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Leukocyte-specific protein 1 (LSP1), an F-actin binding protein and a major downstream
substrate of p38 mitogen-activated protein kinase as well as protein kinase C, has been
reported to be important in leukocyte chemotaxis. Although its distribution has been
thought to be restricted to leukocytes, herein we report that LSP1 is expressed in endothelium
and is essential to permit neutrophil emigration. Using intravital microscopy to directly
visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in LSP1-deficient
(Lsp7-/~) mice, we found that LSP1 deficiency inhibits neutrophil extravasation in response
to various cytokines (tumor necrosis factor-o and interleukin-13) and to neutrophil chemokine
keratinocyte-derived chemokine in vivo. LSP1 deficiency did not affect leukocyte rolling or
adhesion. Generation of Lsp7~/~ chimeric mice using bone marrow transplantation revealed
that in mice with Lsp7~/~ endothelial cells and wild-type leukocytes, neutrophil transendothelial
migration out of postcapillary venules is markedly restricted. In contrast, Lsp7~/~ neutrophils
in wild-type mice were able to extravasate normally. Consistent with altered endothelial
function was a reduction in vascular permeability to histamine in Lsp7~/~ animals. Western
blot analysis and immunofluorescence microscopy examination confirmed the presence of
LSP1 in wild-type but not in Lsp7~/~ mouse microvascular endothelial cells. Cultured human
endothelial cells also stained positive for LSP1. Our results suggest that LSP1 expressed in
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endothelium regulates neutrophil transendothelial migration.

Lymphocyte-specific gene 1, found in both
mouse and humans, was initially thought to be
restricted to B cells, functional T cells, and thy-
mocytes (1, 2). However, more recently, it has
been documented in monocytes, macrophages,
and neutrophils and is now referred to as leuko-
cyte-specific protein 1 (LSP1; references 3-5).
LSP1 is an intracellular Ca?* and F-actin binding
protein (6-9). In its carboxyl-terminal region,
the molecule contains a high affinity F-actin
binding site which allows LSP1 to accumulate
within the microfilament rich cortical cytoskele-
ton. LSP1 has been shown to be a major sub-
strate of the mitogen-activated protein kinase
(MAPK)-activated protein (MAPKAP) kinase-2
in the p38 MAPK pathway (10). MAPKAP
kinase-2 and p38 MAPK were reported to be
essential for neutrophil motility and chemo-
taxis (11-13), suggesting that LSP1 might be
important in chemotaxis. However, it should
be noted that MAPKAP kinase-2 phosphory-
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lates numerous other molecules, including heat
shock protein 25/27 (14), and so the impor-
tance of LSP1 after p38 MAPK activation re-
mains unclear. In addition, LSP1 has also been
shown to be a substrate for protein kinase C
(PKC; 15, 16), which is another molecule im-
plicated in numerous neutrophil functions (in-
cluding adhesion and chemotaxis; reference 17),
which raises the possibility that LSP1 may have
multiple roles in neutrophil recruitment.
Although recent in vitro studies using
LSP1-deficient (Lsp17/7) cells suggest that
LSP1 does contribute to the process of chemo-
taxis, as yet unexplained opposing results have
been observed. Jongstra-Bilen and colleagues
generated Lsp1~/~ mice and observed increased
chemotactic responses in Lsp1~'~ neutrophils
in vitro (18, 19). In direct contrast, Hannigan
et al. reported, in an in vitro study, reduced
chemotactic responses of Lsp1~'~ neutrophils,
which may be associated with discontinuous
primary actin-rich cortexes and large abnormal
membrane protrusions (20). Although both
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groups used keratinocyte-derived chemokine (KC) as a
chemoattractant, important differences in experimental condi-
tions between these in vitro experiments included different
substrates and different neutrophil populations (peritoneal elic-
ited or bone marrow neutrophils vs. peripheral blood neutro-
phils). Clearly, a systematic examination of neutrophil func-
tion in vivo in the presence and absence of LSP1 is warranted.

In vivo, neutrophil recruitment is a very complex event
that requires that neutrophils first tether to the endothelium,
and upon activation via chemokines, firmly adhere. This ap-
pears to lead to cross-talk between the adherent neutrophil
and the endothelium, whereby endothelial cells retract, al-
lowing neutrophils to migrate across the endothelium (21,
22) before chemotaxing toward the source of the injury
and/or infection. Recently, we reported that inhibition of
p38 MAPK activity dramatically limited neutrophil transmi-
gration across the endothelium and subsequent neutrophil
chemotaxis through the interstitium (13). However, whether
the p38 MAPK inhibitors were affecting the endothelium
and/or the neutrophils was unclear. This is not trivial as both
p38 MAPK and MAPKAP kinase-2 have been shown to
play a role in endothelial cytoskeletal rearrangements and in
increased endothelial permeability associated with hypoxic
or oxidative stress (23—25), as well as in TNFa or VEGF stim-
ulation (26-28). However, no one to date has assessed the
possibility that LSP1 is found in endothelium.

During neutrophil recruitment, the endothelium is thought
to actively retract to allow neutrophils to transmigrate (21,
22, 29, 30). Because LSP1 is a major substrate for the p38
MAPK-MAPKAP kinase-2 signaling pathway and MAPK
appears to be important in both neutrophils and endothelium,
we tested the hypothesis that LSP1 is an important protein in
neutrophil extravasation in vivo as a result of endothelial
LSP1. Indeed, our data do not support a critical role for neu-
trophil LSP1 in extravasation in vivo; however, our results re-
veal that endothelium does have LSP1 and it plays an essential
role in transendothelial migration in chimeric mice where
LSP1 was selectively expressed in the endothelium.

RESULTS

LSP1 does not affect leukocyte rolling and adhesion,

but is important for leukocyte emigration in response

to TNFo or IL-113

Table I summarizes the hemodynamics of the microvascula-
ture of Lsp1~/~ and WT mice 4 h after intrascrotal injection
of TNFa. The diameters of the chosen cremasteric venules
were similar between WT and Lsp1~/~ mice. There was no
apparent difference in shear rate, red blood cell velocity (Ta-
ble I), or calculated blood flow in these postcapillary venules
(not depicted). Similarly, during the induction of inflamma-
tion, there was a similar decrease in blood flow in postcapil-
lary venules in both WT and Lsp?!™/~ mice. Therefore,
changes in leukocyte behavior described herein cannot be
attributed to differences in hemodynamic parameters. There
was a small but significant increase in circulating white blood
cells in Lsp1™/~ mice.

410

Table I. Hemodynamic parameters in WT and Lsp7~/~ mice
4 h after intrascrotal injection of TNFa (0.5 g, n =3
in each group)

Venular WBC number
Group diameter Vrge Wall shear rate (X 108 cells)
wm mm/s s
WT 31 £29 2103 331.8 = 27.4 56 £ 0.2
Lsp1~/~ 30 £29 20 =05 320.5 = 65.5 8.1 = 0.4°

aP < 0.05 as compared with WBC number in WT mice.
WBC, white blood cell.

