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ABSTRACT Channels from the MscS family are adaptive tension-activated osmolyte release valves that regulate turgor in
prokaryotes and volume in plant chloroplasts. The crystal structure of Escherichia coli MscS has provided a starting point for
detailed descriptions of its mechanism. However, solved in the absence of the lipid bilayer, this structure may deviate from a
native conformation. In this study, we utilized molecular dynamics simulations and a new iterative extrapolated-motion protocol
to pack the splayed peripheral TM1 and TM2 transmembrane helices along the central TM3 shaft. This modification restored the
tension transmission route between the membrane and the channel gate. We also modeled the structure of the 26-amino acid
N-terminal segments that were unresolved in the crystals. The resulting compact conformation, which we believe approximates
the closed resting state of MscS, matches the hydrophobic thickness of the lipid bilayer with arginines 46, 54, and 74 facing the
polar lipid headgroups. The pore-lining helices in this resting state feature alternative kinks near the conserved G121 instead of
the G113 kinks observed in the crystal structure and the transmembrane barrel remains stable in extended molecular dynamics
simulations. Further analysis of the dynamics of the pore constriction revealed several moderately asymmetric and largely
dehydrated states. Biochemical and patch-clamp experiments with engineered double-cysteine mutants demonstrated cross-
linking between predicted adjacent residue pairs, which formed either spontaneously or under moderate oxidation. The L72C-V99C
bridge linking more peripheral TM2 to TM3 caused a shift of channel activation to higher pressures. TM3 to TM3 cross-links through
the A84C-T93C, S95C-I97C, and A106C-G108C cysteine pairs were shown to lock MscS in a nonconductive state. Normal channel
activity in these mutants could be recovered upon disulfide reduction with dithiothreitol. These results confirmed our modeling
predictions of a closed MscS channel featuring a TM3 barrel that largely resembles the crystal conformation though with more
tightly packed peripheral helices. From this closed-resting conformation, the TM3 helices must expand to allow for channel
opening.

INTRODUCTION

The mechanosensitive channel of small conductance, MscS,

is a ubiquitous component of the bacterial osmoregulation

system. In bacteria, MscS acts as a tension-activated valve

that opens and releases small intracellular osmolytes thus

rescuing cells from hypotonic lysis (1). MscS-like channels

have been found in fission yeast, alga, and higher plants (2).

Two of these MscS homologs in Arabidopsis thaliana have

been shown to be critically involved in regulation of chlo-

roplast volume and fission (3). More recently, an MscS

homolog was shown to play an important role in maintenance

of chloroplasts in Chlamydomonas (4).

Electrophysiological experiments with purified and lipo-

some-reconstituted Escherichia coli MscS have demon-

strated that the channel activates in direct response to tension

in the lipid bilayer (5,6). Patch-clamp measurements of MscS

in native bacterial spheroplasts revealed complex adaptive

behaviors in transitions between the resting, open, and in-

activated states (7). The slopes of MscS dose-response curves

on tension (Po(g)), measured in reconstituted and native

membranes, implied a substantial in-plane expansion of the

protein (8.4 (6) to 18 nm2 (7)) associated with opening.

The crystal structure of E. coli MscS was solved by the

Rees group to 3.9 Å at pH 7.2 in Foscholine-14 (8). It

revealed a nearly symmetric homo-heptameric complex with

three transmembrane helices (TM1, TM2, and TM3) per

subunit connected to a large hollow cytoplasmic cage formed

by all seven C-terminal ends. The crystal structure was pos-

tulated to represent the open conformation of MscS and the

characteristic ;30� tilts of TM1-TM2 helical pairs relative to

the pore axis were interpreted as a sign of synergistic action of

tension and voltage in reaching the open state (8). The upward

(toward the periplasm) splaying motion of the peripheral

helices (TM1-TM2) carrying positive charges was considered

as a mechanism for the voltage sensitivity of MscS-like

channel reported in early experiments (9). Later studies,

however, demonstrated that the rate of MscS activation is not

voltage-dependent (7). Instead, the rate of inactivation was

found to be higher under depolarizing voltages (7,10) a trend

that was found to be unchanged in mutants lacking a number

of positive charges on the TM1 and TM2 transmembrane

helices (11).

Although the crystal conformation of MscS was initially

deemed to be open (8), several attempts to simulate this

conformation, with different force fields and water models,

revealed a pore constriction that was largely dehydrated

doi: 10.1529/biophysj.107.110171

Submitted April 3, 2007, and accepted for publication October 10, 2007.

A. Anishkin and B. Akitake equally contributed to this work.

Address reprint requests to Sergei Sukharev, Tel.: 301-571-9119; E-mail:

sukharev@umd.edu.

Editor: Eduardo Perozo.

� 2008 by the Biophysical Society

0006-3495/08/02/1252/15 $2.00

1252 Biophysical Journal Volume 94 February 2008 1252–1266



(12–14). Ion permeation through this dry pore was deter-

mined to be not possible at physiological voltages (12,13,15),

which strongly suggested that the crystal structure repre-

sented either a low-conducting or nonconductive state (12).

Brownian dynamics simulations demonstrated that even if

the crystal pore were fully hydrated, it would still be too

narrow to allow for the experimentally observed 1-nS open-

state conductance (15,16). These results led to a recent

reinterpretation of the MscS crystal structure by its authors

(17).

A puzzling feature of the crystal structure is the large tilt of

the TM1-TM2 helices shown to create deep crevices on the

cytoplasmic side of the transmembrane domain. Attempts to

simulate MscS in lipid bilayers using molecular dynamics

(MD) (13,14) revealed that the crystal conformation is

unstable in a typical lipid environment and suggested that

the transmembrane barrel with splayed TM1-TM2 peripheral

helices may not represent a native state. A more compact

resting state has been discussed by Edwards and co-workers

(13,14) and partially supported by chemical cross links (18). It

now appears that the splay of the TM1-TM2 pairs, observed

by the crystallographers, could be a result of delipidation.

In this article, we sought to address the longstanding ques-

tions of what, if any, functional state is represented by the

crystal structure and subsequently took the first steps toward

elucidating its possible connection to other states in the gating

cycle. We have reconstructed a model of the closed-resting

conformation of MscS from the crystal structure utilizing a set

of novel modeling tools which allowed us to transform the

original structure and predict the overall character of the

gating transition. We demonstrate that this more compact

closed-state model of the complete transmembrane region of

MscS is stable in the lipid bilayer and nonconductive within a

physiological range of voltages. Finally, we provide bio-

chemical and electrophysiology data testing the predicted

helical arrangement of the resting state using disulfide cross

links.

Qualitative analysis of MscS crystal structure
and the approach to its transformation and
analysis of gating

All of the lattice contacts in the MscS crystals were formed

between the polar cytoplasmic domains (8). The crystallo-

graphic temperature factor (signifying the degree of devia-

tion form the ideal lattice) in the entire structure was found to

be highest for the cytoplasmic ends of the tilted peripheral

TM1-TM2 helices. The nature of this curious tilt in these

helical pairs is not accounted for in an obvious way. There

have been several examples of highly tilted helices in

membrane proteins such as aquaporin (19,20), CLC channel

(21), and the glutamate transporter homolog from Pyrococcus
horikoshii (22), but in each of these cases, the helical positions

were found to be stabilized by the array of intracomplex

interactions. In contrast to those structures, the TM1-TM2

helical pairs of MscS do not participate in intersubunit or

crystal lattice contacts and the physical reason of their

separation from TM3 helices, which may bear functional

significance (23), needs to be clarified.

