is itself the target protein.

Yet despite its simplicity, this minimal model is able to

reproduce all features of Ca21 signaling decoding that have

been observed in detailed models (25,26,30). In our model,

nonlinear activation of the target protein arises from the

cooperative Ca21 binding to the kinase. Other mechanisms

that can generate nonlinear responses, such as multiple

phosphorylation and feedback regulatory loops, may also be

implicated in the decoding of Ca21 signals and should be

considered in future studies (48,49). Deciphering of complex

Ca21 signals presumably involves activation of multiple

Ca21 sensors instead of a central decoder. Complex decod-

ing patterns such as signal integration and summation might

emerge from combining single properties of the individual

decoders. Therefore, it would be worth extending this ap-

proach to a system consisting of multiple Ca21 decoders.

APPENDIX A: TARGET ACTIVITY AND
ACTIVATION TIME

Here, we derive the formulas for the mean target activity �X and the activation

time t. The linear differential equation (Eq. 3), describing the kinetics of the

target protein X, can be separately solved for the spike and interspike

intervals (see Eq. 5). The solution of Eq. 3 reads

XðtÞ ¼ XiðzÞ ¼ e
�ða01bÞz

Ai 1 Xmax; 0 # z , D

e
�bz

Bi; D # z # T
:

�
(25)

For simplicity, we have introduced the internal time z ¼ t � iT within an

oscillation cycle z2[0,T]. The target activity during the ith cycle is denoted

by Xi(z). The phosphorylation rate a0 during a Ca21 spike (see Eq. 4) is

given by

a0 ¼ aðS0Þ ¼ â
ðS0=KSÞn

ðS0=KSÞn 1 1
; (26)

and the maximal target activity is Xmax ¼ ða0Þ=ða0 1 bÞ: The coefficients Ai

and Bi are determined from

XiðTÞ ¼ Xi11ð0Þ and XiðD�Þ ¼ XiðD1 Þ; (27)

leading to the difference equations

Ai11 ¼ e�ða0D1bTÞAi � Xmaxð1� e�bðT�DÞÞ and

Bi ¼ e
�a0D

Ai 1 Xmaxe
bD
: (28)

The initial condition X0(0) ¼ 0 gives A0 ¼ �Xmax. Equation 28 is solved

with the Ansatz Ai ¼ a 1 be�iða0D 1 bTÞ; where e�iða0D 1 bTÞ is a solution of

the homogeneous difference equation. One then obtains

Ai ¼ AN 1 1 e
�ði11ÞðbT1a0DÞe

ða01bÞD � 1

1� e
�bðT�DÞ

 !
: (29)

After a sufficiently large number of cycles (i / N), the coefficient Ai

approaches AN ¼ �Xmaxð1� e�bðT�DÞÞ= ð1� e�ðbT 1 a0DÞÞ: Equations 28

and 29 give the second coefficient

Bi ¼ BNð1� e
�ði11ÞðbT1a0DÞÞ; (30)

with BN ¼ XmaxðebD � e�a0DÞ=ð1� e�ðbT1a0DÞÞ: The dynamics of the target

protein during the ith cycle is then described by

The quantities X1(z) and X�(z) denote the stationary target activity during a

Ca21 spike (0 # z , D) and during the interspike interval (D # z # T),

respectively,

X
1 ðzÞ ¼ Xmax 1� 1� e�bðT�DÞ

1� e
�ðbT1a0DÞe

�ða0 1 bÞz

 !
;

X
�ðzÞ ¼ Xmax

e
bD � e

�a0D

1� e
�ðbT1a0DÞ

� �
e
�bz
: (32)

After a sufficiently large number of oscillation cycles (i / N), the target

activity approaches X1(z) and X�(z).

