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The tumor necrosis factor family members BAFF and APRIL induce Ig isotype switching in 
human B cells. We analyzed the ability of BAFF and APRIL to induce isotype switching in 
murine B cells to IgG1, IgA, and IgE. APRIL and BAFF each engage two receptors, 
transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI) and 
B cell maturation antigen (BCMA), on B cells. In addition, BAFF engages a third receptor on B 
cells, BAFF-R. To determine the role of these receptors in isotype switching, we examined B 
cells from mice deficient in TACI, BCMA, and BAFF-R. The results obtained indicate that 
both TACI and BAFF-R are able to transduce signals that result in isotype switching.

 

Class switch recombination (CSR) in B cells
requires two signals (1). The first is normally
delivered by cytokines, which target specific
C

 

H

 

 genes for transcription; the second is deliv-
ered in the case of T-dependent (TD) antigens
by interaction of CD40 on B cells with its
ligand CD40L on activated T cells. CSR is se-
verely impaired in patients and mice deficient
in CD40L or CD40 (2, 3), although low levels
of IgG and variable levels of IgA are still de-
tected in serum. Exposure to LPS derived
from Gram-negative bacteria may account for
some of this residual CSR in mice, but not
in humans since LPS does not activate CSR in
human B cells. EBV infection triggers CSR in
human B cells independently of CD40L and
CD40 (4) and may contribute to residual CSR
in humans with CD40L and CD40 deficiency.
B cell–activating factor of the TNF family
(BAFF) and A proliferation–inducing ligand
(APRIL) are two TNF family members that
have been shown to activate CSR in human B
cells (5) and hence may contribute to residual
CSR in CD40L and CD40 deficiency. BAFF
is expressed mainly by monocytes and dendritic
cells. APRIL is expressed in a large variety of
tissues that include monocytes/macrophages,
dendritic cells, and activated T cells. APRIL
and BAFF both bind to two receptors, B cell
maturation antigen (BCMA) and transmem-

brane activator and calcium-modulator and cyto-
philin ligand interactor (TACI), which are mem-
bers of the TNF receptor family. BCMA is
exclusively expressed on B cells, whereas TACI
is expressed on B cells and activated T cells. A
third receptor, BAFF receptor (BAFF-R), that is
unique for BAFF is expressed mainly on B
cells but also on T cells (6). To identify the re-
ceptors that are involved in the induction of Ig
class switching by BAFF and APRIL, we as-
certained that these ligands activate CSR in
mouse B cells and then examined their activity
on B cells from TACI-, BCMA-, and BAFF-R–
deficient mice.

 

RESULTS AND DISCUSSION
BAFF and APRIL activate IgG1, IgA, 
and IgE isotype switching in mouse B cells

 

We examined the capacity of BAFF and
APRIL to induce IgG1, IgA, and IgE switch-
ing in mice. Splenic B cells from CD40

 

�

 

/

 

�

 

mice were negatively sorted and consisted of

 

�

 

96% sIgM

 

�

 

sIgD

 

�

 

, 3–6% CD11b

 

�

 

, and un-
detectable CD3

 

�

 

 cells. APRIL and BAFF in-
duced IgG1, IgA but no detectable IgE syn-
thesis in these cells (Fig. 1 A). IL-4 enhanced
the induction of IgG1 synthesis by BAFF and
APRIL and synergized with these two ligands
to induce IgE synthesis. As expected, B cells
synthesized large amounts of IgG1 and IgE in
response to LPS 

 

� 

 

IL-4, and TGF

 

�

 

 synergized
with LPS to induce IgA switching. Neutraliza-
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tion of TGF

 

�

 

 had no effect on IgA secretion in response to
BAFF and APRIL (unpublished data). Failure to block in-
duction of IgA secretion by 

 

�

 

TGF

 

�

 

 suggests that BAFF and
APRIL induce 

 

�

 

germ line transcripts (GLTs) independently
of TGF

 