The structure suggests that the loops connecting the TM1-

TM2 pairs with the central TM3 barrel (residues 91–94) are

flexible and should not impose fixed angles on the positions

of TM1-TM2 relative to TM3. The cytoplasmic end of the

TM1-TM2 pair, which forms a charged loop (residues 53–

67), may potentially salt-bridge to the TM3b helices forming

the roof of the cage (via the D62-R128 pair) (14); however,

this interaction is not evident in the crystal state. The observed

tilts could also be stabilized by steric clashes between bulky

amino-acid side chains, which protrude into the TM2-TM3

gap (residues F80 and L100). In delipidated samples, two

factors could potentially increase helical tilts: 1), the absence

of an appropriately distributed lateral pressure of lipids

around the channel; and 2), the wedging of detergent into the

TM2-TM3 gaps, thus stabilizing them. Another consequence

of the relaxation of the delipidated barrel into a conical

conformation might be increased pressure at the tops of the

TM1-TM2 pairs squeezing the N-terminal segments out,

which may account for their disordered state in the crystals

(8). In concurrence with the previous hypothesis of a more

compact resting state (18), we propose that the native resting

state, stabilized by the lipid bilayer, should feature the TM1-

TM2 pairs in more upright positions, packed closer to the

central TM3 shaft.

The question of whether the pore-forming TM3 helices of

the MscS channel can be packed more tightly, an idea that

has been previously addressed by Edwards and co-workers

(24), now requires greater consideration, although this time

in the context of the entire structure. Unlike the peripheral

TM1 and TM2 helices, the pore-lining TM3a helices show

the lowest B factor in the crystals, indicating that these

tightly packed core segments forming the gate are in a stable

conformation. In these positions, the conducting pore of the

crystal structure is too narrow to satisfy the experimentally

determined open-state conductance (12,14,16,25) and too

hydrophobic to be permanently hydrated (12,13). We contend

that the crystal conformation of the pore is nonconductive and,

because there appears to be no direct mechanical connection

between the tension-receiving peripheral helices and the gate,

the structure better satisfies the criteria of the tension-insensi-

tive inactivated state than the criteria of the resting state (26).

Attempts to simulate the crystal structure of MscS in lipid

bilayers using MD (13,14) showed that assembling lipids

around the transmembrane domain was not straightforward

due to its unusual surface topology. A conspicuous discrep-

ancy revealed in these simulations was that the tightly packed

assembly of TM3 helices, most stable in the crystal structure,

was especially prone to quick kinking and collapse. The

obvious factors that could render the crystal structure unstable

in simulations were the absence of the N-terminal domains

(26 amino acids unresolved on the periplasmic side of the
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channel), inappropriate positioning of the protein along the

Z-coordinate relative to the bilayer, and the splayed orienta-

tions of the lipid-facing helices causing stresses and distor-

tion. With regard to this last point, tilting of isolated helices

in the bilayer was demonstrated to be energetically costly

(27,28); it is therefore plausible that the peripheral helices in

the native state of MscS are less tilted and form a more con-

tinuous protein interface with the lipid.

To overcome some of these unusual features and tenden-

cies of MscS we chose a different strategy in our MD

simulations. In our approach, we first utilized computation-

ally efficient targeted energy minimizations and our new

iterative extrapolated-motion technique to quickly refold the

crystal conformation in vacuum. The imposed energy gradi-

ents in minimizations and the displacements initiating ex-

trapolated motion were directed radially, mimicking lateral

stretching (or compressing) force as would be expected in

the channels’ native environment. The magnitudes of these

perturbing factors (forces or displacements) were adjusted to a

minimal effective value such that protein motion occurred

primarily about hinged regions to preserve all of the existing

secondary structure elements. In the next step, we modeled

the missing N-terminal segment de novo, attached it to the

channel, and tested its compatibility with the closed- and

open-like states in multiple cycles of extrapolated expansions

and contractions. Having chosen the most favorable confor-

mation of the N-terminal, we then explored the general

pathway for reversible barrel expansion permitted by the

protein itself. We applied to these trajectories experimentally

determined constraints on the amount of in-plane area change

and pore diameter (based on conductance), and chose the two

end-states roughly approximating the resting and open states

of the channel. Seeking to predict the resting state of MscS, we

relaxed the most compact conformation of the channel barrel

in extended unrestrained MD simulations in the presence of

explicit water and lipids. The resultant symmetrized model

representing the resting state was then analyzed in terms of

critical interhelical interactions and candidate pairs of resi-

dues were selected for cysteine substitutions. The generated

MscS mutants were then tested for the ability to form disulfide

bridges in biochemical and patch-clamp analyses.

MATERIALS AND METHODS

Molecular dynamics simulations

At different stages of structure modification, we utilized targeted energy

minimizations as well as molecular dynamics (MD) simulations in equilib-

rium (unrestrained) mode, steered mode as well as simulations with soft

symmetry restraints. All MD simulations were performed using NAMD2

(29) with the CHARMM27 force field (30). VMD (31) was employed for

visualization, molecular modifications, and analysis using custom-written

Tcl scripts for calculation of in-plane channel area changes, assessment of

pore asymmetry, and estimation of the number of water molecules in the

constriction region.

The major steps are illustrated in Figs. 1 and 2, whereas many additional

technical details of the simulations can be found in the Supplementary Material.

Briefly, the initial compacted conformation of MscS was obtained from the

crystal structure (PDB ID 1MXM) using targeted energy minimizations

(conjugate gradient and line search algorithm) with a gradually increasing

harmonic force (0.001–20 kcal/mol/Å2) applied to the protein backbone toward

the central axis of the channel. In addition to the purely centripetal force

direction, the protocols with a 45� clockwise twisting component were used.

The targeted minimizations were performed in vacuum with the charges

adjusted according to the dielectric permeability of the implicit medium (lipid

membrane or water). Relaxing energy minimizations (with no imposed bias)

and symmetry-driven simulated annealing steps under the same simulation

conditions followed steered compression of the channel barrel. The resulting

compact and symmetric homoheptamer is shown in Fig. 1 C.

The resting-state model with the smallest in-plane area, narrowest con-

striction, and minimal distortions of the secondary structure was simulated in

unrestrained mode in a fully hydrated palmitoyl-oleoyl-phosphatidylcholine

(POPC) bilayer (220 lipids) with TIP3P water (32) in a flexible hexagonal

periodic box. The membrane tension was set at 10 dyne/cm (33). To reduce

the size of the system, only the transmembrane domain with the adjacent

portion (;15 Å) of the cytoplasmic cage (residues 1–130, 137–140, 147–154,

and 162–175 of each subunit) were included. The number of potassium and

chloride ions corresponded to a 200 mM salt concentration. The total system

size was ;100,000 atoms. The entire 15-ns simulation was arranged as a

sequence (Fig. 3) of unrestrained simulations interrupted with shorter

symmetry-driven simulated annealings. During the annealing stages, all

protein atoms were gradually driven toward their continuously updated

sevenfold symmetric average positions using harmonic restraints with

the spring constant increasing exponentially from 0.001 to 20 kcal/mol/Å2.

The rest of the system (lipids, water, and ions) was unrestrained. During the

unrestrained simulation stages all the atoms in both the medium and protein

were free to move except for the a-carbons of the terminal residues (points

where the cytoplasmic domain was truncated) to prevent unnatural drift.

Predictions of the transition pathway using
the extrapolated motion protocol

Large-scale motions of the MscS barrel were explored in vacuum by this

new iterative protocol. The procedure starts with an initial displacement of a

specific domain or all protein atoms in an arbitrary direction. Energy

minimization and a short, relaxing, MD simulation follow this step. In the

next cycle, atom displacements are calculated as the linear extrapolation of

coordinates based on the previous and current positions. After displacement

occurs, energy minimization and relaxing MD simulation are repeated (see

diagram in Fig. S1, Supplementary Material).