The mean target activity �Xi during the ith cycle is defined by �Xi ¼
ð1Þ=ðTÞ

R T

0
XiðzÞdz: Thus, integration of Eq. 31 leads to

XðtÞ ¼ XiðzÞ ¼ X
1 ðzÞð1� e

�iðbT1a0DÞÞ1 Xmaxð1� e
�ða01bÞzÞe�iðbT1a0DÞ

; 0 # z , D

X
�ðzÞð1� e

�ði11ÞðbT1a0DÞÞ; D # z # T
:

�
(31)

�Xi ¼ Xmax

D

T
1

a0

bTða0 1 bÞ
ð1� e

�Dða01bÞÞð1� e
�bðT�DÞÞ

1� e
�ðbT1a0DÞ

" #
ð1� e

�iðbT1a0DÞÞ

1 e�iðbT1a0DÞXmax

D

T
1
ð1� e

�ða01bÞDÞ a0

a0 1 b
� e

�bðT�DÞ
� �
bT

0
@

1
A: (33)
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According to Eq. 33, the mean target activity �X; i.e., for i / N, reads

�X ¼ Xmax

D

T
1

a0

bTða0 1 bÞ
ð1� e

�Dða01bÞÞð1� e
�bðT�DÞÞ

1� e
�ðbT1a0DÞ

" #
:

(34)

Equation 34 is equivalent to Eq. 7, where the dimensionless parameters

s ¼ a0/b, v ¼ 1/bT, and g ¼ D/T have been introduced.

The activation time t of the target protein, defined in Eq. 21, can be

calculated using Eqs. 33 and 34. After some algebra, one obtains

t ¼ T

1� e
�ða0D1bTÞ

� T½bD 1 ð1� e
�ða01bÞDÞðXmax � e

�bðT�DÞÞ�
bDð1� e

�ða0D1bTÞÞ1 Xmaxð1� e
�ða01bÞDÞð1� e

�bðT�DÞÞ
:

(35)

A Taylor expansion of Eq. 35 for T / 0, leaving D/T constant, yields

t � a0

D

T
1 b

� ��1

�T � D

2
: (36)

Equation 36 is equivalent to Eq. 22 after introducing the dimensionless

parameters.

APPENDIX B: OPTIMAL CA21 SIGNALS

The optimal signal shape at a given average �S is the solution of ð@ �XÞ=ð@gÞ ¼
0; where the amplitude S0 has been replaced by S0 ¼ �S=g: Using Eq. 13, for

low-frequency oscillations (v / 0), one obtains the maximal target

response for

gmax ¼ �S=KS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â=b 1 1

n� 1

n

r
: (37)

Using Eq. 14, for high-frequency oscillations (v / N), one gets

gmax ¼ �S=KS

ffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

n

r
: (38)

Numerical evaluation of Eq. 7 shows that gmax is a decreasing function of v.

Thus, Eqs. 37 and 38 give the upper and lower bound for gmax, respectively.

Oscillations and a constant signal of equal average �S have the same

efficiency in activating the target protein when �X � ðâ�SnÞ=ððb 1 âÞ�Sn 1

bKn
SÞ ¼ 0; where the second term corresponds to the target activity obtained

with the constant signal. Solving the above equation yields a critical

dissociation constant (KS/S0)crit. When KS/S0 . (KS/S0)crit, oscillations are

the more potent activating signals. For high frequency oscillations (v / N,

Eq. 14 holds), one gets

KS

S0

� �
crit

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

n � g
n11

g � g
n

n

s
; (39a)

and

lim
g/1

KS

S0

� �
crit

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1n
p : (39b)

These formulas correspond to Eqs. 20 and 19, respectively. For low

frequencies (v / 0, Eq. 13 holds) the critical dissociation constant reads

KS

S0

� �
crit

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

n � g
n 1 1

g � g
n ðâ=b 1 1Þn

s
; (40a)

and

lim
g/1

KS

S0

� �
crit

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â=b 1 1

n� 1

n

r
: (40b)

Since �Xðv/0Þ # �X # �Xðv/NÞ; Eqs. 39 and 40 give the lower and upper

bound for (KS/S0)crit, respectively. Therefore, the condition for the

superiority of oscillations over a constant signal is ðKSÞ=ðS0Þ.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðâ=b 1 1Þ=ðn� 1Þ:n

p
This is a more strict condition than Eq. 19, which

is valid for any frequency or duty ratio.
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