We treated WT and Lsp1~/~ mice intrascrotally with 0.5
pg TNFa and measured leukocyte rolling flux, rolling ve-
locity, and the number of adherent and emigrated leukocytes
in cremasteric venules 3.5, 4, and 4.5 h after cytokine injec-
tion. Fig. 1 A demonstrates that ~40—60 cells rolled per
minute in control preparations of both WT and Lspl~/~
mice. Exposure of the cremaster muscle microcirculation to
TNFa induced very similar rolling flux in both WT and
Lsp1~/~ mice. The rolling velocity of leukocytes was ~80
wm/s under control conditions in both sets of mice and a
very profound 80-90% decrease in rolling velocity was
noted in both WT and Lsp1™~ mice after TNFa adminis-
tration (Fig. 1 B). Fig. 1 C demonstrates a large increase in
leukocyte adhesion in postcapillary venules after TNFa
treatment, a response that was again close to identical in WT
and Lsp1~/~ mice. However, a very significant difference in
leukocyte transendothelial migration was noted in WT and
Lsp1~’~ mice in response to TNFa (Fig. 1 D). Although
~40 cells emigrated out of vessels per field of view in WT
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Figure 1. The flux of rolling leukocytes (A), rolling cell velocity (B),
adherent (C), and emigrated (D) leukocytes in cremasteric venules of
TNFa-treated and untreated WT and Lsp7~/~ mice. Leukocyte recruit-
ment was induced by intrascrotal injection of TNFa (0.5 wg in 200
saline) and the recruitment parameters determined in cremasteric venules
from WT (WT control: n = 4; WT 4+ TNFa: n = 3) and Lsp 7=/~ mice (Lsp1~/~
control: n = 6; Lsp1~/~ 4+ TNFa: n = 3). *, P < 0.05 and **, P < 0.01, as
compared with each untreated control group.
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mice, only 15 cells emigrated in Lsp 1™/~ mice (P < 0.01). In
an additional group of WT mice, one fifth the concentration
of TNFa was used. This caused fewer cells to adhere than in
Lsp1™/~ mice treated with the higher concentration of
TNFa, yet the emigration was still higher in WT mice than
that in Lsp1~/~ mice (unpublished data).

Previous papers have suggested that the mechanisms un-
derlying leukocyte emigration can be quite different for
TNFa versus, for example, IL-18 (31, 32). To determine
whether the impaired emigration was limited to TNFa, we
injected mice intrascrotally with an optimal dose (12.5 ng) of
IL-1B (31), and measured leukocyte rolling flux, rolling ve-
locity, and the number of adherent and emigrated leukocytes
in the tissues 3.5, 4, and 4.5 h after injection of cytokine. Af-
ter IL-1 local administration, leukocyte rolling flux was in-
creased in both WT and Lsp1™~ mice at least twofold
greater than untreated control mice (Fig. 2 A). Similar de-
crease in rolling velocity (Fig. 2 B) and increase in adhesion
(Fig. 2 C) to IL-1B was noted in WT and Lsp1~/~ mice. Fig.
2 D demonstrates a profound 75% inhibition in leukocyte
transendothelial migration in Lsp?1™~ mice (P < 0.05).
Clearly, LSP1 plays a role in leukocyte emigration in re-
sponse to proinflammatory cytokines.

The impairment in Lsp 1™/~ mice could be due to an im-
pairment in cytokine signaling and subsequent synthesis of
chemokines or it could be an impairment in the emigration
process per se. Previous work has demonstrated that essen-
tially all of the emigrated cells at 4-h TNFo or IL-1f3 stimu-
lation are neutrophils (31, 33). Therefore, we examined re-
sponses of WT and Lsp1~/~ neutrophils after activation of
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Figure 2. The flux of rolling leukocytes (A), rolling cell velocity (B),
adherent (C), and emigrated (D) leukocytes in cremasteric venules of
IL-1B~treated and untreated WT and Lsp7~/~ mice. Leukocyte re-
cruitment was induced by intrascrotal injection of IL-18 (12.5 ng in 200 .l
saline) and the recruitment parameters determined in cremasteric venules
from WT (WT control: n = 4; WT + IL-18: n = 4) and Lsp1~/~ mice
(Lsp1=/~ control: n = 6; Lsp1~/~ + IL-1B: n = 4). *, P < 0.05 and
**, P < 0.01, as compared with each untreated control group.
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their chemokine receptors to the neutrophil chemoattractant
KC in vivo.

LSP1 is essential for neutrophil emigration in response

to the chemokine KC

We measured leukocyte rolling, adhesion, and transendothelial
migration upon slow release of the chemokine KC from an
agarose gel positioned 350 wm from the observed cremasteric
postcapillary venule. Rolling was not affected by KC (Fig. 3
A), whereas neutrophils began adhering quite rapidly after the
KC-containing gel was placed on the cremaster preparation
(Fig. 3 B). However, there was no significant difference in the
rolling flux and adhesion response between WT and Lsp1~/~
mice. Fig. 3 C summarizes the number of emigrated neutro-
phils per field of view 60 min after local KC-containing gel
addition. In WT animals, ~25 neutrophils could be seen out-
side the venule of study and all of the cells were migrating to-
ward the KC-containing gel (unpublished data). In contrast, in
the Lsp1™/~ mice, the transendothelial migration was even
more impaired in response to the chemokine KC at 60 min
than it was in response to cytokines. Less than four cells were
seen to migrate across the endothelium.
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Figure 3. The flux of rolling leukocytes (A), adherent leukocytes
(B), and emigrated leukocytes (C) induced by KC in agarose gel
placed 350 wm from the observed cremasteric venule of WT (n = 3)
and Lsp1~/~ (n = 4) mice. **, P < 0.01 as compared with time 0 (B) or
with the WT control (C).
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LSP1 is expressed in mouse and human endothelial cells
Because transendothelial migration is an active process of
both leukocytes and endothelium, we isolated leukocytes
from the peritoneal cavity in adult mice and primary endo-
thelial cells from the whole lung of 5-7-d-old WT and
Lsp1~’~ mice. There was insufficient cremaster muscle tissue
to harvest sufficient numbers of endothelial cells. The large
majority of endothelium isolated from the lung is microvas-
cular in origin. RT-PCR revealed that both WT leukocytes
and WT endothelium, but not Lsp?1~/~ endothelium, had
mRNA for LSP1 (Fig. 4 A). By Western blotting and using
the original polyclonal anti-LSP1 serum, we observed that
WT but not Lsp!™~ mouse primary lung endothelial cells
expressed LSP1 protein (52-kD band) and both WT and
Lsp1~'~ endothelial cells also showed an additional ~78 kD
band (unpublished data). To obtain more specific antibodies
against mouse LSP1, we partially purified the polyclonal
anti-LSP1 serum, and by affinity absorption, we made anti-
NH,-terminal LSP1 and anti-COOH-terminal LSP1. Fig. 4
shows that both anti-NH,-terminal LSP1 (Fig. 4 B) and
anti-COOH-terminal LSP1 (Fig. 4 C) stained the 52-kD
LSP1 in WT but not in Lsp1~/~ endothelial cells. The mo-
lecular mass of the mouse endothelial LSP1 was identical in
size to the leukocyte LSP1 (~v52 kD). This 52-kD band was
not observed in endothelial extracts from Lsp1~~ mice (Fig.
4, B and C). Moreover, the band was lost in WT endothelial
cells when the LPS1 antibody was preabsorbed against both
GST-LSP1 fusion proteins described in Materials and Meth-
ods (unpublished data).

There was an additional ~78-kD band cross-reacting
only with anti-NH,-terminal LSP1 antibody expressed in
endothelial cells from both WT and Lsp1~/~ mice, but not
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Figure 4. LSP1 expression in mouse primary lung endothelial cells.