For the transmembrane barrel of MscS, 0.1–1 Å displacements in the radial

direction were used to initiate expansion or compression. In each cycle, the

extrapolated displacements of atoms were corrected in both absolute value

and direction by an initial energy minimization (100 steps, conjugate gradient,

and line search algorithm), followed by a 1-ps relaxing MD simulation at

310 K and then by another energy minimization (100 steps) with sevenfold

symmetry restraints. When merged into a pseudo-continuous curvilinear

trajectory, 50 extrapolation cycles typically produced 5–15 Å of radial

displacement of all transmembrane domains also associated with tilting. We

found that introduction of amplification coefficient, which slightly increases

the absolute value of the coordinate extrapolation vector at every step, ex-

pands the range of explored space with the optimal coefficient value between

1.05 and 1.2. Note that extrapolations have a random component due to the

Langevin temperature control in the simulations. When repeated from the

same starting conformation, independent series were observed to produce

varying trajectories, but these trajectories usually displayed similar features.

Modeling of the N-terminal segment

The structure of the N-terminal domain, a 40-residue fragment including the

unresolved 26 N-terminal residues, was predicted de novo using the Robetta
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structure prediction server (34–36) which employs the Rosetta algorithm

(37). To provide room for insertion of the unresolved N-terminal domain, the

compacted structure (Fig. 1) was expanded (;4 Å root mean-squared

deviation, i.e., RMSD, for the backbone) using the extrapolated motion

technique. Seven of the most probable conformations were aligned with the

expanded model (using the backbone of residues 27–35) and embedded into

the structure. All of the seven selected variants were found to be compatible

with the open channel structure and after alignment, all fit into the gaps

between the neighboring TM1 helices displaying no structural conflicts with

other domains. The embedded N-termini were then tested separately for

compatibility in a transition between the closed and open states using the

extrapolated motion technique. Some of the tested N-termini failed to follow

either the closing or opening transitions, while other moved coherently with

the transmembrane helices. The folded variant that revealed the lowest

distortions in structure during the transitions was selected as most probable.

Extrapolated expansion/compaction was then repeated 50 times with the

complete model.

Hydration energy profile calculations and protein
positioning within the membrane

For each resulting structure, the hydration energy per atom was calculated

using the GETAREA web-based software (38) with the probe radius of 1.4

Å and atomic solvation parameters taken from Wesson and Eisenberg

(39). Selection of the atoms on the outer and inner surfaces of the protein

separately was permitted through a custom-written algorithm. Selected atoms

on the outer surface were grouped in 1 Å slices along the Z axis normal to the

membrane plane. Hydration energies for all atoms in each slice were summed,

producing the hydration energy density along the axis. The initial profile was

smoothed on the assumption of a Gaussian distribution of the Z coordinate

for each atom with RMSD¼ 2 Å. The obtained hydration energy profile was

used to position the transmembrane barrel relative to the POPC bilayer for

all-atom simulation. The middle of the hydrophobic belt of the barrel

(approximately at the level of V40) was aligned with the midplane of the

membrane and the stability of this position was tested in unrestrained MD

simulations. Matching of hydrophilic belts of residues at the periplasmic and

cytoplasmic rims of the channel (located at 616 Å on the Z coordinate, Fig. 2)

to the layers of lipid headgroups was employed as the second criterion for

proper protein-lipid assembly.

Estimations of the in-plane area

Area estimations were based on the solvent-accessible surface for a probe of

1.4 Å radius using the CHARMM27 VDW radii for the protein. An area at

the selected level was estimated as the area of the surface cross section with a

plane normal to the pore axis. The radius of a circle of an area equal to the

cross-sectional area was considered as the effective radius at that particular

level. Cross sections were spaced every 0.5 Å. For a selected range of slices,

an average value for the radius (or area) was estimated as a value for the

range. Effective in-plane radii for the periplasmic and cytoplasmic rims of

FIGURE 1 Generation of the complete resting confor-

mation of MscS illustrated as step-by-step transformations

of the crystal structure and modeling of the N-terminus. The

complete crystal structure is presented as an inset next to

panel A with the cytoplasmic cage domain shown in gray.

Only the transmembrane pore region is shown in panels

A–F. The transformations in panels A–E were performed on

the entire protein, with the steering force applied to the

transmembrane domain only. (A) The original crystal

conformation of the transmembrane domain with splayed

TM1 (orange) and TM2 (yellow) pairs of helices. The nearly

parallel pore-lining TM3a segments (cyan) are followed by

the C-terminal TM3b segments (blue) splayed after a sharp

kink near glycine 113. (B) A compact conformation with

restored contacts between the lipid-facing TM1-TM2

helices and the pore-lining TM3a helices. The peripheral

TM1 helices are slightly bent and the TM1-TM2 loops are

distorted due to clashes with splayed TM3b segments. (C)

Expanded conformation featuring an open gate and

straightened kinks between the TM3a and TM3b (blue)

helices. The fragment above the channel (red) represents

one of the most probable conformations of the N-terminal

domain predicted using the Rosetta algorithm (see G). (D)

The complete MscS model of the open state with attached

N-terminal segments. Transitions from panels D to E and

back represent compaction-expansion cycles performed

using the extrapolated motion technique to test for the

ability to undergo smooth and reversible transitions be-

tween the open and closed states. (F) The relaxed closed-

state model representing the transmembrane domain with

the adjacent part of the cytoplasmic cage after 8 ns of

unrestrained all-atom simulation in the fully hydrated POPC

bilayer, followed by symmetric annealing. In contrast to the

crystal structure, the closed-state models (E and F) have a

straightened kink near G 113, while an alternative kink

forms around G121. (G) Ten most probable conformations of the N-terminus (40 residues) predicted by Rosetta. The first 26 residues in these ribbon

representations are color-coded by residue name, whereas yellow regions correspond to the resolved helical stretches. The choice of the fragment and its final

adjustment were done according to its ability to undergo unhindered transition between the states depicted in panels D and E.

The Closed Conformation of MscS 1255

Biophysical Journal 94(4) 1252–1266



the protein were calculated for the ranges 12.5–17.5 Å and �17.5 to

�12.5 Å (relative to the midplane of the membrane with z¼ 0), respectively.

Effective pore radii were calculated in the ranges�13 to �7 Å for the upper

hydrophobic chamber and �23 to �17 Å for the pore constriction. Cal-

culations were repeated every 50 ps during the course of the simulations.

This automated protocol for area estimations was written in Tcl and run in

VMD.

Assessment of pore asymmetry

The degree of the TM3 barrel asymmetry was estimated from the radial

distances of the a-carbons of the key pore-lining residues (A98, A102,

L105, and L109) to the pore axis. For every group of equivalent residues

in the heptameric assembly, a geometric center was determined from the

coordinates of the seven a-carbons and the minimal and maximal distances

in x-y plane (normal to the channel axis) were calculated every 10 ps throughout

the simulation trajectory.

Estimations of channel conductance

Channel conductance (G) was first estimated in a continuum approximation

(40,41) taking into account the access and pore resistances in a solution of

specific bulk conductivity g. The pore was presented as a stack of cylindrical

slices (0.5 Å thick) and the resistances were summed. The ion-accessible

cross-sectional area in each slice was determined with the assumption of an

average ion radius of 2.83 Å, which includes half of its first hydration shell.

The access resistances were determined from the effective radii of the

cytoplasmic and periplasmic pore entrances (41) (see Supplementary

Material for details).

Estimations of conductance in explicit all-atom MD simulations were

done essentially as described by Aksimentiev and Schulten (42,43). In our

simulations, the salt concentration in the aqueous phase surrounding the

channel was increased to 1500 mM. The protein backbone was restrained

softly (0.01 kcal/mol/Å2) to allow for conformational freedom yet prevent

large-scale drift. Ion movement was estimated at 6200 and 6500 mV (across

the entire simulation cell of 106 Å, with the potential on the cytoplasmic side

assigned as zero) for the duration of 4–8 ns (at each voltage). Ion crossing

events in the pore were scored using custom-written Tcl scripts in VMD.

