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Abstract

 

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates
cell survival and proliferation mediated by phosphoinositol 3 kinases. We have explored the
role of the phosphoinositol(3,4,5)

 

P

 

3-phosphatase PTEN in T cell development by analyzing
mice with a T cell–specific deletion of PTEN. 

 

Pten

 

flox/flox

 

Lck-Cre

 

 mice developed thymic lym-
phomas, but before the onset of tumors, they showed normal thymic cellularity. To reveal a
regulatory role of PTEN in proliferation of developing T cells we have crossed PTEN-deficient
mice with mice deficient for interleukin (IL)-7 receptor and pre–T cell receptor (TCR) signaling.
Analysis of mice deficient for 

 

Pten

 

 and 

 

CD3

 

�

 

;

 

 Pten

 

 and 

 

�

 

c

 

; or 

 

Pten

 

, 

 

�

 

c

 

, and 

 

Rag2

 

 revealed that
deletion of PTEN can substitute for both IL-7 and pre-TCR signals. These double- and triple-
deficient mice all develop normal levels of CD4CD8 double negative and double positive thy-
mocytes. These data indicate that PTEN is an important regulator of proliferation of developing
T cells in the thymus.

Key words: PI-3K • thymus • Cre-LoxP • IL-7 receptor • pre–T cell receptor

 

Introduction

 

T cell development proceeds through various well-defined
transitional cellular stages. T cell progenitors are negative
for CD4, CD8, and CD3 and can be subdivided in four
subpopulations on the basis of CD44 (Pgp-1) and CD25
(IL-2 receptor 

 

�

 

-chain) surface expression (1). The most
primitive of these CD4

 

�

 

CD8

 

�

 

 (double negative [DN]) ex-
press CD44 and are negative for CD25 (DN1). These cells
differentiate further into the intermediate DN stages with
the phenotypes CD44

 

�

 

CD25

 

�

 

 (DN2) and CD44

 

�

 

CD25

 

�

 

(DN3). TCR

 

�

 

 rearrangements are initiated in the CD44

 

�

 

CD25

 

�

 

 DN2 stage. When these rearrangements are
successful, the translated TCR

 

�

 

 protein forms a pre-TCR
complex with the pT

 

�

 

 chain and signals emanating from

this receptor result in survival and proliferation of TCR

 

�

 

-
expressing cells (2, 3). As a consequence of 

 

�

 

-selection, the
CD44

 

�

 

CD25

 

�

 

 cells lose CD25, acquire CD2 and CD5
(4), and rapidly differentiate through an intermediate CD4

 

�

 

CD8

 

�

 

, immature (TCR

 

low

 

) single positive (ISP) stage, to
the CD4

 

�

 

CD8

 

�

 

 double positive (DP) stage.
In the early stages of T cell development, these cells go

through two waves of proliferation: one mediated by the
cytokines IL-7 and stem cell factor and the other by trigger-
ing of the pre-TCR complex. IL-7 and stem cell factor
control the proliferation of the two first stages, DN1 and
DN2, and survival of the DN3 cells (5–7). Pre-TCR trig-
gering induces a second wave of extensive proliferation of
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Abbreviations used in this paper:

 

 DN, double negative; DP, double positive;
ISP, immature single positive; Itk, IL-2–inducible T cell kinase; PDK-1,
phosphoinositide-dependent kinase-1; PI-3K, phosphatidylinositol 3 kinase;
PKB, protein kinase B; PTEN, phosphatase and tensin homologue deleted
on chromosome 10; SP, single positive.
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pre–T cells. Recently, we documented that phosphatidyl-
inositol 3 kinase (PI-3K) is involved in IL-7–mediated cell
survival because PI-3K associates with the IL-7R

 

�

 

 chain
and a dominant-negative mutant of the p85 chain strongly
inhibited T cell development in a fetal thymic organ cul-
ture (8). PI-3K converts phosphatidylinositol-(4,5)-biphos-
phate (PtdIns[4,5]

 

P2

 

) to phosphatidylinositol-(3,4,5)-tri-
phosphate (PtdIns[3,4,5]

 

P3

 