�

 

, or they induce TGF

 

�

 

, but not all of it is accessible
to neutralization by the antibody. IL-6 neutralization had no
effect on IgG1 or IgA induction by BAFF or APRIL (un-
published data). IL-10 neutralization partially inhibited IgG1
secretion by BAFF (

 

�

 

40%) and APRIL (

 

�

 

60%) and IgA se-
cretion by these ligands (

 

�

 

10 and 

 

�

 

30%, respectively). As
another measure of CSR, we examined the induction of ex-
pression of surface IgG1. There were virtually no sIgG1

 

�

 

cells in the negatively sorted B cells (Fig. 1 B). APRIL and
BAFF alone and with IL-4 induced IgG1 surface expression
in these B cells. Together these results suggest that APRIL
and BAFF activate CSR in murine B cells.

CSR has been linked to cell division (7). APRIL- and
BAFF-induced proliferation of negatively sorted B cells in a
[

 

3

 

H]thymidine uptake assay and of splenic B220

 

�

 

 B cells in
a 5- and 6-carboxyfluorescein diacetate succinimidyl ester

(CFSE) dye dilution assay (Fig. S1, available at http://www.
jem.org/cgi/content/full/jem.20032000/DC1). Induction of
CSR by APRIL and BAFF was not due to contamination
with endotoxin because the preparations used contained 

 

�

 

1
endotoxin U/

 

�

 

g protein; and polymyxin B, which inhibits
LPS activation (8), failed to inhibit induction of IgG1 synthe-
sis by APRIL and BAFF (Fig. S2, available at http://www.
jem.org/cgi/content/full/jem.20032000/DC1).

Molecular events involved in CSR include expression of
GLTs, expression of the gene for activation-induced deami-
nase (AID), followed by deletional switch recombination
and expression of I

 

�

 

-C

 

H

 

 transcripts. APRIL and BAFF in-
duced 

 

�

 

1GLT and 

 

�

 

GLT, but no detectable 

 

	

 

GLT, in neg-
atively sorted B cells from CD40

 

�

 

/

 

�

 

 mice (Fig. 1 C).
APRIL, and to a lesser extent, BAFF induced AID gene ex-
pression. APRIL and BAFF synergized with IL-4 in induc-
ing 

 

	

 

GLT. Digestion circularization (DC)–PCR analysis re-
vealed that APRIL and BAFF induced S

 

�

 

→

 

S

 

�

 

1 and
S

 

�

 

→

 

S

 

�

 

 but not S

 

�

 

→

 

S

 

	

 

 deletional switch recombination
(Fig. 1 D). IL-4 synergized with APRIL and BAFF to in-

Figure 1. Induction of CSR by BAFF and APRIL in negatively sorted 
B cells from CD40�/� mice. (A) IgG1, IgA, and IgE synthesis in negatively 
sorted B cells. Results represent mean and SD of at least three experiments. 
(B) Surface expression of IgG1 in negatively sorted B cells. Numbers repre-
sent the percentage of sIgG1� cells. (C) Semiquantitative RT-PCR analysis of 
the expression of �1, �, and 	GLT, I�-C�1, I�-C�, I�-C	, and AID tran-
scripts. (D) S�→S	, S�→S�, and S�→S�1 deletional switch recombination 

measured by DC-PCR. Dividing lines are used to group different dilutions 
(1:1, 1:3, and 1:9) of cDNA from B cells cultured in the same experiment 
with various stimuli. All samples were loaded contiguously in the same gel, 
except for cDNAs from cells stimulated with LPS � IL-4 and LPS � TGF� 
which were loaded in noncontiguous lanes of the gel. Results in B, C, and 
D are representative of three experiments.
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duce S

 

�

 

→

 

S

 

	

 

 deletional switch recombination and to up-
regulate S

 

�

 

→

 

S

 

�

 

1 recombination. Consistent with the re-
sults of Ig synthesis, APRIL and BAFF induced I

 

�

 

-C

 

�

 

1 and
I

 

�

 

-C

 

�

 

 but not I

 

�

 

-C

 

	

 

 transcripts, unless IL-4 was added
(Fig. 1 C). Since we used negatively sorted B cells from
CD40

 

�

 

/

 

�

 

 mice, these results indicate that APRIL and BAFF
induce CSR in naive B cells.