Disulfide cross linking of MscS

The PB111 plasmid harboring wild-type (WT) MscS with a C-terminal His-6

tag (5) was used as a template. WT MscS has no cysteines. Single and double

cysteine mutations were introduced using the QuikChange mutagenesis kit

(Stratagene, La Jolla, CA) and verified using automated sequencing. All

mutants were expressed in the MJF465 (mscL�, mscS�, mscK�) E. coli triple

knockout strain (1). Cysteine cross-linking and visualization were imple-

mented essentially as described before in Betanzos et al. (44). Briefly, cells

from 20 ml of an IPTG-induced cell culture (OD600 ;0.8) were collected,

washed in PBS (100 mM NaCl, 30 mM NaPO4, pH 7.2) and French-pressed.

The membranes were collected by centrifugation, resuspended in PBS and

aliquoted into separate tubes. Cross-linking reactions were carried out in 1 ml

of PBS in the presence of 0.03 mM iodine (I2) for 10 min at room temperature.

After completion of the reaction, membranes were spun for 15 min and

resuspended in an iodine-free buffer containing 5 mM n-ethylmaleimide to

block unreacted cysteines. Membranes were incubated in n-ethylmaleimide

for 10 min, spun again, and dissolved in 50 ml of nonreducing (23) sample

SDS buffer. Proteins were separated on a 4–15% gradient polyacrylamide

gel (BioRad Laboratories, Hercules, CA). Bands representing MscS mono-

mers and various multimers were visualized on Western blots with anti-

His6-C-terminal alkaline phosphatase-conjugated antibodies (Invitrogen,

Carlsbad, CA). Controls with distant pairs of cysteines are presented in the

Supplementary Material (Fig. S2).

FIGURE 2 All-atom MD simulation of the modeled resting state and the distribution of polar residues at the protein-lipid boundary. (A) Complete resting

state model in the bilayer illustrated by a cross-sectional view captured in the middle of the unrestrained 8 ns simulation (sim2, see also Fig. 3). Shown as

solvent-accessible surfaces, polar (green), basic (blue), and acidic (red) residues are exposed to the lipid headgroup regions, whereas nonpolar residues face

hydrocarbon. Although the upper hydrophobic chamber is hydrated, neither water (cyan sticks), nor ions (Cl� red or K1 blue, spheres) penetrate the dewetted

hydrophobic constriction (yellow). (B) The same structure with the N-terminal domain (26 amino acids) removed. Nicks in the channel wall protrude down to

the middle of the fatty acid chains and the absence of lipid-facing polar atoms suggests improper anchoring at the periplasmic rim of the channel. Y27 has

spontaneously changed its position during the simulation from pore-facing as in the crystal structure, to one that is more peripheral and solvent-exposed. (C)

Hydration energy profile for the lipid-exposed surface reveals a balanced distribution of polar groups in the complete resting state model (blue line) with a

hydrophobic region near the midplane of the membrane (shown by horizontal dashed line) that is flanked by polar regions at 616 Å representing the

cytoplasmic and periplasmic rims. The model lacking the N-terminus (green line) shows a very small polar region at the periplasmic rim. Positioning the crystal

structure (not shown) in the same way produces a maximum of polarity at �8 Å with a highly imbalanced overall distribution along the Z axis (red line). (D)

The distribution of polar groups in a POPC bilayer simulated at an area of 64 Å2/lipid matches the distribution of the polar atoms in the closed MscS model. It is

consistent with the notion that the route for the transmission of the lateral tension between lipid and protein lies at both the periplasmic and cytoplasmic rims of

the channel. The lateral pressure/tension profile is shown in panel D with the red part of the curve representing the tension component. The distributions of lipid

groups and pressure across the bilayer are taken from Gullingsrud and Schulten (46).
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Patch-clamp experiments

Preparation of giant E. coli spheroplasts and patch-clamping procedures were

conducted as described previously in the literature (7,23). Briefly, WT MscS-

His6 was expressed in MJF465 cells. Channel recording was conducted on

excised inside-out patches in symmetrical KCl buffers (7). Mechanical

stimuli was applied as negative pressure in the pipette and delivered using a

high-speed pressure clamp apparatus (HSPC-1; ALA Scientific, Westbury,

NY). For analysis of MscS activity under ambient conditions, spheroplasts

were equalized by exposure to air for 1 h on ice before patching. For in situ

cross-linking, an oxidizing pipette solution of 0.05 mM iodine in KCl

recording buffer was delivered behind a 1 mm plug of 400 mM sucrose bath

solution. The effects of iodine in this configuration were delayed by ;30�60

min to aid in patch-sealing and to take measurements before oxidation. For

reduction of disulfides, a solution of 10 mM dithiothreitol (DTT) was

prepared in KCl recording buffer. Spheroplasts expressing cysteine MscS

mutants were preincubated in 10 mM DTT for 1 h before patching.

Alternatively, a 10 mM DTT solution could be perfused into the recording

bath by washing the 3 ml chamber with 12 ml of the solution.

RESULTS

Modeling of the compact state

To translate the hypotheses of compact resting state into a

structural model, a sequence of transformations was performed

with the MscS crystal structure (PDB ID 1MXM) as a starting

point (Fig. 1). At each step, a set of structures was generated and

then ranked according to compatibility with adjacent states and

experimental data. The top-ranked models were then selected

for subsequent steps.

FIGURE 3 Geometrical parameters of the barrel and the degree of pore hydration in the course of a 15-ns MD simulation. (A) Effective radii of the

periplasmic and cytoplasmic rims, outer chamber and of the constriction over the stages of simulation with the restricted backbone (rsbb), first unrestrained

simulation (sim1), symmetry-driven annealing (symm1), the second unrestrained simulation (sim2), and the second symmetric annealing (symm2) (estimated

every 50 ps). (B) Distances from the pore axis to the closest and the most distant a-carbons of equivalent residues in the heptamer that illustrate the ellipticity of

the outer chamber (A98 and A102) and constriction (L105 and L109), estimated every 10 ps. (C) Conformational exchange in the pore illustrated by the radial

motion of subunits. Positions of the a-carbons of A102 residues in individual subunits (numbered 1–7) were tracked every 10 ps. Residues closest to the pore

axis at a given moment are marked by a magenta dot, whereas those most deviating from the axis are designated by a blue dot. Plots for the residues A98, L105,

and L109 (not presented) illustrated the ellipticity of the barrel in the same way as this one for A102. (D) Z-coordinates of water molecules illustrating the

degree of hydration of the pore constriction and vestibules scored every 1 ps.
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The first compaction was achieved using targeted energy

minimizations (Fig. 1, A and B) under a centripetal force com-

bined with a clockwise twisting component. After sevenfold

symmetrization, the first compact structure acquired some of

the predicted features of the closed state, namely a smaller in-

plane area and lower and more energetically favorable tilts of

the peripheral (TM1-TM2) helical pairs. This refolding of the

21-helix assembly occurred without a collapse or distortion of

the central TM3 barrel. The more parallel helical assembly

also reestablished the mechanical connection between the

peripheral and the pore-lining TM3 helices, which appears to

be necessary for the transmission of tension from the lipid

bilayer to the gate. The compacted structure was then sub-

jected to symmetry-driven annealing to remove small devi-

ations between the subunit conformations.

In the cytoplasmic half of the resultant compact structure,

tips of the TM1-TM2 loops touched the TM3b segments

forming the roof of the cage and thus experienced a small

bending. The periplasmic half, in turn, featured bent TM1

helices with the tops collapsed inside the barrel (Fig. 1 B). It

appears that the latter structural anomaly resulted from the

absence of the unresolved N-terminal domain (26 amino acids)

in the MscS crystal. Without the N-termini, the transmembrane

part of MscS appears to be too short to match the membrane

thickness (45) and also featured too few polar contacts with the

lipid headgroups that would be necessary to properly connect

the barrel with the tension-bearing region of the membrane

(46,47). We therefore set out to predict and reintroduce the

missing N-terminal segment.