), which can bind pleckstrin
homology domain-containing intracellular enzymes, includ-
ing phosphoinositide-dependent kinase-1 (PDK-1), Akt/
protein kinase B (PKB), and TEC family kinases such as
IL-2–inducible T cell kinase (Itk) in T cells and Bruton
agammaglobulinaemia tyrosine kinase in B cells. PDK-1
phosphorylates Akt/PKB, which seems to be an important
player in the regulation of cell survival of thymocytes and
mature T cells (9). Overexpression of a constitutive active
mutant of Akt/PKB results in elevated levels of the antiapo-
ptotic molecule Bcl-X

 

L

 

 and enhanced NF-

 

�

 

B activation
through accelerated degradation of the inhibitory molecule
I

 

�

 

B

 

�

 

 in both thymocytes and peripheral T cells (9). The
PI-3K–Akt signal transduction pathway is counteracted by
the phosphatase and tensin homologue deleted on chromo-
some 10 (PTEN), whose lipid phosphatase activity is associ-
ated with tumor suppression (10). PTEN removes the D3
phosphate from PtdIns(3,4,5)

 

P3

 

 and negatively regulates
survival signaling mediated by Akt/PKB and other down-
stream targets of PtdIns(3,4,5)

 

P3

 

 (for review see references
11–13). Thus, PTEN might be involved in the control of
proliferation and survival in early T cells. An absence of
PTEN leads to an increase of the basal levels of PtdIns
(3,4,5)

 

P3

 

 and, hence, to a sustained signaling through medi-
ators that are activated by PtdIns(3,4,5)

 

P3

 

.

 

Pten

 

���

 

 null mutant knockout mice have been generated
in other laboratories (14, 15). These mice die during early
embryogenesis, precluding any assessment of the role of
PTEN in the development of T cells. 

 

Pten

 

 heterozy-
gous mice have increased spontaneous tumor incidence
(15), lymphoid hyperplasia development, and display autoim-
mune disorders (16). The fact that some spontaneous tu-
mors were of T cell origin suggested a role for PTEN in the
control of T cell survival and proliferation (17). To study
the role of PTEN in T cell development in more detail, Su-
zuki et al. generated mice in which one allele of 

 

Pten

 

 was
deleted and the other floxed and crossed these 

 

Pten

 

flox/

 

�

 

 with
transgenic Lck-Cre animals to obtain mice with a T cell–
specific PTEN deletion (17). These 

 

Pten

 

flox/

 

�

 

Lck-Cre

 

 mice
developed CD4

 

�

 

 T cell lymphomas (17). Before the onset
of lymphomas, the cellularity of the thymus was somewhat
increased. This may be in part caused by a defect in negative
selection because loss of PTEN resulted in survival of
HY-specific TCR transgenic cells in a negative-selecting
background (17). 

 

Pten

 

flox/

 

�

 

Lck-Cre

 

 mice showed elevated
numbers of B cells, autoantibody production, and hyper-
gammaglobulinemia, and in these mice increased numbers
of CD4

 

�

 

 T cells were present that were hyperproliferative,
autoreactive, and secreted high levels of cytokines. The ef-
fect of 

 

Pten

 

 deletion on early stages of T cell development
was not investigated in the paper by Suzuki et al. (17).

The strategy of generating T cell–specific 

 

Pten

 

���

 

 mice
followed by Suzuki et al. (17) has as disadvantage that non–
T cells have decreased levels of PTEN. This may have con-
fused the analysis of these 

 

Pten

 

flox/

 

�

 

Lck-Cre

 

 mice because

 

Pten

 

 heterozygous mice show lymphoid hyperplasia and
autoimmune disease features (16). In the present work, we
generated 

 

Pten

 

flox/flox

 

Lck-Cre

 

 mice, which allowed us to an-
alyze PTEN deficiency in T cell development, avoiding
the problem of decreased PTEN levels in non–T cells. Us-
ing these mice, we examined the possibility that PTEN is
involved in survival and proliferation of T cells at early
stages of development by analyzing the thymuses of young

 

Pten

 

flox/flox

 

Lck-Cre

 

 mice before the appearance of T cell
lymphomas and of 

 

Pten

 

flox/flox

 

Lck-Cre

 

 embryos. These anal-
yses suggested an involvement of PTEN in the control of
survival and proliferation of early T cell precursors. By ana-
lyzing crosses of the 

 

Pten

 

flox/flox

 

Lck-Cre

 

 mice with mice defi-
cient for the 

 

�

 

 common (

 

�

 

c) chain, CD3

 

�

 

, or RAG2, in
which proliferation of pre–T cells and 

 

�

 

-selection, respec-
tively, are perturbed, we observed that deletion of PTEN
substitutes for both IL-7R and pre-TCR signaling.