(A) RT-PCR analysis of LSP1 mRNA was performed using total RNA extracted
from mouse leukocytes and primary lung endothelial cells. (lane M) DNA
molecular weight markers (Invitrogen) and (lanes 1-3) RT-PCR products
from WT leukocyte RNA extracts (lane 1), Lsp 7=/~ endothelial RNA extracts
(lane 2), and WT endothelial RNA extracts (lane 3). (B and C) Immunaoblotting
was performed with anti-NH,-terminal mouse LSP1 (B) and anti-COOH-
terminal mouse LSP1 (C) antibodies and with cell extracts as described in
Materials and Methods. Cell lysates from 4—8 X 10* leukocytes were
loaded in lanes 1 and 2, and 2 X 10* endothelial cells in lanes 3 and 4.
Equal protein extracts were loaded in B and C. The protein concentrations
in anti-NH,-terminal LSP1 and anti-COOH-terminal LSP1 solutions used
for both blottings were 20 wg/ml. (lane 1) Protein extracts of leukocytes
from WT mice; (lane 2) protein extracts of leukocytes from Lsp7~/~ mice;
(lane 3) protein extracts of lung endothelial cells from WT mice; and (lane 4)
protein extracts of lung endothelial cells from Lsp7~/~ mice. The numbers
to the left are molecular sizes (BenchMark prestained protein ladder; In-
vitrogen) in kilodaltons. Similar results were observed in three experiments
with three batches of endothelial cell isolation.
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in mouse leukocytes (Fig. 4 B). With two partially purified
antibodies against LSP1, we observed fluorescence staining
of WT and Lsp1™/~ endothelial cells. Anti-NH,-terminal
LSP1 antibody stained much brighter on both WT and
Lsp1~~ endothelial cells than the anti-COOH-terminal
LSP1 staining, and the endothelial cells showed strong cyto-
skeletal staining with anti-NH,-terminal LSP1 antibody
(Fig. 5, top). Because this pattern was also seen in Lsp1™/~
mice, this cross-reactivity is likely with another cytoskeletal-
associated protein. Anti-COOH-terminal LSP1 antibody
specifically stained WT mouse endothelial cells but not
Lsp1~'~ endothelial cells (Fig. 5, bottom). Interestingly, the
distribution of LSP1 in resting WT endothelial cells ap-
peared in the nuclei and very diffusely throughout the cyto-
plasm. Because LSP1 was stained weakly in the cytoplasm of
WT endothelial cells, it was difficult to determine whether
LSP1 associated with the endothelial cytoskeleton (Fig. 5,
bottom). In Lsp1~/~ endothelial cells, the ~78-kD protein
was still present, but the overall staining was diminished con-
sistent with the lack of LSP1 in Lsp1~'~ endothelium.

To determine whether human endothelial cells express
LSP1, we double stained human umbilical vein endothelial
cells (HUVECs) with anti-LSP1 and anti—-VE-cadherin or
phalloidin (F-actin). Fig. 6 demonstrates that, similar to
mouse endothelial cells, the VE-cadherin—expressing human
endothelial cells also express LSP1. Although the majority of
LSP1 staining was found in the nucleus, LSP1 staining in the
cytoplasm was weak but detectable (Fig. 6 A). Isotype con-
trol IgG and secondary Ab alone did not show any signifi-
cant fluorescence in the nucleus or the cytoplasm (not de-
picted and Fig. 6 D, respectively). To better detect the LSP1
staining pattern that was relatively weak in the cytoplasm
compared with the nuclear staining, we enhanced the fluo-
rescence signals of the dual-labeled LSP1 and phalloidin im-

WT

Figure 5.

Lsp1-/-

Anti-N-
terminal
LSP1

Anti-C-
terminal
LSP1

Immunofluorescence staining pattern of cultured mouse
lung endothelial cells with anti-NH,-terminal LSP1 and anti-COOH-
terminal LSP1. WT (left) and Lsp7~/~ (right) mouse lung endothelial cells
of passage 1 at subconfluence on glass coverslips were stained with anti-

NH,-terminal LSP1 (top) or anti-COOH-terminal LSP1 (bottom), respec-
tively, as described in Materials and Methods. Magnification, 200.
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Figure 6. Immunofluorescence localization of LSP1 in cultured
human endothelial cells. HUVECs cultured on coverslips were double
stained for LSP1 (red; A, C, E, and F) and VE-cadherin (green; B and C).
(B-D) Cells were also counterstained for DAPI (blue). (C) The overlaid
image of A and B. (D) Secondary Ab alone (Texas red) with DAPI staining.
(E) The enhanced image (by increasing the contrast) of LSP1 staining pattern.
(F) The enhanced image of LSP1 (from E) overlaid with phalloidin (green).
Magnification, 400.

ages (via increasing the contrast; Fig. 6, E and F). The cyto-
plasmic LSP1 appeared to be distributed throughout the
cytoplasm, with some of the cytoplasmic LSP1 overlapping
with F-actin (Fig. 6, E and F). Although F-actin formed
clear finger-like projections characteristic of cytoskeleton
(Fig. 6 F), a significant amount of LSP1 was diffuse and not
always associated with these cytoskeletal structures (Fig. 6 E).
These results suggest the following: (a) the majority of endo-
thelial LSP1 is nuclear, (b) LSP1 distributes throughout the
endothelial cytoplasm, and (c) some endothelial cytoplasmic
LSP1 remains associated with F-actin or at least localizes ex-
tremely proximate to the endothelial cytoskeleton.

Endothelial LSP1 regulates leukocyte

transendothelial migration

The surprising discovery of LSP1 in endothelium led us to
ask whether the protein had any function in the dramatic re-
duction in leukocyte transendothelial migration in Lspl~/~
mice. We made chimeric mice that lacked LSP1 only in the
leukocytes. We also made chimeric mice where the Lsp1~/~
mice received a BM transplant from WT mice. These mice
lack LSP1 in endothelium. Upon TNFa local administra-
tion, both types of chimeric mice demonstrated similar re-
sponsiveness in leukocyte rolling flux (not depicted), rolling
velocity (not depicted), and adhesion (Fig. 7 A) in cremas-
teric venules. Surprisingly, chimeric mice that lacked LSP1
only in their leukocytes emigrated as effectively across the
vasculature as WT mice in response to TNFa injection, sug-
gesting that the impaired transendothelial emigration was
unrelated to leukocyte-derived LSP1 (Fig. 7 B). However,
WT leukocytes reconstituted in Lsp1™/~ mice (i.e., lacking
LSP1 in endothelium) had difficulties in migrating through
the Lsp1~/~ venules and into the tissue (P < 0.01, as com-
pared with the reversed chimeric mice). Fig. 7 (C and D)
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Figure 7. The number of adherent (A and C) and emigrated (B and

D) leukocytes in a cremasteric venule of TNFa-treated chimeric mice.
WT and Lsp7~/~ mice were reconstituted with Lsp7~/~ and WT leukocytes,
and indicated as Lsp1~/~—WT and WT—Lsp7~/~, respectively (A and B,
n=3).WT and Lsp7~/~ mice were also reconstituted with WT and Lsp1~/~
leukocytes, and indicated as WT—WT and Lsp1~/~—Lsp1~/~, respectively
(Cand D, n = 3~4). Leukocyte recruitment was induced by intrascrotal
injection of TNFa (0.5 g in 200 wl saline) and the recruitment parameters
determined in cremasteric venules from these chimeric mice. **, P < 0.01
as compared with the group of Lsp7~/~—WT mice at 4 h. *, P < 0.05 as
compared with the group of WT—WT mice at 4 h.

demonstrates that WT mice receiving WT BM behaved just
like the WT mice in Fig. 1 and Lsp1™/~ mice receiving
Lsp1~/~ BM behaved like Lsp1~/~ mice in Fig. 1.

In a second series of experiments, we tested responses to
KC in the chimeric mice. Both sets of chimeric mice dem-
onstrated similar responsiveness in the leukocyte rolling flux
(not depicted), rolling velocity (not depicted), and adhesion
(Fig. 8 A) upon placement of the KC-containing gel onto
the muscle microvasculature. Again, chimeric mice that
lacked LSP1 only in their leukocytes emigrated as eftectively
across the vasculature as WT mice (Fig. 8 B) in response to
KC administration. In contrast, WT leukocytes reconstituted
in Lsp1~/~ mice (i.e., lacking LSP1 in endothelium) did not
display significant transendothelial migration (Fig. 8 B).