Since the inwardly collapsed N-terminal part of TM1 steri-

cally hindered the insertion of the predicted N-terminus, we

transformed the compact state into an open-like conforma-

tion using the iterative extrapolated motion protocol. The

transition was initiated by a 1 Å radially outward displace-

ment of all atoms from residues 27 to 113, followed by ;50

steps of extrapolated motion. At intermediate values of am-

plification coefficient (see Materials and Methods), a mean-

ingful range of the transition could be approximated in a

smooth quasicontinuous trajectory between adjacent states.

The expansion process was typically terminated when the

pore constriction diameter reached 1.6 nm, satisfying a 1.4-ns

conductance (6). At this time, the in-plane cross-sectional

area of the barrel was observed to have changed from the

initial 22 to ;34 nm2 (DA ¼ 12 nm2), comparable with the

experimentally estimated in-plane protein expansion (6,7).

This procedure was repeated 10 times, with each run pro-

ducing a slightly different conformation but with similar

helical tilts, pore diameter, and cross-sectional area. All open

conformations featured a spontaneous straightening of the

prominent kink near the residue G113 in the crystal con-

formation. The averaged and minimized expanded structure

representing the consensus is shown in Fig. 1 C.

The conformation of the missing N-terminal segment was

predicted de novo from the sequence of the first 40 residues

of MscS using the Rosetta algorithm. Of predicted confor-

mations, seven were found to be sterically compatible with

the expanded heptameric structure (Fig. 1 G). These N-termini

were then aligned with N-terminal part of TM1 and attached

to the expanded structure as a direct continuation of TM1.

The insertion was straightforward because none of the

selected variants had significant steric conflicts with neigh-

boring subunits. Each of the variants filled the gap between

the neighboring TM1 helices reasonably well and exposed

several polar atoms toward the headgroup region of the

bilayer on the periplasmic side. This step produced seven

possible, and rather similar, conformations of the complete

expanded model. One example is shown in Fig. 1 C. In this

conformation, the N-terminal extension forms three short

helical segments separated by two reverse turns. With the

chosen orientation of the N-terminus relative to the existing

part of TM1, residue D8 of the extension forms a salt-bridge

to residue R88 in the TM2-TM3 loop of the adjacent subunit,

which may provide a stabilizing intersubunit interaction. By

filling the nicks in the outer rim, the added N-termini also

provided structural support for the N-terminal part of TM1

and adjusted the hydrophobic thickness of the barrel to match

the surrounding bilayer.

To obtain a closed-state model that would result from a

smooth contracting transition, we performed cycles of cen-

tripetal extrapolated motions to close the open-like expanded

conformation completed with the N-termini (Fig. 1, D and

E). Each round of contraction was initiated by a 1 Å inward

displacement of all atoms in the transmembrane region.

Typically, after ;50 steps, the pore radius decreased to the

values comparable to the crystal-state conformation (2.5–

4.5 Å at the constriction), after which the contractile motion

slowed, stopped, and often reversed into expansion. Tran-

sitions from the open state that were initiated by a random

thermal fluctuation (without an initial inward displacement)

also lead to closures along similar trajectories illustrating that

the trajectory is not particularly sensitive to the direction of

the initial shift.

Three complete models (out of seven tested) showed

conflict-free motions of N-terminal domains in the course of

contraction. In the remaining four models, the N-termini and

the adjacent periplasmic parts experienced steric clashes that

hindered contraction of the periplasmic part of the protein.

These models were discarded as illustrated by a red-crossed,

one-way arrow on Fig. 1, E and F.

To test these structures for the ability to expand, selected

closed conformations were subjected to an extrapolated

transition to the expanded open-like state using the same

extrapolated-motion technique. Conformations in which the

N-terminal domains were unable to follow the expansion

coherently were rejected (Fig. 1, D and E, red crossed-out
two-way arrow). Cycles of compaction and expansion were

repeated 50 times for closed- and open-state models that

were capable of a smooth gating. Our criteria for selecting a

closed model (complete with N-termini) were the smallest

in-plane area with the narrowest constriction and minimal
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distortion of the secondary structure. The selected confor-

mation is shown in Fig. 1 E. This new closed-state model

features straightened helices (no kinks) between the TM3a

and TM3b helices near the residue G113. The tendency to

straighten kinks in this location was observed in 82% of the

trajectories. It was also observed that an alternative kink

often formed at residue G121. In 62% of all transitions, it

was present along with the straightened kink at G113, and in

10%, both partially formed kinks were present simulta-

neously. The relocation of the kink from position 113 to 121

in TM3 allowed more compact packing of the lipid-facing

helices without significant distortions of the TM1-TM2

loops which, after initial compaction (Fig. 1 B), clashed with

the sharply splayed TM3b segments. We ascribe kink for-

mation at the new location (G121) to the closed resting

conformation of MscS, and we also we have strong evidence

to attribute the characteristic kink at G113 observed in the

crystal structure to the inactivated state. A detailed functional

study of the role of alternate kink formation at these two sites

is described in a separate publication (26).

MD simulations

All of the above transformations were performed in vacuo

for two reasons: 1), to avoid the problem of medium reactions

during fast-extrapolated transitions; and 2), to achieve higher

computational efficiency. Although the minimization step of

the extrapolation protocol ensures structural cohesion of the

closed-state model, the stability of this model had to be tested

in all-atom MD simulations. The transmembrane region of

MscS with the cytoplasmic domain cut at a distance of ;15 Å

from the TM3b helix (see Materials and Methods) was

embedded into a fully hydrated POPC bilayer and the

a-carbons of the residues at the truncation points were softly

restrained. The barrel was subjected to simulations in three

different regimes. An initial equilibration period started with a

fully hydrated pore and a harmonically restrained backbone.

This was followed by two unrestrained periods (4 and 8 ns),

each ending with 1-ns periods of symmetry-restrained simu-

lations. During each period, the stability of the protein

assembly, its fit to the bilayer, hydration of the pore, and

possible ion permeation events were monitored.

The total time of unrestrained barrel simulations in the

explicit lipid bilayer was 12 ns. The protein with the mutually

equilibrated surrounding lipid bilayer (see hydrophobicity

profiles in Fig. 2 B) showed a good match of their hydrophobic

surfaces. Belts of tyrosines (Y27 and Y75) were observed to

face their preferred layers of glycerols/carbonyls within the

lipid bilayer (48). During the unrestrained 8-ns simulation

(Fig. 3, sim2) and symmetrization (symm2), the first few

residues of the modeled N-terminal domain were observed to

slightly uncoil. The presence of three acidic residues in this

region indicates that these uncoiled segments could poten-

tially interact with the positively charged choline groups of

the lipid headgroups. By the end of simulation, the resultant

midplane position of the bilayer relative to the protein

stabilized at a level ;8–10 Å above the position chosen in

previous simulations (13,14). The packing of lipids along the

straightened peripheral TM1-TM2 helices of the new closed

state model caused essentially no distortion of the lipid

bilayer; only a minor decrease of the bilayer thickness was

observed near the channel boundary. Essentially no net tilting

of the lipids was observed near the surface, compared to ;35�
slope expected near the surface of the crystal structure. In

previous simulations, tilted conformations of the peripheral

helices, with gaps between them, led to substantial distortion

of the boundary lipids and apparently contributed to the quick

collapse of the TM3 barrel (unrestrained crystal state) into an

asymmetric occluded state (13,14).

After initial equilibration, the first 4-ns period of unre-

strained simulation was performed (Fig. 3, sim1). To observe

the predominant directions of conformational drift and to

reveal any propensity toward asymmetric states, the protein

backbone was subjected to a 1-ns symmetry-driven anneal-

ing (Fig. 3, symm1) before again releasing the restraints. The

evolution of the unrestrained system was observed again for

the next 8 ns (Fig. 3, sim2) and then subjected to another 1-ns

annealing simulation with symmetry restraints (Fig. 3, symm2).

