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In the original analysis' of the behavior of macromolecules and viruses in a den-
sity gradient at equilibrium in the ultracentrifuge, only two incompressible com-
ponents were considered to be present. These were the polymer and the solvent
which forms the density gradient. The pressure-dependent terms and the cross
terms in the chemical potential which describe the chemical reactions between the
polymer and the solute were neglected. It has been pointed out from theoretical
considerations2-4 that these terms are important. In experimental studies of the
buoyant behavior of bovine mercaptalbumin in aqueous cesium chloride,6 it was
observed that both solvation and pressure effects are large.

In the following first-order theory of sedimentation equilibrium in a density
gradient, both solvation effects and pressure dependencies are taken into account.
It is shown below that a single buoyant macromolecular substance again gives rise
to a Gaussian distribution of concentration. From the standard deviation of this
distribution the anhydrous and the solvated molecular weight may be obtained
provided certain additional ultracentrifuge, partial specific volume, and activity
data are collected.
Two succeeding papers deal with the determination of the solvation6 and the

pressure-dependent parameters' for T4 bacteriophage deoxyribonucleic acid.
The pressure-dependent parameters for tobacco mosaic virus are also discussed.
The thermodynamic equations describing the equilibria in a three-component

system in a centrifugal field are'

Ml( - Dip) 2rdr = idmn; (1)
bml 6,M3 ml

M3(1 - D3p)W2rdr = (8i) dm 3 + ) dmi. (2)
(M3 mldmi( '

In these equations p is the density of the solution and w is the angular velocity.
The subscripts 1 and 3 refer to one of the solutes and to the macromolecule re-
spectively. The symbols M, v, A,; and m stand for molecular weight, partial spe-
cific volume, chemical potential, and molality. These differential equations are
valid at constant temperature and pressure. The solvation parameter9s'i r
- (b0/biM3)M,/(bji/bimn)m, represents the net solvation of the polymer in moles
solute per mole polymer and is equal to (6mi/6m3); by the triple product rule.
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The quantity r is the number of moles of solute 1 which must accompany the addi-
tion of one mole of macromolecule to a very large volume of solution if this addition
is to be at constant chemical potential, A?. Equations (1) and (2) are transformed
to the more useful equations (3) and (4) upon substitution of the defined quantity r
and the further relation' (dti/bm3)m1 = (6,u3/6ml)m,. The relation between the
cross terms is valid if concentrations are expressed in molalities.

Ml(j - f~1p)W2rd i1-~(i'Ml~l-f~p)@2rdr= (ail ) dm -rIF 1) dM3; (3)
ml (bml

M3(1 - 03p)&2rdr = j dm3 - rF ul dmi. (4)
6M3/m \ml m,

Focusing attention first on the polymer, we eliminate dmi from equations (3) and
(4).

[(M3 + rMi) - (M3f3 + rMlDN)p]W2rdr = - i2 (ill )] di3 (5)

The solvation parameter may be defined on a weight basis, rF = r(Ml/Ms). Re-
arranging equation (5) leads to

M (1 + ) [1 - (1 + rF)tP w2rdr =

(68Mdm, [ (b/Ll/&Ml)ms(bA3#/6M3)mj]
At the position of the maximum polymer concentration, (dm3/dr) = 0. With

this position defining band center, denoted here with the subscript zero, the buoy-
ancy condition from equation (6) is3

1 V33+ ral (7)
PO 1 + rt

Clearly the experimentally determined buoyant density Po is that of the solvated
polymer. It should be emphasized that up to this point no assumptions have been
made. The density gradient procedure provides a method for determining rF if
0l and f)3 are known.

If we are to obtain the polymer distribution, the right side of equation (10) must
be evaluated. The term, (OL/bM3) 2m,/( j/AMl)m,(bjA3/bM3)mg, which will be
referred to as e, is interesting. It is a general condition of stability with respect to
the formation of a new phase that E be less than one. To estimate an order of
magnitude of E, all the terms are assumed to be ideal.

eS\rt(M 2 RT/min3Wi' (8)

where w = Mm.
At common experimental conditions for DNA and proteins in CsCl, ej takes on

values between 0.2 and 8 at band center without the formation of a new phase.
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Because this term is concentration-dependent, the foregoing ideality assumption
predicts non-Gaussian concentration distributions.