 

Materials and Methods

 

Generation of Mice.

 

The conditional targeting vector and the
generation of mice carrying the 

 

Pten

 

flox

 

 allele by blastocyst micro-
injection have been described previously (18). To generate T
cell–specific 

 

Pten

 

-deficient mice, 

 

Pten

 

flox/

 

�

 

 mice were crossed
with 

 

Lck-Cre

 

 transgenic mice (provided by Merck; reference 19).
Offspring carrying 

 

Lck-Cre

 

 and the floxed 

 

Pten

 

 mutation on both
alleles (

 

Pten

 

flox/flox

 

Lck-Cre), 

 

Lck-Cre

 

 and the floxed 

 

Pten

 

 mutation
on one allele (

 

Pten

 

flox/

 

�

 

Lck-Cre

 

), and 

 

Lck-Cre

 

 and the wild-type

 

Pten

 

 gene (

 

Pten

 

���

 

Lck-Cre

 

) were used for analysis as homozygous
mutant, heterozygous mutant, and wild-type mice, respectively.
The mice were maintained under specific pathogen-free condi-
tions in the animal colony of the Netherlands Cancer Institute.

 

CD3

 

�

 

�

 

 (20), 

 

�

 

c

 

-deficient (21) and 

 

Rag2

 

�

 

, �c–double deficient
(22) mice were generated at the Netherlands Cancer Institute and
have been described in detail previously. Ptenflox/floxLck-Cre mice
were crossed with CD3�-deficient or Rag2�, �c–double deficient
mice to generate the various double and triple deficient mice.

PCR Analyses of Genotypes. Genomic DNA was isolated
from tail clippings and amplified by PCR following a standard
protocol. Sense primer (5�-GCCTTACCTAGTAAAGCAAG-
3�) and antisense primer (5�-GGCAAAGAATCTTGGTGT-
TAC-3�) were used to detect the Pten flox allele, and sense primer
(5�-GCACGTTCACCGGCATCAAC-3�) and antisense primer
(5�-CGATGCAACGAGTGATGAGGTTC-3�) were used to
detect the Lck-Cre transgene. Thermocycling conditions consisted
of 31 cycles of 60 s at 94	C, 30 s at 58	C, and 30 s at 72	C. Reac-
tions contained 200 ng of template DNA, 0.5 
M of primers, 100

M dNTPs, 9% glycerol, 2.5 U Taq polymerase, 1.8 mM MgCl2,
and PCR buffer (GIBCO BRL and Invitrogen) in a 25-
l vol-
ume. Amplified fragments of 230 bp (wild type), 280 bp
(Ptenflox/flox), and �350 bp (Cre), respectively, were obtained. Geno-
type analyses of CD3�-deficient, �c-deficient, and Rag2�, �c–double
deficient mice have been described previously (20, 21, 23).