The initial, intermediate, and final symmetric states were then

compared. The differences between any two conformations,

which did not exceed 3.5 Å RMSD for the entire backbone

and 0.7 Å for the a-carbons of the gate residues 105 and 109,

illustrated that our closed-state model experienced only rela-

tively small relaxation drifts.

On release of the backbone from the initial restraints (Fig.

3 A, rsbb), the periplasmic rim of the barrel first displayed a

slow expansion (sim1), which subsequently stabilized during

the second unrestrained period (sim2). The effective radii of

the cytoplasmic rim, outer chamber, and constriction mea-

sured from the in-plane cross-sectional areas of the solvent-

accessible surface (see Materials and Methods) remained

stable. Fig. 3 B illustrates deviations of the constriction region

and the outer chamber from the ideally symmetric state. The

trajectories depict mean radial distances from the pore axis to

the a-carbons within the rings of A98, A102, L105, and L109.

The differences between the smallest and the largest distances

illustrate the ellipticity of the pore lumen. After releasing the

symmetry restraints, the pore constriction assumed a moder-

ately asymmetric conformation, which remained stable and

nonconductive, although sterically unoccluded. The direction

of the long axis of the ellipse representing the lumen of the

pore fluctuates. The positions of individual residues that are

closest to the pore axis or the most distant at a given moment

are illustrated in Fig. 3 C. As seen from the trajectories, during

sim1, three different subunits visited these extreme points. In

sim2, the structure showed some preservation of symmetry for

the first 1.5 ns as multiple residues visited the closest point,

but then the preference switched toward subunit 7 and the

direction of long axis remained relatively stable for the rest of

the simulation. Although the statistics of exchange is not
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large, the observed dynamics suggests that the ellipticity axis

switching in the constriction may occur with a characteristic

time of ;5 ns. Environmental factors such as transient non-

homogeneity of the lipid bilayer may act to influence the

exchange between asymmetric conformations in the barrel. It

is now clear that several equivalent asymmetric conforma-

tions exist, occupying a larger conformational space than a

single symmetric or asymmetric conformation—thus collec-

tively constituting the nonconductive resting state of MscS.

These findings appear to be supported by the recently revised

MscS crystal structure (PDB ID 2OAU), which also displays a

noticeably asymmetric state of the barrel (17).

During the entire period of simulation, the narrow and

most hydrophobic part of the MscS pore remained largely

dehydrated. Within the first 300 ps of the initial restrained

simulation, water vacated the constriction, and during the

course of simulation, it only entered the constriction occa-

sionally, forming small clusters or single strings (Fig. 3 D).

The tendency to de-wet the pore constriction was consistent

with previous analysis of the vapor-locked state of the crystal

structure (12). Ions were not observed to enter the constriction

throughout the entire 15 ns of simulation, even though the

pathway for water or ions was not sterically occluded since the

axis-to-surface distance in the constriction fluctuated between

2 and 4 Å (Fig. 3 A).

To check explicitly whether an applied voltage is able to

cause ion permeation through the modeled closed MscS, we

performed an additional set of all-atom MD simulations on the

structure obtained after symm1. It was previously determined

from patch-clamp experiments that MscS conductance is nearly

linear in the range of 650 mV, and at low voltages shows no

concentration saturation at least up to a salt concentration of 1.5

M, in which the channel conducts at 5.5 nS (6). Under these

conditions, ;27 ions are predicted to pass through the channel

at 1200 mV in the course of a 4 ns. In simulations performed

without the cytoplasmic cage, the expected number of passing

ions should be even higher, as the cage itself is estimated to

contribute ;20% to the total channel resistance (based on the

cross-sectional area of the side portals). However, we observed

no permeation events at either positive or negative voltage.

Even at a much higher voltage (�500 mV, negative on the

periplasmic side), no ions were observed to cross the constric-

tion. At 1 500 mV, we observed the conduction of two

potassium ions which would provide ,3% of the measured

conductance of the open state. Although statistically insignif-

icant, this result is interesting as the presence of potassium and

not chloride in the pore suggests that addition of the N-terminus

may have decreased the strong anionic preference observed

in previous simulations of the original and expanded MscS

crystal structures (13,14). In all other respects our results agree

well with previous simulations and indicate that the TM3

barrel, in its compact conformation, is impermeable to ions in a

physiological range of voltages becoming permeable only at

extremely high voltages (.500 mV) where one is able to force

ions to cross the hydrophobic constriction (13,14).

The conformation obtained after symm2 is presented

on Fig. 1 F as the final closed-state model. The resultant

surface-to-surface diameter of the pore was 4 Å, 40% smaller

than that in the crystal structure (6.6 Å). The backbone

positions of the TM3a helices forming the gate deviated by

1.3 Å RMSD from the crystallographic coordinates. Fig. 4

shows, superimposed, the backbone of the TM3 helix in the

crystal conformation (residues 94–127), and the same seg-

ment after our modeling and equilibration. For comparison,

also shown is the backbone of the most tightly packed model

of TM3a (residues 97–113) previously proposed by Edwards

and coauthors (24). These representations illustrate that the

deviations between the two models and the crystal coordi-

nates are relatively small. The character of helical packing in

the resting state is similar to that in the crystal structure, just

slightly tighter. If this type of arrangement remains nearly-

symmetrical, it is unlikely that the TM3 helices can be

packed in a more compact conformation with the constric-

tion completely occluded by the side chains of L105 and

L109, consistent with the current hypothesis of Steinbacher

and co-workers (17).

As can be seen from Fig. 4, the main deviation of the TM3

helices of our equilibrated closed-state model from the crystal

structure occurs in the most C-terminal TM3b segment. This

difference directly reflects the straightened helix near G113

FIGURE 4 Superimposed representations of the pore-forming helices

shown by thin ribbons passing through the a-carbons. Only two opposing

helices are shown to illustrate the width of the barrel. TM3 helices in the

initial crystal conformation (PDB ID 1MXM) (red), the symmetrized final

conformation after an 8 ns simulation (blue), and the most compact state of

the TM3 barrel optimized through Monte Carlo simulations (green; depicted

from the coordinates kindly provided by J. Bowie) (24). Residues L105 and

L109 are shown in stick representation. Note that besides slightly tighter

packing of TM3 helices, the major deviation of the modeled resting confor-

mation (blue) from the crystal structure (red) is in the lowered position of the

TM3b segment due to the alternative kink at G121 as opposed to G113 in the

crystals.
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(where the crystal structure shows a characteristic bend) and

the presence of the new kink near G121. As a result of

alternative kink formation the TM3b segment has shifted

down along the pore axis by ;6 Å, which completely resolved

its steric clashes with the TM1-TM2 loops (depicted in Fig.

1 B). This arrangement permitted the most compact alignment

of the peripheral helices along the central TM3 shaft. One

interesting observation was that after straightening of the

G113 kink the Q112 residues of adjacent subunits formed a

ring of hydrogen bonds, which apparently stabilize the

resting-state packing of the TM3s.

Our simulations of the modeled resting conformation of

MscS have revealed considerably higher stability of the TM3

barrel than previously reported for the unmodified crystal

structure (13,14). In our assessment, the stabilizing factors

appear to be:

1. The parallel packing of the peripheral TM1-TM2 helices

bolstering their association with TM3a;

2. An alternate position for the TM3a-TM3b kink (near

G121);

3. The new shifted position of the protein relative to lipid

bilayer, which is anchored by the newly inserted polar

N-termini and also brings the positive charges R46, R54,

and R74 to the cytoplasmic surface of the bilayer;

4. An absence of packing conflicts with lipids; and

5. The high probability of the cooperative circular H-bonds

within the ring of conserved Q112 residues, converging

below the gate from all seven subunits.