Our findings extend previous results on human B cells
positively sorted for IgD expression (5). Our observation
that BAFF and APRIL activate CSR in B cells from
CD40

 

�

 

/

 

�

 

 mice definitively establishes that CSR mediated
by these ligands is independent of CD40L–CD40 interac-
tions (Fig. 1). In the case of human B cells, BAFF/APRIL
induction of secretion of the switched isotypes requires addi-
tional signals that include cross-liking of the B cell receptor
and the cytokines, such as IL-10 and IL-15 (5). One possibil-

ity is that mouse B cells endogenously produce cytokines
that support secretion of the switched Ig. This is supported
by our observation that neutralizing 

 

�

 

IL-10 antibody inhib-
ited BAFF- and APRIL-driven IgG1 and IgA secretion by
mouse B cells. Another possibility is that mouse B cells sur-
vive better in culture to the stage where they are able to se-
crete Igs.

 

TACI mediates class switching by APRIL

 

We next examined negatively sorted splenic B cells from
mice that lack BCMA or TACI. B cells from WT mice were
used as controls with results similar to those obtained with
CD40

 

�

 

/

 

�

 

 B cells. BCMA

 

�

 

/

 

�

 

 B cells synthesized IgG1, IgA,
and IgE in response to APRIL and BAFF in amounts that
were not significantly different from those secreted by WT B
cells (Fig. 2, A and B). Intact CSR in BCMA

 

�

 

/

 

�

 

 B cells was
confirmed by examination of molecular events involved in
CSR to IgG1, IgA, and IgE (Fig. 3).

TACI

 

�

 

/

 

�

 

 B cells virtually failed to synthesize IgG1, IgA,
and IgE in response to APRIL (Fig. 2 A). This was not due
to an intrinsic defect in CSR because they synthesized IgG1
and IgE in response to LPS 

 

� 

 

IL-4 and 

 

�

 

CD40 

 

� 

 

IL-4 and
IgA in response to LPS 

 

� 

 

TGF

 

�

 

 (Fig. 2 C). Examination of
molecular events confirmed the inability of APRIL to acti-
vate CSR in TACI

 

�

 

/

 

�

 

 B cells (Fig. 3). In some experiments,
C

 

H

 

GLT and AID were faintly detected in unstimulated B
cells from TACI

 

�

 

/

 

�

 

 mice. This may be related to the B cell
activation observed in these mice in vivo (9). However,
these faint C

 

H

 

GLT and AID transcripts were not up-regu-
lated by APRIL. These results suggest that APRIL induction
of CSR is mediated by TACI.

 

Both TACI and BAFF-R mediate class switching by BAFF

 

In contrast to their total inability to class switch in response
to APRIL, TACI

 

�

 

/

 

�

 

 B cells synthesized IgG1 and IgE in re-
sponse to BAFF 

 

� 

 

IL-4 in amounts that were not signifi-
cantly different from those secreted by normal B cells (Fig. 2
B). This was confirmed by the presence of 

 

�

 

1 and 

 

	

 

GLTs,
AID, and mature I�-C�1 and I�-C	 (Fig. 3) and was ob-
served in the presence of polymyxin B (unpublished data).
BCMA engagement by BAFF cannot account for the ability
of BAFF to induce CSR in TACI�/� B cells because these
cells are unable to undergo CSR in response to APRIL,
which has a higher affinity for BCMA in mice than BAFF
(6). Thus, induction of CSR by BAFF in TACI�/� B cells
indicates that BAFF-R engagement can activate CSR and
suggests that BAFF may use both TACI and BAFF-R to in-
duce CSR. We cannot rule out the possibility that BCMA
synergizes with BAFF-R in mediating BAFF-induced CSR
in TACI�/� B cells.