LSP1 is important in histamine-stimulated permeability
increases in postcapillary venules

This 1s the first demonstration of LSP1 in endothelium and,
more importantly, the first demonstration of a functional
role for endothelial LSP1 in regulating leukocyte emigration.
Although the mechanism by which Lsp?~/~ endothelium re-
stricts leukocyte recruitment is unclear, it is clear that LSP1 is
an F-actin binding protein and involved in cytoskeletal
changes in leukocytes (7, 8, 19). A very likely possibility is
that the Lsp1~/~ endothelium did not actively retract to per-
mit leukocyte transendothelial migration. Therefore, we
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Figure 8. The number of adherent (A) and emigrated (B) leuko-
cytes induced by KC in an agarose gel placed 350 pum from the ob-
served cremasteric venule of chimeric mice. WT and Lsp7~/~ mice were
reconstituted with Lsp7~/~ leukocytes and WT leukocytes, and indicated as
Lsp1==—WT (n = 5) and WT—Lsp 1=/~ (n = 4), respectively. *, P < 0.05
and **, P < 0.01, as compared with time 0 in A, or with the data of the WT
mice reconstituted with Lsp7~/~ leukocytes in B.

measured permeability responses in the postcapillary venules
in the control WT and Lsp1~/~ mice. We chose histamine, a
stimulus that did not induce neutrophil emigration per se, to
avoid complications associated with neutrophils emigrating
in WT but not in Lsp1~/~ mice. In each case, more FITC-
albumin leaked into the interstitium in WT than in Lsp1~/~
mice. Fig. 9 shows that at 1, 10, 30, and 60 min after 0.1 mM
histamine superfusion, the permeability index in venules of
WT mice was significantly higher than in venules of Lsp1~/~
mice (P < 0.05). Thus, the results indicated that LSP1 has a
functional role in regulating the stimulated permeability
changes in postcapillary venules.

LSP1 deficiency does not decrease all forms

of leukocyte recruitment

When we administered IL-1f3 to the peritoneal cavities of
WT and Lsp1~/~ mice, there was very significant neutrophil
recruitment in both strains of mice. In fact, the total leuko-
cytes recovered from the peritoneal lavage were slightly
higher in Lsp1~~ mice than in WT mice (at 4 h, 11.1 X
100 = 1.2 X 10° [n = 5] cells in Lsp1~/~ mice vs. 8.0 X
10% £ 0.7 X 10° [n = 5] cells in WT mice; P < 0.05), con-
sistent with previously published results (18).

DISCUSSION

In this paper, we have demonstrated that LSP1 appears to be
an essential intracellular molecule involved in the crucial
event of transendothelial migration that permits leukocytes
to be recruited to sites of inflammation. Neutrophil transen-
dothelial migration across postcapillary venules was clearly
impaired in vivo in Lsp!1™/~ mice when compared with WT
littermates. Not all leukocyte functions were inhibited inas-
much as rolling and adhesion within the vasculature (selec-
tin- and integrin-dependent events, respectively) were not
altered in Lsp1~/~ mice. The impaired recruitment appeared
to occur regardless of whether an exogenous chemokine was
introduced or whether endogenous chemokines were pro-
duced by the local administration of TNFa or IL-13. Until
now, LSP1 has been considered to be leukocyte specific;
however, we report herein that this F-actin binding protein
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Figure 9. Microvascular permeability changes in cremasteric
venules of WT (n = 4) and Lsp7~/~ mice (n = 7) upon histamine
superfusion. Measurements were taken before (time 0) and after 0.1 mM
histamine superfusion of the cremaster muscle preparation. *, P < 0.05 and
** P < 0.01, as compared with the Lsp7~/~ mice at the same time points.

is also located in microvascular endothelium and functions to
permit neutrophil transendothelial migration, suggesting for
the first time both a new cellular source of LSP1 and a new
critical functional role for LSP1 in endothelium.

Although previous findings of altered neutrophil recruit-
ment in Lsp1~/~ mice were considered to exclusively reflect
an alteration in neutrophil function per se (18-20), in this pa-
per, we provide evidence that endothelial LSP1 also contrib-
utes to the neutrophil recruitment. First, we demonstrated
that LSP1 was located in endothelium. The protein was the
same size as leukocyte LSP1 and was absent in Lsp1™/~ mice.
Second, chimeric mice were generated that had WT leuko-
cytes and Lsp1~/~ endothelium to delineate the importance
of endothelial LSP1. The results clearly demonstrated that
WT neutrophils had a profound inability to transmigrate
across Lsp1™/~ endothelium. In contrast, Lsp1~/~ neutrophils
migrated across WT endothelium with no impairment. In
addition, we report that Lsp1~/~ endothelium was less re-
sponsive to histamine, a molecule known to activate the en-
dothelial cytoskeleton and induce endothelial retraction.

There is a growing body of evidence that endothelial
cells actively contribute to leukocyte transendothelial migra-
tion, not only by presenting adhesion molecules including
PECAM-1, CD99, and JAM-1, but also by actively retract-
ing and forming gaps upon leukocyte adhesion to the endo-
thelial cells and providing leukocytes a passage of lesser resis-
tance (21, 22, 29, 34, 35). Endothelial cell to cell adherens
junctions contain VE-cadherin, which links to different in-
tracellular proteins including (-catenin, <y-catenin (plako-
globin), and p120; the former two connect to actin cytoskel-
eton through the binding to a-catenin (36, 37). The
retraction process has been shown in vitro and in vivo to in-
volve cytoskeletal rearrangement within the endothelium,
leading to the disengagement of catenins and VE-cadherins
and to the increase in endothelial permeability (38, 39); this
retraction can be triggered by both inflammatory mediators,
such as histamine, as well as by the direct process of leuko-
cyte adhesion (21, 22, 29, 34-37, 40). Disruption of endo-
thelial microfilaments significantly reduced leukocyte trans-
migration (41, 42). Although the signaling events leading to
the retraction of the endothelium upstream of the cytoskele-
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ton are not entirely clear, the prevailing view at this stage is
that leukocytes engage surface molecules on the endothe-
lium that activate intracellular signaling events, including in-
creased intracellular Ca?* and activation of PKC and/or
myosin light chain kinase, leading to active retraction of en-
dothelium (21, 29, 43, 44). Because LSP1 has actin-binding
sites (8, 9), has been shown to play a role in adhesion-depen-
dent polarization (19), and is associated with the cytoplasmic
face of the plasma membrane (6), we propose that disruption
of LSP1 perturbs the ability of endothelium to retract and,
thus, decreases the histamine-induced permeability response
of the endothelium and neutrophil extravasation observed in
this paper. However, whether LSP1 simply functions up-
stream of the cytoskeletal changes or physically binds cyto-
skeleton remains unclear from our immunofluorescence data.
It should be noted that overexpression of LSP1 in endothe-
lium (via transfection) revealed significant cytoskeletal asso-
ciation (unpublished data).

It is well appreciated that, in leukocytes, LSP1 is one of
several key substrates of MAPKAP kinase-2 and the latter is
the direct target of p38 MAPK (10, 45). Several in vitro
studies have revealed that both p38 MAPK and MAPKAP
kinase-2 are important intracellular signaling molecules in
the induction of chemotaxis (11-13). Recently, we have re-
ported that inhibition of p38 MAPK in vivo resulted in both
an impairment in transendothelial migration and neutrophil
chemotaxis in response to the chemokine KC (13). In con-
trast, inhibition of p38 MAPK in vitro in human endothe-
lium did not impair recruitment in response to the cytokine
TNFa (46). In this paper, lack of LSP1 caused impaired em-
igration in response to both TNFa and KC. This clearly
suggests that the LSP1 deficiency extends well beyond the
role of substrate for p38 MAPK. Indeed, it has been reported
that LSP1 is also a major substrate for PKC (15, 16), a mole-
cule known to regulate endothelial retraction. An alternative
explanation is that the p38 MAPK inhibitors were less eftec-
tive than LSP1 deficiency. The p38 MAPK inhibitors used
previously in this regard are known to specifically inhibit the
p38a and p38P isoform, but not the p38y and p38d iso-
forms. Because endothelium can express p38a, {3, y, and &
(45), if LSP1 is downstream of each of these p38 isoforms,
then this may explain the additional inhibition seen in Lsp1~/~
mice versus p38 inhibitors.