Experimental testing of the compact resting
conformation with disulfide cross links

The contact zone between the TM1, TM2, and TM3 helices

in two adjacent subunits after simulation is illustrated in Fig.

5. The denoted residues form interhelical contacts between

TM2 and TM3 as well as intersubunit contacts of TM3.

Residue L72, for instance, is in the proximity of both V99

of the neighboring subunit and G104 of the same subunit. In

our model, the position of the backbone of the TM3a

segment (residues 98–110) deviates from the original crystal

conformation by ;1.1 Å RMSD (Fig. 4). In this conforma-

tion, characteristic contacts between neighboring subunits

were formed at the top of the barrel by the A84-T93, and

S95-I97 pairs of residues, whereas in the gate region the

A106-G108 pair was also observed to be in close proximity.

The distances between all of these pairs of residues in the

crystal- and in the relaxed closed-state model are given in

Table 1. Cysteines were inserted in corresponding positions,

and cross-linking experiments were attempted in native mem-

branes under oxidizing (0.03 mM iodine) or ambient atmo-

spheric conditions. Western blot analysis (Figs. 6 and 7)

shows that multimeric bands representing multiple cross links,

including complete heptamers, appear with all proximal pairs

of cysteines. Single cysteine controls presented also show that,

under oxidizing conditions, cross links between equivalent

cysteines on different subunits occur at appreciable rates,

resulting in primarily dimeric bands and suggesting high

flexibility of the complex. Negative controls probing MscS

conformations with more distant TM2-TM3 and TM3-TM3

cysteine pairs, illustrating the rate of accidental cross-linking,

are presented in the Supplementary Material (Fig. S2). Beyond

dimers, relatively little cross-linking was seen in these controls;

however, faint bands indicating tri- and even tetramerized

protein were observed, suggesting a highly dynamic structure.

Pretreatment of all mutant proteins by 10 mM DTT in the

reaction buffer produced primarily monomeric bands (data not

shown). Despite the appreciable levels of accidental cross-

linking, proximal pairs, which were predicted from the model,

revealed products of higher order.

The multimerization patterns of the L72C-V99C mutant

(Fig. 6 A) were reproduced in four independent membrane

preparations, indicating that, in the resting state, TM2 helices

are indeed positioned closer to TM3 than in the crystal

structure (Table 1).

When tested in patch-clamp experiments under ambient

conditions (Fig. 6, B and C), L72C-V99C activities were

strongly heterogeneous compared to WT MscS (not shown)

or to the single cysteine controls L72C or V99C (Fig. 6 C),

displaying faster channel kinetics and at least two distinct

populations. Preincubation of the mutant with 10 mM DTT

made the activation curve more normal, but no length of

incubation could entirely remove the multipopulation behav-

iors (data not shown). Exposure of L72C-V99C to an oxi-

dizing environment of 0.05 mM I2 from the pipette resulted

in a pronounced shift of the activation curve toward the mid-

point of the second population (Fig. 6 B). To emphasize this

FIGURE 5 Intersubunit contacts in the compact bilayer-equilibrated

model of the MscS transmembrane domain in the closed state. Two adjacent

subunits are shown in ribbon representation (yellow and black). TM1, TM2,

and TM3 helices are in order from left to right. The a-carbons of critical

residues are shown as spheres.
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midpoint shift, currents evoked by the 3-s ramps to saturating

pressure were normalized to the maximal observed current. A

secondary effect of I2 exposure was an increase in the rate of

channel desensitization, which reduced the observed maximal

current under the relatively slow 3-s ramp (data not shown). It

was found that a quick pulse (10 ms) to saturating pressure

was necessary to activate the full L72C-V99C population

under oxidizing conditions, suggesting that the relative posi-

tions of TM2 and TM3 helices might shift in the course of

opening and that this disulfide bridge somehow restrains the

transition, but does not preclude it (data not shown). None

of these effects of I2 exposure on the L72C-V99C mutant

channel occurred in WT MscS controls (Fig S3, Supplemen-

tary Material).

Other selected TM3-TM3 cysteine pairs exhibited much

more efficient cross-linking than the TM2-TM3 pair. All

identified pairs at the top of the barrel A84C-T93C and S95C-

I97C cross-linked spontaneously under ambient atmospheric

conditions, producing the entire spectrum of products from

dimers through heptamers (Fig. 7, A, C, and E). The cross-link

pair A106C-G108C located in the lower portion of the barrel

(i.e., the gate region) produced a strong and thick heptameric

band in the presence of 0.03 mM I2 (Fig. 7 A).

FIGURE 6 Effects of disulfide cross-link formation in L72C-V99C. Multimerization patterns and functional behavior of mutant channels in patch-clamp.

This pair is predicted to link TM2 to TM3 of adjacent subunits. (A) Western blot indicating cross-linking products in the double cysteine mutant separated

alongside the products generated in single cysteine controls L72C and V99C under ambient conditions (unmarked) or by adding 0.03 mM iodine (marked 1I2).

(B) The effect of adding iodine (0.05 mM) from the patch pipette (periplasm) on the activity of the L72C-V99C mutant. Spheroplasts were preincubated under

ambient conditions for 1 h. The data show a strong rightward shift of the activation curves upon exposure to I2 signifying channel modification by disulfide

formation. Current traces were normalized to the maximal observed current to emphasize the pressure shift (see text for details). (C) Activation of the double

cysteine mutant and the single cysteine controls (L72C and V99C) by saturating pressure ramps under ambient conditions. Double mutant activation is

heterogeneous, displaying at least two populations of channels. Activities of the controls are like WT in agreement with low disulfide formation under ambient

conditions shown in Western analysis.

TABLE 1 Distances between the b-carbons of the key contact

residues (Fig. 5) in the crystal structure and in the relaxed

closed-state models (Å
´

)

Structure L72C-V99C A106C-G108C A84C-T93C S95C-I97C

1MXM 12.5 2.9 6.0 6.4

2OAU 10.5 3.9 12.8 6.9

Closed model 6.6 2.7 11.5 6.3

The distances were determined after in silico substitutions of these pairs of

residues with cysteines. IMXM and 2OAU are the original and revised

versions of the crystal structure solved by Rees and co-workers (8,17). Note

that, upon opening, the distances for the pairs A84C-T93C, V89C-V91C, and

S95C-I97C are predicted to increase to 14.4, 9.8, and 16.2 Å, respectively.
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Patch-clamp analysis of the S95C-I97C and A84C-T93C

double mutants indicated that spontaneous TM3-TM3 cross-

links result in little (;5%) to no activity in spheroplasts under

ambient oxidizing conditions (Fig. 7, D and F, shaded).

Perfusion of buffer containing 10 mM DTT into the bath was

found to partially restore channel activity (10–30% of normal

channel population). Preincubation of spheroplasts with

10 mM DTT for 1 h was more effective in restoring the full

FIGURE 7 Disulfide cross links between adjacent TM3 helices and their inhibitory effects on channel gating. (A) Cross-linking patterns of A106C-G108C

located in the gate region of the pore and corresponding single cysteine mutants. (B) Patch-clamp traces displaying a reduction of the A106C-G108C

population current with gradual oxidation as 0.04 mM I2 reaches the patch through a sucrose plug. (C) Cross-linking patterns of the A84C-T93C and (E) S95C-

I97C mutants with their single cysteine controls. These pairs are located in the upper part of the transmembrane barrel and form disulfides spontaneously under

ambient conditions. (D and F) Corresponding sets of patch-clamp traces show that under ambient conditions these mutant channels exhibit very low activity

(shaded traces). Perfusion of 10 mM DTT into the bath restores a small fraction of activity (shaded), whereas preincubation of spheroplasts with 10 mM DTT

for 1 h restores the population current (solid).
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activity of the mutant channel population (Fig. 7, D and F,

solid). In agreement with the cross-linking pattern in Fig. 7 A,

the A106C-G108C mutant was largely active under ambient

conditions (data not shown). When the mutant was exposed

to 0.04 mM I2 from the pipette it was observed that the

population activity declined, suggesting that this cross link

restrains the opening transition (Fig. 7 B).