In density gradient experiments this ideality assumption is certainly not valid,
despite the very low DNA concentrations usually used. Instead, independent
solvated molecules are suggested by the observed Gaussian distributions. At low
polymer concentrations, the solvated molecules behave independently only at
constant solute chemical potential. The assumption of independent solvated par-
ticles may be stated:

(ah3) ( M3)m, + (aM3 )m,( RT (9)a3~4I 6M3 ml bmdv:l Mmse
=

o M3'

Substituting the relations for r into this equation, we obtain

(a,. 3 ) =(14 - r2 a8l ) RT- (10)
M3~41. 6M3 ml am, .=s M3

Combining equations (5) and (6) with (10) gives an equation for the independent
solvated macromolecule:

M,[l - 0hp]w2rdr = di3 (11)
M3

where mg= M3(1 + r') and 2-Y = 1+ rIF'

The polymer introduces another interesting problem. Equation (11) has two
solutions. If the solute, 1, is water, rF is positive; if the solute is salt, rF is nega-
tive. One solution yields a value of M3 less than M,; the other, greater. This is
physically reasonable because the system cannot distinguish between dry polymer,
and polymer plus an amount of solution of density 1/-03 which contains r moles of
salt per mole of polymer. To obtain the anhydrous molecular weight, rF must be
positive. In the experimental work on DNA6 all molalities are expressed as moles
per 1000 gm of salt. In this case r is positive and represents moles water bound
per mole polymer. M3 becomes the molecular weight of the dry polymer.
Reexamining the value of e under the assumption of independent solvated parti-

cles expressed above, we find that

r2(ajA1/6aM1). r2(bAl/bMjm.
(O3/b63)mil RT/m3 + r2(ag/6/,)ma'

and e will now always be less than one.
The final question to be answered by the theory is the effect of solvation on the

density gradient. Upon elimination of dM3 from equations (3) and (4), equation
(12) is obtained:

dmi [(M1 + yrM3) - (M1i1 + yrM,03)p] 2r (12)
dr (bul/cimI)m3[1 - r27t]

where y = (bJA1/&M1)m3/(iui3/&M3)m,. Although hydrated water represents a
very small fraction of the total water, it makes a large contribution to the water-
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concentration gradient. Free water alone, however, determines the density gradi-
ent because the hydrated polymer has a density almost identical with that of the
solution. The effect of the hydrated polymer on the density gradient is therefore
negligible. The gradient of free water can be expressed by the equation (dmi/dr)f
= (dm1/dr) -r(dm3/dr). Substituting equations (5) and (12) into this expression,
we obtain

(dmin - M1(1 -vp)C02r (13)
\ dr if (.(1m3M

Effects of polymer on the activity of the solvent are completely negligible at the
polymer concentrations normally used. Equation (13) is the condition for equilib-
rium in a two-component system. It therefore does not matter that the polymer
is present nor which definition of molality is used in evaluating the density gradient.

In order to obtain an expression for the polymer distribution at equilibrium, p,
vs and M, are expanded about band center. a = r - ro.

+ drj = DS O (dr) + dr

Substituting these equations into equation (11), using the buoyancy condition
(1- osopo) = 0 and keeping only first-order terms in 6, we obtain

M, So[ + Po (d) 5W2rodS= RTd Inm3. (14)

Integrating equation (14), we obtain a distribution of the form m = mo exp (-62/
2o2) where a2 is given by equations (15) and (16).12

RT
M8 0Vs o (dp/dr)eff w2rO (15)

(dr)eff =dr) s o (dr ) (16)

From the experimental evidence presented in references 6 and 7, i'D is known to
be a function of pressure and solute activity at atmospheric pressure, a10. The
following equations allow the separation of these two effects and define an apparent
compressibility for the solvated polymer, K,.

di's t ~f13\ dP\ /o(<3fda10o
-- - I ) +-I-I- (dai°1 (17)dr \OP alo \dri \ba?0p\ dr/