The nonlethal phenotype of Lsp? ™/~ mice permitted ma-
nipulations that resolved the importance of this molecule in
different cell types. Indeed, if the LSP1 pathway is critical
within neutrophils for transendothelial migration, then, re-
moval of LSP1 only in leukocytes by generating LSP1 chi-
meric mice should have still resulted in an inability of Lsp1~/~
neutrophils to emigrate out of WT vasculature. Surpris-
ingly, BM transplantation of Lsp1~/~ leukocytes into WT
mice restored normal transendothelial migration, suggesting
that the lack of neutrophil LSP1 was not responsible for the
impairment of transendothelial migration in Lsp1~/~ mice.
Alternative explanations included the possibilities that the ir-
radiation process in some nonspecific manner altered the
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transendothelial migration phenotype and that the irradiated
mice now had an enhanced responsiveness to chemokines.
However, our data from the reversed BM chimeras, in
which WT neutrophils failed to emigrate out of Lsp 1™/~ vas-
culature, refute these alternative explanations and support
the view that neutrophil transendothelial migration is depen-
dent on a nonleukocyte source of LSP1.

The impaired neutrophil recruitment due to LSP1 defi-
ciency in our study in muscle appeared to be either stimulus
or site specific as the work by Jongstra-Bilen and colleagues
clearly revealed the opposite response (i.e., enhanced recruit-
ment of leukocytes into the peritoneal cavity in response to
thioglycolate; reference 18). We found that, whereas the re-
cruitment of Lsp1~/~ neutrophils was decreased in cremaster
muscle upon IL-1 local administration, the recruitment of
Lsp1™'~ leukocytes into peritoneal cavity was not impaired
(but increased) after IL-1f i.p. injection. Although Lsp1~/~
neutrophils emigrated less into muscle in response to TNFa,
we also found that there was no apparent difference in the re-
cruitment of Lsp 1™/~ and WT leukocytes into peritoneal cav-
ity upon TNFa i.p. administration (unpublished data). These
results argue against stimulus specificity and support the no-
tion that structural or physiological differences of the organ
microvasculatures dictate organ-specific mechanisms of neu-
trophil recruitment (47).

This is the first documentation of a functional role for
LSP1 in endothelium. Some LSP1 could be detected associ-
ated with the cytoskeleton; however, the amount was quite
low. It may be that the protein only binds the cytoskeleton
after leukocyte binding to the endothelium, or perhaps un-
der flow conditions when the endothelium is under constant
state of shear force. In addition, under stimulating conditions
with a permeabilizing agent, perhaps the movement of LSP1
to cytoskeleton might be observed. Future studies will need
to examine under what conditions and how LSP1 interacts
with the actin cytoskeleton in endothelium. We will also
need to determine whether the recently described function
of LSP1 as a cytoskeletal ERK/MAP kinase pathway target-
ing protein (48) plays a role in its function as an endothelial
gatekeeper of leukocyte transendothelial migration.

MATERIALS AND METHODS

Animals. 129/Sv] WT mice were purchased from The Jackson Labora-
tory. Lsp1~/~ mice on the 129/Sv] background were generated by homolo-
gous recombination by Jongstra-Bilen and colleagues as described previ-
ously (18) and transferred to the University of Calgary Health Sciences
Centre. Mice of these two genotypes were bred in the University Animal
Centre to obtain age- and sex-matched controls. The mice between 8 and
16 wk of age were used in experiments except for the mice used for isola-
tion of mouse endothelial cells (57 d old). TIE2-GFP mice were also pur-
chased from The Jackson Laboratory. All animal protocols were approved
by the Animal Care Committee of the University of Calgary and met the
standards of the Canadian Association of Animal Care. All animals were
kept in specific pathogen-free conditions.

Two types of BM chimeric mice were generated following the stan-
dard protocols in our laboratory (33). In brief, BM was isolated from 6—8-
wk-old donor mice killed by spinal cord displacement. The BM cell sus-
pensions (8 X 10° cells) from donor Lsp?~/~ and 129/Sv] WT mice were
injected into the tail vein of 129/Sv] WT and Lsp1~/~ mice, respectively.
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Before BM cell injection, recipients were irradiated with two doses of 5 Gy
y-ray (Gammacell, '¥’Cs y-irradiation source) with a 3-h interval between
the two irradiations. These chimeric mice were housed in specific patho-
gen-free facilities for 6-8 wk to allow full humoral reconstitution before use
in experiments. Initial experiments confirmed that ~99% of leukocytes
were from donor mice (33). Two additional control groups of mice (WT
into WT and Lsp1~/~ into Lsp1~/~) went through an identical protocol to
ensure that the transplant procedure did not cause any untoward effects.

Intravital microscopy. Male mice were anesthetized with an i.p. injec-
tion of a mixture of 10 mg/kg xylazine (Animal Health; Bayer Inc.) and 200
mg/kg ketamine hydrochloride (Rogar/STB Inc.). For all protocols, the left
jugular vein was cannulated to administer additional anesthetic or drugs
when necessary. The mouse cremaster muscle preparation was used to study
the behavior of leukocytes in the microcirculation and adjacent connective
tissue as described previously (49). In brief, an incision was made in the scro-
tal skin to expose the left cremaster muscle, which was then carefully dis-
sected free of the associated fascia. The cremaster muscle was cut longitudi-
nally with a cautery. The testicle and the epididymis were separated from the
underlying muscle and were moved into the abdominal cavity. The muscle
was held flat on an optically clear viewing pedestal and was secured along the
edges with 4-0 suture. The exposed tissue was superfused with 37°C
warmed bicarbonate-buffered saline, pH 7.4. An intravital microscope (Axi-
olskip; Carl Zeiss Microlmaging, Inc.) with a X25 objective lens (Weltzlar
L25/0.35; E. Leitz Inc.), and a X 10 eyepiece was used to examine the cre-
masteric microcirculation. A video camera (5100 HS; Panasonic) was used to
project the images onto a monitor, and the images were recorded for play-
back analysis using a videocassette recorder.

Single unbranched cremasteric venules (25-40 wm in diameter) were
selected, and to minimize variability, the same section of cremasteric venule
was observed throughout the experiment. The number of rolling, adherent,
and emigrated leukocytes was determined offline during video playback
analysis. Rolling leukocytes were defined as those cells moving at a velocity
less than that of erythrocytes within a given vessel. The flux of rolling cells
was measured as the number of rolling leukocytes passing by a given point
in the venule per minute. Leukocyte rolling velocity was measured for the
first 20 leukocytes entering the field of view at the time of recording and
calculated from the time required for a leukocyte to roll along a 100-pum
length of venule. A leukocyte was considered to be adherent if it remained
stationary for at least 30 s, and total leukocyte adhesion was quantified as the
number of adherent cells within a 100-pm length of venule in 5 min. Leu-
kocyte emigration was defined as the number of cells in the extravascular
space within a 200 X 300-pm area (0.06 mm?), adjacent to the observed
venule. More than 90% of these emigrated cells were neutrophils (13, 31).
Only cells adjacent to and clearly outside the vessel under study were
counted as emigrated.

Induction of leukocyte recruitment in cremaster muscle. To deter-
mine whether emigration was impaired in response to cytokines, recombi-
nant mouse TNFa (0.5 or 0.1 pg; R&D Systems) or IL-13 (12.5 ng; BD
Biosciences) in 200 pl of saline was injected intrascrotally into Lsp1~/~,
129/Sv] WT, or chimeric mice. The leukocyte rolling flux, rolling velocity,
adherence, and emigration were measured in the cremasteric venule at 3.5,
4, and 4.5 h after the injection.

To induce neutrophil recruitment independent of cytokines, an agarose
gel containing KC (CXCL1; R&D Systems) was used (13, 50). The agarose
gel was prepared by adding 10 ml of 2 X HBSS to a boiling concentrated
agarose solution (4% in 10 ml of distilled water). A 100-pl aliquot of this
solution was removed, and KC was added to this aliquot and mixed to
achieve a final concentration of 0.5 WM. To enable visualization of the gel
on the cremaster muscle, a small amount of India ink was added to each
preparation. A 1-mm® piece of the mixture (KC-containing gel) was
punched out using the tip of a Pasteur pipette. This piece of KC-containing
gel was carefully placed on the surface of the cremaster in a preselected area
350 pm (two monitor screens wide) from a postcapillary venule. The gel
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was held in place using a 22 X 22-mm glass coverslip, and the tissue was su-
perfused beneath the coverslip at a slow rate (0.35 ml/min) to create a che-
motactic gradient that permitted emigration. The image was recorded for
90 min: 30 min for control without gel and 60 min with KC-containing
gel. In control experiments, only the gel (without KC addition) was placed
on the surface of the cremaster muscle.