Immunoprecipitation and Immunoblot. For analysis of PTEN ex-
pression, 20 � 106 thymocytes from 4-wk-old Ptenflox/floxLck-Cre,
Ptenflox/�Lck-Cre, or wild-type mice were lysed in lysis buffer
containing 1% NP-40, 50 mM Tris-HCl, pH 7.5, 150 mM
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NaCl, 5 mM EDTA, pH 8.0, and protease inhibitor cocktail
(Roche Diagnostics). To be able to detect phosphorylated pro-
teins, 50 mM NaF and 1 mM Na3VO4 were included in the lysis
buffer. 30 
g of the soluble fractions was loaded on a 10% poly-
acrylamide gel in reducing conditions. After transfer on nitrocel-
lulose membrane (ProtranR), the presence of PTEN protein was
detected with the mouse monoclonal antibody specific for the
COOH-terminal part of the protein (Santa Cruz Biotechnology,
Inc.). To confirm equal loading, membranes were stripped using
strip buffer (625 mM Tris, pH 6.8, 2% SDS, and 100 mM 2-mer-
capto-ethanol) and stained with antiactin antibody (Santa Cruz
Biotechnology, Inc.). For analysis of Akt/PKB and Itk phosphor-
ylation and Tec expression, thymocytes from 5- or 14-wk-old
Ptenflox/floxLck-Cre mice or control (Ptenflox/�Lck-Cre or wild type)
mice were lysed in the aforementioned lysis buffer. Unstimulated
or CD3-stimulated Jurkat T cells were included as controls. The
anti–human CD3 mAb 289 has been described previously (24).
To detect Tec expression and phosphorylation of Akt/PKB, 20 �
106 thymocytes or 106 control Jurkat T cells per lane were an-
alyzed. The anti-Tec rabbit polyclonal antiserum has been de-
scribed previously (25). The antibodies specific for Akt/PKB and
Akt/PKB phosphorylated at serine473 were obtained from New
England Biolabs, Inc. For immunoprecipitation of Itk with the
antibody 2F12 (a gift from L.J. Berg, University of Massachusetts
Medical School, Worcester, MA), 15 � 107 thymocytes or 107

control Jurkat T cells were used. Phospho-Itk was visualized with
the antiphosphotyrosine antibody 4G10 (Upstate Biotechnology).

Immunoprecipitated proteins were washed three times in lysis
buffer and boiled in reducing SDS gel sample buffer for 3 min.
Samples were resolved by 9% SDS-PAGE standard gels, trans-
ferred to polyvinylidene difluoride membrane (Millipore), and
the membrane was probed with specific antibodies. To visualize
membrane-bound antibodies, relevant horseradish peroxidase–
conjugated antibodies (all obtained from DakoCytomation) and
the SuperSignal West Pico chemiluminescent substrate (Pierce
Chemical Co.) were used.

Flow Cytometry Analysis. All monoclonal FITC, PE, allophy-
cocyanin- (APC), cychrome-5 (Cy-5)–, peridinin chlorophyll
protein (PerCP)–, or APC–Cy-7–conjugated antibodies used for
standard analysis were obtained from BD Biosciences and used in
three-, four-, or five-color staining analysis. For CD44, CD25
staining in CD4�CD8� cells, CD44 FITC was used in combination
with CD25 PE. For CD44, CD25 staining in CD3�CD4�CD8�

lineage� cells, CD44 Cy-5 was used in combination with CD25
APC. The polyclonality of the T cell repertoire was analyzed with
monoclonal antibodies specific for V�2, V�3, V�5, V�6, V�8.1/
8.2, V�8.3, V�9, V�10, and V�13 (labeled with PE). Intracellular
staining for TCR� and CD3� was performed using the Cytofix/
Cytoperm kit obtained from BD Biosciences. For analysis of apo-
ptosis, 5 � 104 E16 thymocytes from Ptenflox/floxLck-Cre or Ptenflox/�

Lck-Cre embryos per well of a 96-well plate were incubated in Is-
cove’s medium supplemented with 8% FCS at 37	C for 2 d before
analysis. Cells were stained for annexin V and 7-aminoactinomycin
D (7-AAD) (both obtained from BD Biosciences). The stained cells
were analyzed with a FACSCalibur or with a LSRII (Becton Dick-
inson) using CELLQuest and FACSDiva software.

Results
Phosphorylated Akt/PKB in the Thymus of Ptenflox/floxLck-

Cre Mice. T cell–specific Pten-deficient mice (Ptenflox/floxLck-
Cre mice) were generated by crossing Ptenflox/flox mice (18)

with Lck-Cre transgenic mice (19). Ptenflox/floxLck-Cre mice
were born alive and appeared healthy. Genomic PCR of
tail DNA showed the amplification of a 280-bp band cor-
responding to the floxed allele (Fig. 1 A). The deletion of
Pten exon 5 encoding the phosphatase domain of PTEN
(26) in Ptenflox/flox mice crossed with Lck-Cre mice was con-