1s V8P (18)
V5s kbP)aio

To express the second term on the right-hand side of equation (17) in terms of
buoyant densities, the expression 1/i'8 = P, which defines p, is differentiated with
respect to a10. Neglecting higher-order terms, this results in
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Now (dps/dal0) = (6po0/ba10)p. This quantity is a slope which can be experimentally
determined from the buoyant density versus water activity in several aqueous cesium
salt solutions.6 This operation assumes that the anion has no effect on the buoyant
density except by way of its effect on the water activity.
Upon substituting equations (17), (18), and (19) into equation (16), the effective

density gradient becomes

(do) - P(K) dP - (po)() da) (20)

In order to obtain a workable buoyancy condition, it is necessary to expand Vs
about atmospheric pressure, P equal to zero. The activity of the solute a10, and.
the density of the solution p0 at atmospheric pressure are not independent. It is
therefore possible to expand in terms of p0 instead of a10. The expansion is given by
equation (21).

V8,O = 0 ,0 [1-Ki-Po
1 f (Ida°1P0OO )] (21)8, ba?) Po - f

Using the relation po = po0/(l -KPo), the buoyancy condition, -s,0 po = 1, can now
be written as follows:

Po0 = [1 (K- KS)P1O
[3, -1-(P)(d0) (22)

where 8,,0o is the reciprocal of the buoyant density at atmospheric pressure. Higher-
order corrections throughout this discussion have been neglected. It is shown in
reference 7 that the physical density gradient is given by equation (23):

dp L1 + Kp02j w2r. (23)

The complete effective density gradient is obtained by substituting equation (23)
into equation (20). Higher-order corrections are again neglected and the a10 de-
pendence is expressed in terms of the density at atmospheric pressure as a concen-
tration variable. The substitution dP/dr = pw2r (10) has also been made.

dp [1 (K - Ks8) p02 __ Po0 (da?0wr. (4,_ A + sP 1[l W8°(a12r (24)
dr eff 30 (apo0 (dadj1 ba?° dp0[ 1 - ~a1 pdp

All the terms of this equation can be experimentally determined. The quantity
(K - K8)/[1 - (6po0/ba10)p(da10/dpP)] = I

can be determined by studying the pressure dependence of the buoyant density, as
can be seen from equation (22). The quantity (bpo0/baj%)p is the slope of buoyant
density versus solute activity at P equals zero. The quantity (dail/dp0) is the
slope of solute activity versus density for the salt solution at P equal zero.
Upon multiplying as indicated in equation (24), and recalling that the composition

density gradient dp0/dr = co2r/#0, we find that the effective density gradient is
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(dp\ = (ddp0)+ (K- Kg) po2W2r - (aP)Odap \) (25)kdrleff dr \. a?0I dp0 drl

(dp\ (dpO\ (bp30\ + (K- 2 2
or kdrleff kdr,/ ' dr

) (K K~ cor.
For convenience, (6p,,/0r)p is set equal to (bpoO/ar)p, defined as above.
The effective density gradient is now seen to be the composition density gradient

diminished by the polymer density gradient associated with solvation changes and
enhanced by an effective compression density gradient. This latter density
gradient is the result of the difference in compressibilities of soivent and the solvated
polymer. The effective density is thus in the appropriate form for the physical
situation.
The solvated macromolecules are everywhere in the band in equilibrium with the

layer of solution perpendicular to the field. In each layer, the hydrated macro-
molecules are differently solvated and in addition differently compressed.
Appendix.-It can be shown that the assumption that (O3/6m3)O, = RT/m3 is

consistent with the idea that r is independent of polymer concentration at constant
P1. Partial differentiation at constant A1 of the expression defining r, (A3/1&Ml)m,

-r(aSl/bml)mg with respect to m3 gives

a (Ay3>N _ brd IAzlA + r aF8l
~bM3[(m ,)M.j (mj3,.bM(1J., m3 L\m)JMs,l

arn3 [(a-ml~m,2,,3 - aml __8m , =) (R

am [(dm~,,, = m [(dm)s ]3
') M, bJ1n/mJ )~M3 ~m3/jsMm

=0.~~ ~ ~ ~ ~ ~ ~~ =0
Therefore ((-r/bM3)j,X(bttj/oml)., = O. For stability (61AI/6ml)., > O. Therefore,
(br/bM3)jl = °-
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