The successful formation of TM3-TM3 cross links spon-

taneously or under oxidation between our predicted cysteine

pairs clearly indicates that the resting conformation of the

TM3 helices in MscS is not far from that depicted in the

crystal structure. The fact that these cross links, when formed,

restrain channel opening, strongly suggests that the central

TM3 shaft must expand from this resting conformation during

the gating cycle.

DISCUSSION

Many of the crystal structures of membrane proteins avail-

able to date have been solved in detergents that completely

replace lipids. The organizing role of lipids has been strongly

suggested for transmembrane a-helical proteins (49,50) and

therefore every structure obtained in pure detergent should

be carefully scrutinized for possible distortions.

Additionally, the crystal conformations of proteins are

typically found to be stable in all-atom MD simulations on a

nanosecond timescale. The MscS channel, previously sim-

ulated with two different force fields (13,14) exhibited a re-

markable instability of the pore-forming barrel when inserted

into the lipid bilayer. The tapered conformation of the trans-

membrane domain, which apparently experiences stresses

due to unusually packed lipids, did not compact but rather

collapsed asymmetrically. To avoid the same outcome, in

this study we chose a different strategy in our simulations by

first transforming the crystal structure in vacuum, completing

it with the missing N-terminus, and only then allowing it to

relax in the explicit bilayer.

In pursuing a more compact resting conformation, we

performed structural manipulations using targeted minimi-

zations and the new iterative extrapolated-motion protocol.

In this procedure, a small initial displacement of the atomic

coordinates is adjusted by energy minimizations and short

relaxing MD simulations. This new displacement with cor-

rected magnitude and direction is then linearly extrapolated

and the minimization-relaxation cycle is repeated. After a few

cycles, the system forgets the arbitrary direction of the initial

displacement and follows its own trajectory. A judiciously

chosen amplification coefficient allowed us to vary the spatial

limits of spontaneous transitions while preserving all elements

of the secondary structure. Sequences of states created in ;50

cycles of iterations predict smooth conformational pathways

for expansion and compaction permitted by the protein itself.

The estimated in-plane area changes and pore conductances

in these sequences were compared with experimentally mea-

sured parameters, thus allowing us to identify candidate

models for the resting and open-like states. These states were

subsequently refined in all-atom simulations.

We found that, in the initial compaction of MscS, simply

restoring the parallel packing of helices produced steric

conflicts at the cytoplasmic side of the barrel and did not

solve the problem of compatibility with the outer leaflet of

the bilayer. Attachment of a de novo modeled N-terminal

segment largely solved these problems by restoring the polar

collar at the outer rim of the barrel, which provided support

for TM1 helices and multiple sites for interactions with the

polar lipid groups. Asparagine-scanning experiments by

Yoshimura and co-workers (11) strongly suggested that MscS

is sensitive to tension at both periplasmic and cytoplasmic

interfacial regions and thus the channel should have compa-

rable polar anchoring at both sides. The complete compact

structure with the attached N-termini and a more parallel pack-

ing of the TM1-TM2 pairs of helices restored the appropriate

hydrophobic matching between the protein surface and the

lipid without substantial distortions of the bilayer structure

(Fig. 2). Based on the new hydrophobicity profile of the lipid-

facing surface (Fig. 2 B) and positions of aromatic residues,

the location of the bilayer midplane was shifted 8 Å toward the

periplasmic end of the protein compared to the position used in

previous simulations (13,14). In this state, arginines 46, 54, and

74 no longer reside in the aliphatic core of the lipid bilayer,

as was originally proposed (8), but face the layer of polar

headgroups at the cytoplasmic side of the lipid bilayer. The

new helical packing restored the physical contacts between

the peripheral (tension-receiving) helices and the gate formed by

TM3s, thus preparing the channel to respond to membrane

tension.

The extrapolated expansion transitions suggested that

opening of MscS is likely to be accompanied with complete

straightening of TM3 helices, consistent with similar ten-

dencies observed previously in conventional all-atom MD

simulations (13,14). This tilted but kink-free conformation of

the TM3 helices acts to define the spatial scale of expansion

and reasonably satisfies both the experimentally observed

conductance and in-plane expansion of the MscS protein

(6,7). Repeated compaction transitions revealed alternative

kink formation near G121. The presence and importance of

kink formation at G121 is supported by its nearly absolute

conservation within the family of MscS channels (alignment

not shown) and with new experimental data (26). Kink for-

mation at G121 allows for packing of the TM1-TM2 helices

along TM3 that is unhindered by steric conflicts between

the cytoplasmic TM1-TM2 loops and the TM3b segments.

The relocation of the kink from G113 down to G121 was

also observed to slightly extend the TM3 barrel to bring

conserved Q112 residues together in a hydrogen-bonded

ring. The data on mutants with altered flexibilities of the

TM3 helix near G113 and/or G121, presented in a parallel

publication (26), strongly support the model of the open state

with straightened TM3s. The results also suggest that the

original kink near G113 is a characteristic feature of the
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inactivated tension-insensitive state, whereas the alternative

kink at G121 forms on channel closing.

The final resting-state structure with TM3s bent near

G121 was found to be remarkably stable in extended all-

atom MD simulations. In explicit water, the hydrophobic con-

striction of the channel remained largely dehydrated. The

gate-keeping rings of leucines (L105 and L109) oscillated

forming elliptic pores with an effective width of 5.4 6 1.1 Å,

slightly smaller than the pore size of an ideally symmetric

helical assembly with densely packed helices. This multi-

plicity of closed states appears to be another stabilizing

factor of purely entropic nature. Comparison shows that the

TM3 assembly in our equilibrated and symmetrized model of

the resting state has a diameter that is an intermediate be-

tween the crystal structure and the tightest TM3a bundle

optimized by Monte Carlo (24) (Fig. 4). The differences

between the three structures, however, are not large and it

would be fair to conclude that the TM3a segments in the

crystal structure are indeed packed in a near-optimal con-

formation, consistent with its low B-factor.

The proximities of residues predicted from the model (Fig.

5 and Table 1) suggested disulfide cross links that have been

detected in both biochemical and patch-clamp experiments

(Figs. 6 and 7). They clearly illustrate that the TM2 and TM3

helices are more proximal in the native resting state than in the

crystal structure (Fig. 6). An interesting observation was that

the probabilities of the disulfide bond formation with the

TM2-TM3 pair (L72C-V99C) were somewhat lower than for

the TM3-TM3 pairs, suggesting a more dynamic nature of

TM2-TM3 association (Figs. 6 and 7). Spontaneous cross

links between the pore-lining TM3 helices of adjacent sub-

units (Fig. 7) support the idea that in the resting state these

helices are in crystal-like positions. Patch-clamp experiments

performed under oxidizing or reducing conditions showed

that the TM3-TM3 disulfide bridges stabilize the barrel in its

nonconductive state, but when reduced, they permit opening.

These results strongly suggested, contrary to the initial in-

terpretation (8), that the crystal-like positions of the TM3s

cannot represent a conductive state and the helices must move

apart to permit conduction. The model illustrated in Fig. 1 D
represents our current hypothesis for the conformation of the

open MscS channel. The simulated conductive properties of

this model correspond well to experimental data, which will

be described in detail in a separate publication (unpublished).
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Proc. Natl. Acad. Sci. USA. 101:14045–14050.

The Closed Conformation of MscS 1265

Biophysical Journal 94(4) 1252–1266



21. Dutzler, R., E. B. Campbell, M. Cadene, B. T. Chait, and R.
MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 Å
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