Figure 1. The absence of PTEN in thymocytes results in constitutive
activation of Akt/PKB, and a constitutive phosphorylation of Itk appears
only when the mice are developing tumors. (A) PCR analysis of genomic
tail DNA derived from 3-wk-old wild-type, heterozygote, and homozygote
Ptenflox/floxLck-Cre mice. (B) Western blot analysis of the PTEN protein in the
thymus of 4-wk-old homozygote Ptenflox/floxLck-Cre (n 
 3) mice, compared
with control (wild type, n 
 3, and heterozygote, n 
 3) mice. Actin staining
was performed to confirm equal loading. (C) Western blot analysis of
Akt/PKB and phospho-Akt/PKB in the thymus of 5-wk-old (n 
 3) or
14-wk-old (n 
 2) homozygote Ptenflox/floxLck-Cre mice, compared with
control (wild type or heterozygote, n 
 3 for each time point) mice. As a
control, unstimulated (�) or CD3-stimulated (CD3) Jurkat T cells have
been used. Akt/PKB and phospho-Akt/PKB were visualized by Western
blotting with the relevant antibodies using 20 � 106 cells per lane (for
thymocytes) or 106 cells per lane (for Jurkat T cells). The blots are repre-
sentative for three separate experiments. (D) Western blot analysis of Itk
and phospho-Itk in the thymus of 5-wk-old (n 
 3) or 14-wk-old (n 
 2)
homozygote Ptenflox/floxLck-Cre mice, compared with control (wild type
or heterozygote, n 
 3 for each time point) mice. As a control, unstimu-
lated (�) or CD3-stimulated (CD3) Jurkat T cells have been used. For
immunoprecipitation of Itk with the antibody 2F12, 15 � 107 cells (for
thymocytes), or 107 cells (for Jurkat T cells) were used. Phospho-Itk was
visualized by Western blotting with the antiphosphotyrosine antibody
4G10. The blots are representative for three separate experiments.
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firmed by Western blotting. The expected 55-kD band was
detected in the thymus of wild-type and heterozygous
mice, but was absent in the thymus of Ptenflox/floxLck-Cre
mice (Fig. 1 B).

Conversion of PtdIns(4,5)P2 to PtdIns(3,4,5)P3 by PI-3K
creates binding sites for PH domain proteins Akt/PKB, Tec,
and Itk, which may result in activation of these enzymes.
Because the absence of PTEN causes sustained PI-3K signal-
ing, it is possible that one or more of these PH domain en-
zymes are constitutively activated in the thymus of
Ptenflox/floxLck-Cre mice. Therefore, we compared the phos-
phorylation of Akt/PKB, Itk, and Tec in thymocytes of
Ptenflox/floxLck-Cre and in Ptenflox/�Lck-Cre or wild-type mice.
As a control, we included the human PTEN-deficient T cell
line Jurkat (27), incubated or not with anti-CD3 antibody.
Fig. 1 C demonstrates that the thymus of both 5-wk-old
Ptenflox/floxLck-Cre mice that had no signs of tumors and tu-
mor-bearing 14-wk-old Ptenflox/floxLck-Cre mice contained
much higher levels of phosphorylated Akt/PKB than the
thymus of heterozygous or wild-type control littermates.
In contrast, almost no phosphorylated Itk (Fig. 1 D) or Tec
(not depicted) could be detected in the thymus of 5-wk-old
Ptenflox/floxLck-Cre mice. However, some phosphorylated Itk
was observed in thymic tumor-bearing 14 wk-old mice.
These data clearly indicate that the absence of PTEN leads
to an increase of basal PtdIns(3,4,5)P3 levels in the thymus,
resulting in an enhanced Akt/PKB phosphorylation.

Development of Lymphomas. To determine the impact of
the Pten mutation, 20 Ptenflox/floxLck-Cre mice (10 males and
10 females) presenting a T cell–specific deletion were fol-
lowed during their development. The first clinical signs of
tumor formation were observed in some mice at 6–7 wk,
and all the mice died within 17 wk (unpublished data).