Negatively sorted TACI�/� B cells stimulated with
BAFF consistently failed to secrete IgA (Fig. 2 B), and we
were unable to detect in these B cells induction of molecular
events involved in IgA switching, including expression of
�GLT (Fig. 3). Since intracellular signaling by TACI differs
from that triggered by BAFF-R (6), it is possible that TACI

Figure 2. Role of TACI and BCMA in inducing IgG1, IgA, and IgE 
synthesis. Negatively sorted B cells from WT, TACI�/�, and BCMA�/� mice 
were stimulated with (A) APRIL, (B) BAFF, and (C) �CD40 and LPS as con-
trols. Results represent mean and SD of three experiments.
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signals are indispensable for the activation of the I� pro-
moter and induction of IgA switching.

APRIL induction of CSR is independent of 
BAFF–BAFF-R interaction
Given the observation that BAFF-R engagement can activate
CSR, it was important to rule out the possibility that
APRIL-mediated switching involved, in addition to TACI,
engagement of BAFF-R by BAFF which may be endoge-
nously made by B cells. Unstimulated B cells expressed small
amounts of BAFF mRNA as assessed by RT-PCR (Fig.
S3, available at http://www.jem.org/cgi/content/full/jem.
20032000/DC1). Stimulation with APRIL or APRIL � IL-4
caused no detectable increase in BAFF mRNA expression.
More importantly, we examined the ability of APRIL to in-
duce isotype switching in B cells from A/WySnJ mice, which
carry a mutation in BAFF-R (10). These mice have very few
peripheral B cells with a decreased proportion of mature
CD23� B cells. To examine CSR under culture conditions
similar to those used for WT, BCMA�/�, and TACI�/� B
cells (i.e., same cell number and density), we examined B
cells from pooled splenocytes of 4 A/WySnJ mice. APRIL
and BAFF induced IgG1 and IgA secretion in B cells from
these mice (Fig. S3). These results suggest that APRIL-medi-
ated CSR does not involve autocrine BAFF–BAFF-R inter-
actions and that TACI engagement is sufficient to induce
CSR. We cannot rule out the possibility that TACI syner-
gizes with a putative APRIL-specific receptor to cause CSR.

Binding of TRAF2 and/or TRAF3 is essential for
CD40-mediated CSR, whereas TRAF6 is important in
plasma cell differentiation (11, 12). TACI, like CD40, re-
cruits TRAF 2, 5, and 6 (6). This may explain its ability to
activate CSR. BAFF-R binds TRAF3 but no other TRAF
protein (6). TRAF3 may be important for CSR induced by

the EBV protein LMP-1 (13). It is possible that CSR in-
duced by BAFF in TACI�/� B cells involves a cooperative
interaction between BAFF-R and BCMA, which recruits
TRAF1, 2, and 3 proteins (6). The fact that BCMA fails to
activate CSR may be due to the fact that the majority of
BCMA has a low surface density and most of it is intracellu-
lar (6). Alternatively, non-TRAF signals may be important
for CSR but may not be delivered by BCMA.

A clue to the physiological role of APRIL- and BAFF-
mediated CSR is provided by results obtained on mice defi-
cient in these ligands and their receptors. BAFF�/� and
BAFF-R�/� mice are severely deficient in B cells (6) and not
informative. BCMA�/� mice have normal serum Ig levels
and normal antibody responses (14). This is consistent with
our data that B cells from these mice switch normally in re-
sponse to BAFF and APRIL. TACI�/� mice have low serum
IgA and deficient antibody responses to immunization with
type II T-independent antigens (15, 16). This is consistent
with the failure of B cells from these mice to secrete IgA in
response to BAFF and APRIL. We have shown that
APRIL�/� mice have a selective IgA deficiency and de-
creased serum IgA antibody responses to mucosal immuniza-
tion with TD antigen (17). This suggests that APRIL and
BAFF play nonredundant roles in IgA switching in vivo.
Since serum IgA levels are normal in CD40�/� mice (11, 18),
APRIL–BAFF–TACI interactions play an important role in
physiologic IgA switching and could be manipulated thera-
peutically to enhance antibody responses to oral vaccines.