Microvascular permeability measurement. The degree of vascular al-
bumin leakage from cremasteric venules of Lsp1~~ and control 129/Sv]
mice was quantified as described previously (51). In brief, 25 mg/kg FITC-
labeled BSA (Sigma-Aldrich) was administered to the mice i.v. at the start of
the experiment, and FITC-derived fluorescence (excitation wavelength,
450—490 nm; emission wavelength, 520 nm) was detected using a silicon-
intensified charge-coupled device camera (model C-2400-80; Hamamatsu
Photonics). Image analysis software (Optimas; Bioscan Inc.) was used to de-
termine the intensity of FITC-albumin—derived fluorescence within the lu-
men of the venule and in the adjacent perivascular tissue. Background was
defined as the fluorescence intensity before FITC-albumin administration.
The exposed cremaster muscle was superfused with 0.1 mM histamine di-
hydrochloride (Sigma-Aldrich) in 37°C warmed bicarbonate-buftered sa-
line. The index of vascular albumin leakage (permeability index) at different
time points after histamine superfusion was determined according to the
following ratio expressed as a percentage: (mean interstitial intensity —
background)/(venular intensity — background) (51).

Harvesting endothelial cells and leukocytes. Acute mouse peritonitis
was induced to obtain emigrated leukocytes from Lsp1~/~ and control 129/
Sv] WT mice. 3 h after an i.p. injection of 1% oyster glycogen (in 1 ml sa-
line; Sigma-Aldrich), leukocytes were lavaged from the peritoneum and
prepared for Western blotting (see the next paragraph). Mouse primary lung
endothelial cells were isolated from 5-7-d-old Lsp1~~ and control 129/Sv]
‘WT mice, and were cultured according to the protocols described previ-
ously (52). Using this protocol with TIE2-GFP mice and flow cytometry,
we verified that ~93-98% of the isolated cells were GFP positive, confirm-
ing that the majority of the purified cells were of endothelial cell origin
(53). Freshly isolated mouse endothelial cells were cultured in microvascular
endothelial cell medium-2 (Clonetics EGM-2MV BulletKit; Cambrex Bio
Science) in 35-mm Petri dishes precoated with 20 wg/ml mouse laminin
(Upstate Biotechnology). After reaching confluence in 5-6 d, the cells were
either used for Western blotting or trypsinized and subcultured on laminin-
coated 22 X 22-mm glass coverslips (at 30,000 cells/coverslip) contained in
35-mm Petri dishes.

Western blot and RT-PCR analysis. The polyclonal anti-LSP1 serum
was made in rabbits against mouse recombinant LSP1 protein (6). Although,
in leukocytes, the anti-LSP1 serum detected a single band at the appropriate
size for LSP1, a second band of ~78 kD was detected in endothelium. To
remove this reactivity, the GST-LSP1 fusion proteins containing LSP1 resi-
dues 1-178 or 179-330 were constructed, subcloned, and expressed in Esch-
erichia coli BL21 (DE3) cells as described previously (54). These two fusion
proteins were allowed to conjugate agarose-glutathione beads and were
packed into separate glass columns. The polyclonal anti-LSP1 serum was
flowed at a rate of <0.15 ml/min (at 4°C) through the different columns
containing at least 10-fold molar excess fusion proteins (residues 1-178 or
179-330). The flow-through fractions containing >1.5 mg/ml protein
concentrations, which were the anti-COOH-terminal LSP1 and anti—
NH,-terminal LSP1, respectively, were collected, pooled separately, and
used in Western blotting assays and immunofluorescence microscopy. As a
control, the anti-LSP1 serum was also absorbed against both GST-LSP1 fu-
sion proteins and used in Western blotting.

Freshly isolated mouse leukocytes and mouse primary lung endothelial
cells were used for Western blot and RT-PCR analysis. Whole cell lysates
were prepared from these cells using Laemmli buffer with 10% B-mercapto-
ethanol, 10 pg/ml leupeptin, and 10 pg/ml aprotinin. The proteins were
separated by electrophoresis in 10% SDS-polyacrylamide gels, transferred to
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a PVDF Hybond-P transfer membrane (Amersham Biosciences), and blot-
ted using a specific polyclonal rabbit anti-mouse LSP1 serum (at 1:2,000 di-
lution) as described previously (6) or the anti-COOH-terminal LSP1 and
anti-NH,-terminal LSP1 as described before. After washing, the membrane
was incubated with a secondary, horseradish peroxidase—conjugated goat
anti-rabbit IgG and treated with enhanced chemiluminescence reagents
(ECL kit; Amersham Biosciences). The blotted bands were detected with
high performance autoradiography films from Amersham Biosciences. RT-
PCR was performed using total RNA (100 ng for each cell type) extracted
from freshly isolated leukocytes, mouse primary lung endothelial cells, and
LSP1 primer pair A1/A4 as described previously (4). The PCR products
were electrophoresed by agarose gel, stained with ethidium bromide, and
analyzed by high sensitivity Fluor-S Multimager MAX scanner (Bio-Rad
Laboratories) upon dark subtraction.

Immunofluorescence microscopy. All rinsing, incubation, and dilution
of antibodies was performed in basal buffer that contained 137 NaCl, 5
KCl, 1.1 Na,HPO,, 0.4 KH,PO,, 4 NaHCO;, 5.5 glucose, 4.15 PIPES di-
sodium salt, 2 EGTA, and 4.15 MgCl, in mM, pH 7.2, at room tempera-
ture. Mouse lung primary endothelial cells grown on glass coverslips for 24 h
were fixed with 4% formalin, permeabilized with 0.1% Triton X-100, and
incubated with 10 wg/ml glycine. Primary antibodies used were the anti—
COOH-terminal LSP1 and anti-NH,-terminal LSP1 as described before
for 30 min where the protein concentrations were both 0.4 mg/ml in the
two blotting solutions, or the original rabbit polyclonal anti-LSP1 serum (at
1:100 dilution). After rinsing three times with 0.1% Tween-20, the cover-
slips were incubated with Cy3-conjugated goat anti—rabbit IgG for 30 min.
After rinsing with basal bufter, the coverslips were mounted in 90% glyc-
erol. Observations were performed on an Olympus IX-70 fluorescence mi-
croscope (Olympus). Fluorescence images were captured using OpenLab
software (version 3.1.5; Improvision Inc.).

To determine whether human endothelial cells express LSP1, we iso-
lated and cultured HUVECs as described previously (46). Once the HU-
VECs were confluent, they were passaged onto fibronectin-coated glass
coverslips. After culture for 24—48 h, these HUVECs were stained as out-
lined before with 2.5 pg/ml mouse anti-human LSP1 mAb (clone 16; BD
Biosciences) and goat anti-mouse IgG conjugated with Texas Red (Molec-
ular Probes). DAPI (4,6-diamidino-2-phenylindole, dihydrochloride; Mo-
lecular Probes) was used for nuclear staining. To confirm that endothelial
cells and not a contaminating cell type expressed LSP1, we dual labeled the
HUVECs with FITC-conjugated anti-human VE-cadherin (Bender Med-
systems) in combination with LSP1 staining. To assess the association of
LSP1 with the cytoskeleton, we labeled HUVECs with anti-LSP1 and phal-
loidin (Alexa Fluor conjugated; Molecular Probes).