The thymuses of Ptenflox/floxLck-Cre mice were analyzed
before 6 wk of age. Ptenflox/floxLck-Cre mice analyzed at 1–6
wk did not show any signs of tumor formation. Impor-
tantly, thymus weight; thymocyte number; CD3, CD4,
and CD8 phenotypes; and TCRV� diversity of thy-
mocytes from Ptenflox/floxLck-Cre mice before 6 wk of age
were completely comparable to those of Pten���Lck-Cre
mice (unpublished data), indicating that before the onset of
lymphomas the PTEN deficiency does not lead to thymus
hypercellularity.

Early T Cell Differentiation in Ptenflox/floxLck-Cre Mice.
To investigate the possibility that PTEN deletion affects T
cell development before the DP stage, we analyzed the DN
compartment in thymocytes of Ptenflox/floxLck-Cre thymuses
with antibodies against CD44, CD25 after exclusion of cells
that express CD4 and CD8, TCR�� and NK (DX5) cells,
granulocytes and plasmacytoid DCs (GR1), macrophages
(MAC1), and B lymphocytes (B220). We frequently ob-
served an increase in the percentage of CD44�CD25� DN4
thymocyte population in Ptenflox/floxLck-Cre mice compared

Figure 2. The absence of PTEN in thymocytes results in an accelerated
generation of DP thymocytes during ontogeny. (A) Percentages of double
negative (DN; CD4�CD8�), immature single positive (ISP; CD8�), and
double positive (DP; CD4�CD8�) thymocytes of E16 old homozygote
Ptenflox/floxLck-Cre (black bars, n 
 3) or control (heterozygote or wild
type; white bars, n 
 4) embryos as determined by flow cytometry.
(B) Flow cytometry of embryonic thymocytes. CD4CD8 staining of E16
old homozygote (Ptenflox/floxLck-Cre) or control (heterozygote or wild
type) embryos. Numbers indicate percentages of gated populations. The
total cell number mean is indicated for homozygote Ptenflox/floxLck-Cre
(n 
 3) or control (heterozygote or wild type; n 
 4) embryos. (C) Flow
cytometry of embryonic thymocytes after 2 d of culture in Iscove’s
medium supplemented with 8% FCS. 7-AAD and annexin V staining of
E16 old homozygote Ptenflox/floxLck-Cre (n 
 4) or control (heterozygote;

n 
 3) embryos. Numbers indicate percentages of gated populations.
(D) Percentages of icTCR�� DN, ISP, and DP thymocytes of E16 old
homozygote Ptenflox/floxLck-Cre (black bars, n 
 4) or control (heterozy-
gote; white bars, n 
 3) embryos as determined by flow cytometry.
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with heterozygous or wild-type mice, but these differences
were not statistically significant (unpublished data).

Thus, in the steady state thymus, no significant differ-
ences between Ptenflox/floxLck-Cre and heterozygous and
wild-type animals were observed with regard to the thymus
size and distribution of various CD4 and CD8, DN, DP,
and single positive (SP) populations. This was unexpected
in view of the role of PtdIns(3,4,5)P3 in cell survival and
proliferation and, in particular, in IL-7–mediated expansion
of DN thymocytes (8). Therefore, we considered the possi-
bility that Pten deletion affects the formation of the DP
compartments during ontogeny. An analysis of DP thy-
mocytes in Ptenflox/floxLck-Cre thymuses at day E16, when
the thymus is being generated, revealed that the thymuses
of E16 Ptenflox/floxLck-Cre embryos have 1.8–6-fold more
DP cells (mean calculated from three Ptenflox/floxLck-Cre and
four Ptenflox/� Lck-Cre embryos) as compared with thy-
muses of heterozygous or wild-type embryos (Fig. 2, A and
B), suggesting that the absence of PTEN results in acceler-
ated generation of DP thymocytes during ontogeny. To
obtain information about the underlying mechanism, we
tested the viability of the fetal thymocytes after 2 d of cul-
ture in Iscove’s medium plus 8% FCS. After the incuba-
tion, the cells were stained with annexin V and 7-AAD and