MATERIALS AND METHODS
Mice. CD40�/�, BCMA�/�, and TACI�/� mice were described previ-
ously (14, 16, 19). A/WySnJ mice that carry a mutation in BAFF-R were
purchased from Jackson Laboratories. All mice were kept in a specific
pathogen-free animal facility.

Figure 3. Molecular events involved in IgG1, IgA, and IgE switching 
in negatively sorted B cells from WT, TACI�/�, and BCMA�/� mice. Di-

viding lines are used to demarcate noncontiguous parts of the same gel 
Results are representative of three experiments.
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In vitro isotype switching. Spleen cells from CD40�/�, BCMA�/�, and
TACI�/� mice were labeled with a cocktail of biotin-conjugated mAbs to
CD43, CD11b, Thy1.2, CD138, IgG1, IgG2a, IgG2b, IgG3, IgA, and IgE
and negatively sorted with Streptavidin magnetic beads (Dynal). B cells were
cultured at 106/ml in RPMI containing 10% FCS, L-glutamine, and 50 �M
2-ME (complete medium). For Ig synthesis, B cells were cultured in com-
plete medium alone or in the presence of 1 �g/ml sAPRIL (R&D Systems),
1 �g/ml sBAFF (Alexis), IL-4 (50 �g/ml; R&D Systems), TGF� (R&D Sys-
tems), 10 �g/ml LPS (Sigma-Aldrich), or 1 �g/ml �CD40 (BD Bio-
sciences). Neutralizing antibodies IL-6, IL-10, and TGF� (R&D Systems)
were used as suggested by the manufacturer. After 6 d, supernatants were as-
sayed for IgA, IgE, and IgG1 by ELISA (11), and genomic DNA was pre-
pared for DC-PCR.

IgG1 surface expression. B cells stimulated for 6 d as above were stained
with �B220-FITC and �IgG1 biotin–conjugated mAbs followed by stain-
ing with PE-conjugated Streptavidin and FACS analyis.

RT-PCR for GLT, AID, and post switch transcripts (I�-CH). RNA
was extracted from 4-d-cultured B cells using TRIzol (Invitrogen) and was
reverse transcribed by Supercript II RT (Invitrogen). PCR primers used for
�1, 	, and �GLT, I�-C�1, I�-C	, I�-C�, AID, and �2-microglobulin
were as described previously (11, 20). All PCR reactions were performed
on three dilutions of cDNA (1:1, 1:3, and 1:9) for semiquantitative evalua-
tion. Amplified products were separated on agarose gel and stained with
ethidium bromide.

DC-PCR. Genomic DNA isolated from cultured B cells on day 6 was di-
gested with EcoRI, circularized, and used as template for PCR using primers
as reported previously for S�-S�1, S�-S�, S�-S	, and the nicotinic acetyl-
choline receptor � unit (11, 21). All PCR reactions were performed on
three dilutions of circularized DNA (1:1, 1:3, and 1:9) for semiquantitative
evaluation.

Online supplemental material. Figs. S1–S3 show additional analysis of
BAFF- or APRIL-stimulated B cells. Supplemental Materials and methods
describe CFSE staining, [3H]thymidine incorporation assay, polymycin B
treatment, RT-PCR for BAFF mRNA, and isolation of Igm� and IgD� B
cells. Online supplemental material is available at http://www.jem.org/cgi/
content/full/jem.20032000/DC1.
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