Statistical analysis. The data are expressed as means = SEM. A Student’s ¢
test was applied to compare the statistical difference within two groups, and
analysis of variance was used for the comparison of the differences in more
than two groups. A p-value of <0.05 was considered statistically significant.

We thank L. Zbytnuik and K. Jorgensen for their expert assistance in animal care.

This work was supported in part by a Canadian Institutes of Health Research
group grant and by the Heart and Stroke Foundation of Canada. L. Liu is supported
by a fellowship from Heart and Stroke Foundation of Canada and Alberta Heritage
Foundation for Medical Research. D.C. Cara has a postdoctoral fellowship from
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq, Brasilia,
Brazil. P. Kubes is an Alberta Heritage Foundation for Medical Research Scientist and
a Canada Research Chair.

The authors have no conflicting financial interests.

Submitted: 27 April 2004
Accepted: 24 November 2004

REFERENCES
1. Jongstra, J., G.F. Tidmarsh, J. Jongstra-Bilen, and M.M. Davis. 1988. A

2+

new lymphocyte-specific gene which encodes a putative Ca?*-binding

JEM VOL. 201, February 7, 2005

ol

10.

11.

12.

13.

14.

15.

16.

18.

19.

ARTICLE

protein is not expressed in transformed T lymphocyte lines. J. Immunol.
141:3999-4004.

. Jongstra-Bilen, J., AJ. Young, R. Chong, and J. Jongstra. 1990. Hu-

man and mouse LSP1 genes code for highly conserved phosphopro-
teins. J. Immunol. 144:1104-1110.

. Pulford, K., M. Jones, A.H. Banham, E. Haralambieva, and D.Y. Ma-

son. 1999. Lymphocyte-specific protein 1: a specific marker of human
leucocytes. Immunology. 96:262-271.

. Jongstra, J., MLE. Ittel, N.N. Iscove, and G. Brady. 1994. The LSP1

gene is expressed in cultured normal and transformed mouse macro-
phages. Mol. Immunol. 31:1125-1131.

. Li, Y., A. Guerrero, and T.H. Howard. 1995. The actin-binding pro-

tein, lymphocyte-specific protein 1, is expressed in human leukocytes
and human myeloid and lymphoid cell lines. J. Immunol. 155:3563-3569.

. Klein, D.P., J. Jongstra-Bilen, K. Ogryzlo, R. Chong, and J. Jongstra.

1989. Lymphocyte-specific Ca?*-binding protein LSP1 is associated
with the cytoplasmic face of the plasma membrane. Mol. Cell. Biol.
9:3043-3048.

. Klein, D.P., S. Galea, and J. Jongstra. 1990. The lymphocyte-specific

protein LSP1 is associated with the cytoskeleton and co-caps with
membrane IgM. |. Immunol. 145:2967-2973.

. Jongstra-Bilen, J., P.A. Janmey, J.H. Hartwig, S. Galea, and J. Jongstra.

1992. The lymphocyte-specific protein LSP1 binds to F-actin and to
the cytoskeleton through its COOH-terminal basic domain. J. Cell
Biol. 118:1443-1453.

. Zhang, Q., Y. Li, and T.H. Howard. 2000. Human lymphocyte-spe-

cific protein 1, the protein overexpressed in neutrophil actin dysfunc-
tion with 47-kDa and 89-kDa protein abnormalities (NAD 47/89), has
multiple F-actin binding domains. J. Inmunol. 165:2052-2058.

Huang, C.K., L. Zhan, Y. Ai, and J. Jongstra. 1997. LSP1 is the major
substrate for mitogen-activated protein kinase-activated protein kinase
2 in human neutrophils. J. Biol. Chem. 272:17-19.

Hannigan, M.O., L. Zhan, Y. Ai, A. Kotlyarov, M. Gaestel, and C.K.
Huang. 2001. Abnormal migration phenotype of mitogen-activated
protein kinase-activated protein kinase 27/~ neutrophils in Zigmond
chambers containing formyl-methionyl-leucyl-phenylalanine gradients.
J. Immunol. 167:3953-3961.

Zu, Y.L., J. Qi, A. Gilchrist, G.A. Fernandez, D. Vazquez-Abad, D.L.
Kreutzer, C.K. Huang, and R.I. Sha’afi. 1998. p38 mitogen-activated
protein kinase activation is required for human neutrophil function trig-
gered by TNF-ae or FMLP stimulation. J. Immunol. 160:1982-1989.
Cara, D.C., J. Kaur, M. Forster, D.M. McCafterty, and P. Kubes. 2001.
Role of p38 mitogen-activated protein kinase in chemokine-induced emi-
gration and chemotaxis in vivo. J. Immunol. 167:6552—6558.

Stokoe, D., K. Engel, D.G. Campbell, P. Cohen, and M. Gaestel.
1992. Identification of MAPKAP kinase 2 as a major enzyme responsi-
ble for the phosphorylation of the small mammalian heat shock pro-
teins. FEBS Lett. 313:307-313.

Carballo, E., D. Colomer, J.L. Vives-Corrons, P.J. Blackshear, and J.
Gil. 1996. Characterization and purification of a protein kinase C sub-
strate in human B cells. Identification as lymphocyte-specific protein 1
(LSP1). J. Immunol. 156:1709-1713.

Matsumoto, N., S. Kojima, T. Osawa, and S. Toyoshima. 1995. Pro-
tein kinase C phosphorylates p50 LSP1 and induces translocation of
p50 LSP1 in T lymphocytes. J. Biochem. (Tokyo). 117:222-229.

. Laudanna, C., D. Mochly-Rosen, T. Liron, G. Constantin, and E.C.

Butcher. 1998. Evidence of { protein kinase C involvement in poly-
morphonuclear neutrophil integrin-dependent adhesion and chemo-
taxis. J. Biol. Chem. 273:30306-30315.

Jongstra-Bilen, J., V.L. Misener, C. Wang, H. Ginzberg, A. Auerbach,
A.L. Joyner, G.P. Downey, and J. Jongstra. 2000. LSP1 modulates leu-
kocyte populations in resting and inflamed peritoneum. Blood. 96:
1827-1835.

Wang, C., H. Hayashi, R. Harrison, B. Chiu, J.R. Chan, H.L. Oster-
gaard, R.D. Inman, J. Jongstra, M.I. Cybulsky, and J. Jongstra-Bilen.
2002. Modulation of Mac-1 (CD11b/CD18)-mediated adhesion by
the leukocyte-specific protein 1 is key to its role in neutrophil polariza-
tion and chemotaxis. J. Immunol. 169:415-423.

417



JEM

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

418

Hannigan, M., L. Zhan, Y. Ai, and C.K. Huang. 2001. Leukocyte-spe-
cific gene 1 protein (LSP1) is involved in chemokine KC-activated cy-
toskeletal reorganization in murine neutrophils in vitro. J. Leukoc. Biol.
69:497-504.

Luscinskas, F.W., S. Ma, A. Nusrat, C.A. Parkos, and S.K. Shaw. 2002.
Leukocyte transendothelial migration: a junctional aftair. Semin. Immu-
nol. 14:105-113.

Vestweber, D. 2002. Regulation of endothelial cell contacts during
leukocyte extravasation. Curr. Opin. Cell Biol. 14:587-593.

Kayyali, U.S., C.M. Pennella, C. Trujillo, O. Villa, M. Gaestel, and
P.M. Hassoun. 2002. Cytoskeletal changes in hypoxic pulmonary en-
dothelial cells are dependent on MAPK-activated protein kinase MK2.
J. Biol. Chem. 277:42596—42602.

Park, J.H., N. Okayama, D. Gute, A. Krsmanovic, H. Battarbee, and
J.S. Alexander. 1999. Hypoxia/aglycemia increases endothelial perme-
ability: role of second messengers and cytoskeleton. Am. J. Physiol. 277:
C1066-C1074.

Huot, J., F. Houle, F. Marceau, and J. Landry. 1997. Oxidative stress-
induced actin reorganization mediated by the p38 mitogen-activated
protein kinase/heat shock protein 27 pathway in vascular endothelial
cells. Circ. Res. 80:383-392.