analyzed by FACS (Fig. 2 C). The average number of via-
ble cells in the cultured Pten��� thymocytes (48.3 � 8.5,
n 
 4) was significantly higher than in the cultured control
Pten��� thymocytes (26.4 � 4.5, n 
 3). These data suggest
that the absence of PTEN confers a survival advantage to
embryonic thymocytes. Loss of PTEN induces survival and
proliferation of TCR�� DP cells in mice compromised in
pre-TCR signaling (see Expansion of icTCR�� DP Thy-
mocytes in Ptenflox/floxLck-Cre � CD3���� Mice). These
TCR�� cells are in wild-type thymus eliminated after
�-selection, but may survive and proliferate in embryonic
Pten��� thymus. To address the question of whether the in-
crease in DP cell numbers was due to a selective expansion
of DP cytoplasmic (ic)TCR�� cells, we analyzed the ex-
pression of icTCR� in the embryonic Pten��� and Pten���

immature single positive (ISP) and DP cells (Fig. 2 D). The
percentages of icTCR�� cells were slightly higher in the
Pten��� (58 � 2.2) than in the Pten��� (78 � 0.7) ISP com-
partment. However, the percentages of icTCR�� cells in
the DP compartment were similar in both groups of em-
bryos (84 � 1.8 of Pten��� and 88.5 � 1.3 of Pten��� DP
cells; Fig. 2 D). Thus, although we observed some in-
creased survival of icTCR�� cells in the ISP compartment
of Ptenflox/floxLck-Cre embryos, the increase in DP cells ob-

Figure 3. The absence of PTEN in thy-
mocytes can rescue the �-selection defect in
CD3���� mice. (A) Thymic cellularity of
1- or 3-wk-old Ptenflox/floxLck-Cre � CD3����

mice (n 
 6) compared with Ptenflox/floxLck-
Cre or Pten��� (n 
 4) and CD3���� (n 
 8)
mice. (B) Flow cytometry of thymocytes.
CD4CD8 and CD44, CD25 staining of
3-wk-old CD3���� (n 
 3), or Ptenflox/flox

Lck-Cre � CD3���� mice (n 
 4) mice.
Numbers in quadrants indicate percentages
of each population. Note that CD25 and
CD44 were analyzed after gating on
CD4�CD8� thymocytes. The gates were
set to include 99% of the control, isotype-
stained cells of each sample in the negative
quadrant. (C) Flow cytometry of thy-
mocytes. CD4CD8 staining of 3-wk-old
control (heterozygote; n 
 3), Ptenflox/flox

Lck-Cre (n 
 4), CD3���� (n 
 4), or Ptenflox/flox

Lck-Cre � CD3���� (n 
 4) mice. Num-
bers in quadrants indicate percentages of each
population. CD2 and CD25 expression are
analyzed on CD4�CD8� thymocytes. Num-
bers in histogram plots indicate percentages
of each positive population.
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served in Pten��� embryonic thymus is not caused by a se-
lective expansion of TCR�� DP cells.

Loss of Pten Rescues Thymic Cellularity in CD3����

Mice. One explanation for the high numbers of DP thy-
mocytes observed in E16 Ptenflox/floxLck-Cre mouse embryos
was that elevated PtdIns(3,4,5)P3 levels stimulate differen-
tiation, cell survival, and/or proliferation around the
�-selection checkpoint. To test this, we crossed Ptenflox/flox

Lck-Cre mice with CD3���� mice that have a small thymus
due to a poor capacity of inducing �-selection (20). Strik-
ingly, the number of thymocytes in mice deficient for both
PTEN and CD3� were increased 3–6-fold at 1 wk of age
(15–30 � 106 cells in the double deficient mice vs. 5 � 106

in CD3����) to �20-fold (100–150 � 106 cells in Ptenflox/flox

Lck-Cre � CD3���� mice) at 3 wk of age compared with
CD3���� mice (Fig. 3 A). Analysis of CD4/CD8 distribu-
tion in these mice revealed that the percentages of DP cells
in the thymus of mice deficient for both PTEN and CD3�
were increased 40-fold compared with those in CD3����

and similar to those of wild-type mice (Fig. 3 B, top).
In addition, the percentages of DN4 thymocytes were
strongly increased in the Ptenflox/floxLck-Cre � CD3����

mice (58% compared with 2% in CD3���� mice; Fig. 3 B,
bottom). These data indicate that the loss of PTEN com-
pletely neutralized the effect of CD3� deficiency on the
generation of DN4 cells and the DP thymocytes.