Nwariaku, F.E., J. Chang, X. Zhu, Z. Liu, S.L. Dufty, N.H. Halaihel,
L. Terada, and R.H. Turnage. 2002. The role of p38 MAP kinase in
tumor necrosis factor-induced redistribution of vascular endothelial
cadherin and increased endothelial permeability. Shock. 18:82—85.
Laird, S.M., A. Graham, A. Paul, G.W. Gould, C. Kennedy, and R.
Plevin. 1998. Tumour necrosis factor stimulates stress-activated protein
kinases and the inhibition of DNA synthesis in cultures of bovine aortic
endothelial cells. Cell. Signal. 10:473—480.

Rousseau, S., F. Houle, J. Landry, and J. Huot. 1997. p38 MAP kinase
activation by vascular endothelial growth factor mediates actin reorga-
nization and cell migration in human endothelial cells. Oncogene. 15:
2169-2177.

Huang, A.J., J.E. Manning, T.M. Bandak, M.C. Ratau, K.R. Hanser,
and S.C. Silverstein. 1993. Endothelial cell cytosolic free calcium regu-
lates neutrophil migration across monolayers of endothelial cells. J. Cell
Biol. 120:1371-1380.

Garcia, J.G., A.D. Verin, M. Herenyiova, and D. English. 1998. Ad-
herent neutrophils activate endothelial myosin light chain kinase: role
in transendothelial migration. J. Appl. Physiol. 84:1817-1821.
Thompson, R.D., K.E. Noble, K.Y. Larbi, A. Dewar, G.S. Duncan,
T.W. Mak, and S. Nourshargh. 2001. Platelet-endothelial cell adhe-
sion molecule-1 (PECAM-1)—deficient mice demonstrate a transient
and cytokine-specific role for PECAM-1 in leukocyte migration through
the perivascular basement membrane. Blood. 97:1854—1860.

Young, R.E., R.D. Thompson, and S. Nourshargh. 2002. Divergent
mechanisms of action of the inflaimmatory cytokines interleukin 1-3
and tumour necrosis factor-a in mouse cremasteric venules. Br. J. Phar-
macol. 137:1237-1246.

Carvalho-Tavares, J., M.J. Hickey, J. Hutchison, J. Michaud, L.T. Sut-
cliffe, and P. Kubes. 2000. A role for platelets and endothelial selectins
in tumor necrosis factor-a-induced leukocyte recruitment in the brain
microvasculature. Circ. Res. 87:1141-1148.

Del Maschio, A., A. Zanetti, M. Corada, Y. Rival, L. Ruco, M.G.
Lampugnani, and E. Dejana. 1996. Polymorphonuclear leukocyte ad-
hesion triggers the disorganization of endothelial cell-to-cell adherens
junctions. J. Cell Biol. 135:497-510.

Johnson-Leger, C., M. Aurrand-Lions, and B.A. Imhof. 2000. The
parting of the endothelium: miracle, or simply a junctional affair? J.
Cell Sci. 113:921-933.

Dejana, E. 1996. Endothelial adherens junctions: implications in the

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

control of vascular permeability and angiogenesis. J. Clin. Invest. 98:
1949-1953.

. Dejana, E., R. Spagnuolo, and G. Bazzoni. 2001. Interendothelial

junctions and their role in the control of angiogenesis, vascular perme-
ability and leukocyte transmigration. Thromb. Haemost. 86:308-315.
Waschke, J., W. Baumgartner, R.H. Adamson, M. Zeng, K. Aktories,
H. Barth, C. Wilde, F.E. Curry, and D. Drenckhahn. 2004. Require-
ment of Rac activity for maintenance of capillary endothelial barrier
properties. Am. J. Physiol. Heart Circ. Physiol. 286:H394-H401.
Adamson, R.H., F.E. Curry, G. Adamson, B. Liu, Y. Jiang, K. Akto-
ries, H. Barth, A. Daigeler, N. Golenhofen, W. Ness, and D. Drenck-
hahn. 2002. Rho and rho kinase modulation of barrier properties: cul-
tured endothelial cells and intact microvessels of rats and mice. J.
Physiol. 539:295-308.

Shaw, S.K., P.S. Bamba, B.N. Perkins, and F.W. Luscinskas. 2001.
Real-time imaging of vascular endothelial-cadherin during leukocyte
transmigration across endothelium. J. Inmunol. 167:2323-2330.
Kielbassa, K., C. Schmitz, and V. Gerke. 1998. Disruption of endothe-
lial microfilaments selectively reduces the transendothelial migration of
monocytes. Exp. Cell Res. 243:129-141.

Hordijk, P.L., E. Anthony, F.P. Mul, R. Rientsma, L.C. Oomen, and
D. Roos. 1999. Vascular-endothelial-cadherin modulates endothelial
monolayer permeability. J. Cell Sci. 112:1915-1923.

Su, W.H., H.I. Chen, J.P. Huang, and CJ. Jen. 2000. Endothelial
[Ca?*]; signaling during transmigration of polymorphonuclear leuko-
cytes. Blood. 96:3816-3822.

Lum, H., and A.B. Malik. 1994. Regulation of vascular endothelial
barrier function. Am. J. Physiol. 267:L223-1241.

Herlaar, E., and Z. Brown. 1999. p38 MAPK signalling cascades in in-
flammatory disease. Mol. Med. Today. 5:439—447.

Kaur, J., R.C. Woodman, and P. Kubes. 2003. P38 MAPK: critical
molecule in thrombin-induced NF-kB-dependent leukocyte recruit-
ment. Am. J. Physiol. Heart Circ. Physiol. 284:H1095-H1103.

Liu, L., and P. Kubes. 2003. Molecular mechanisms of leukocyte re-
cruitment: organ-specific mechanisms of action. Thromb. Haemost. 89:
213-220.

Harrison, R.E., B.A. Sikorski, and J. Jongstra. 2004. Leukocyte-specific
protein 1 targets the ERK/MAP kinase scaffold protein KSR and MEK1
and ERK2 to the actin cytoskeleton. J. Cell Sci. 117:2151-2157.
Kanwar, S., D.C. Bullard, M.J. Hickey, C.W. Smith, A.L. Beaudet,
B.A. Wolitzky, and P. Kubes. 1997. The association between oy-inte-
grin, P-selectin, and E-selectin in an allergic model of inflammation. J.
Exp. Med. 185:1077-1087.

Hickey, M.J., M. Forster, D. Mitchell, J. Kaur, C. De Caigny, and P.
Kubes. 2000. L-selectin facilitates emigration and extravascular loco-
motion of leukocytes during acute inflammatory responses in vivo. J.
Immunol. 165:7164-7170.

Kurose, I., P. Kubes, R. Wolf, D.C. Anderson, J. Paulson, M. Mi-
yasaka, and D.N. Granger. 1993. Inhibition of nitric oxide production.
Mechanisms of vascular albumin leakage. Circ. Res. 73:164-171.
Bowden, R.A., Z.M. Ding, E.M. Donnachie, T.K. Petersen, L.H.
Michael, C.M. Ballantyne, and A.R. Burns. 2002. Role of o, integrin
and VCAM-1 in CD18-independent neutrophil migration across mouse
cardiac endothelium. Circ. Res. 90:562-569.

Motoike, T., S. Loughna, E. Perens, B.L. Roman, W. Liao, T.C.
Chau, C.D. Richardson, T. Kawate, J. Kuno, B.M. Weinstein, et al.
2000. Universal GFP reporter for the study of vascular development.
Genesis. 28:75-81.

Wong, M J., LA. Malapitan, B.A. Sikorski, and J. Jongstra. 2003. A
cell-free binding assay maps the LSP1 cytoskeletal binding site to the
COOH-terminal 30 amino acids. Biochim. Biophys. Acta. 1642:17-24.

ENDOTHELIAL LSP1 REGULATES LEUKOCYTE TRANSMIGRATION | Liu et al.