It has been documented that CD25 is down-regulated
and CD2 is up-regulated upon �-selection (4). To investi-
gate whether PTEN deficiency affects up-regulation of
CD2 and down-regulation of CD25, we examined DP
thymocytes for expression of these antigens. Fig. 3 C dem-
onstrates that CD2 was expressed on 40% of the DP
thymocytes of both Ptenflox/floxLck-Cre � CD3���� and
CD3���� mice. To our surprise, we observed that CD2
was also diminished in DP thymocytes of Ptenflox/floxLck-
Cre. This effect was independent of the age of the animal
because we also observed a lower CD2 expression in DP of
E16 thymocytes and thymocytes of 1-wk-old mice (un-
published data). Thus, loss of PTEN by itself results in di-
minished up-regulation of CD2 after �-selection. The
mechanism underlying this effect remains to be investi-
gated. We observed that CD25 was absent on DP thy-
mocytes of Ptenflox/floxLck-Cre and Ptenflox/floxLck-Cre �
CD3����, whereas this antigen is expressed on 28% of the
DP thymocytes of CD3���� mice (Fig. 3 C), indicating the
loss of PTEN in CD3���� mice restores down-regulation
of CD25 in DP thymocytes.

Expansion of icTCR�� DP Thymocytes in Ptenflox/floxLck-
Cre � CD3���� Mice. There were two possible explana-
tions for the dramatic rise in DP cells in the thymus caused
by the deletion of Pten in CD3���� mice. One was that the
absence of PTEN results in hyperresponsiveness to pre-
TCR triggering and, hence, overrides diminished pre-
TCR signaling caused by the absence of the CD3� protein
in the pre-TCR complex. Activation of T cells through the
mature TCR results in activation of PI-3K (28) and Akt/
PKB (9, 29, 30). Although there is no evidence yet that
triggering of the pre-TCR results in activation of PI-3K

and Akt/PKB, it was possible that increased basal levels of
PtdIns(3,4,5)P3 could amplify the suboptimal pre-TCR
signal in CD3���� mice. The second explanation was that
PTEN deficiency led to survival and proliferation not only
of those cells that undergo �-selection but also of those that
are normally eliminated during �-selection. The first expla-
nation predicted that the majority of the DP cells in the
thymus of Ptenflox/floxLck-Cre � CD3���� mice express
TCR� protein. If the second explanation was correct, we
expected that many of the DP cells lack TCR� protein.
Assuming that 2/3 of the rearrangements at one TCR� lo-
cus are nonproductive and 2/3 at the second, 4/9 of the
cells are eliminated (2). In the case that those cells were not
eliminated but survived, we would expect �45% TCR��

cells. To check this, we performed intracytoplasmic (ic)
staining with anti-TCR� antibodies (Fig. 4 and Table I).
As expected, we observed that �99% of the DP thymo-
cytes in wild-type mice are icTCR�� (Fig. 4 and Table I).
Similar percentages were observed in the thymus of Ptenflox/flox

Lck-Cre mice (Fig. 4 and Table I). The majority of the
DP cells in CD3���� mice (61–88%) were TCR��, indi-
cating that the few DP cells in these mice were subjected to
�-selection. This could have been due to signaling through
the incomplete CD3�, �–containing pre-TCR complex
(31), which may induce selective survival but no prolifera-
tion of cells expressing a functional TCR�/pT� dimer. In
contrast, in Ptenflox/floxLck-Cre � CD3���� mice only 23–
46% of the DP cells were TCR�� (Fig. 4 and Table I). The
increase in icTCR�� cells was not due to a preferential
outgrowth of TCR��� cells because no icTCR�� DP cells
were observed in the thymus of Ptenflox/floxLck-Cre �
CD3���� mice (unpublished data). These data suggest that
in the absence of PTEN, thymocytes lacking productive
TCR� rearrangements are able to survive and to expand
over time in the DP stage. The data presented in Fig. 4 sug-
gests that the absence of PTEN results in a selective out-
growth of TCR�� DP thymocytes. However, inspection
of the absolute numbers of icTCR�� and icTCR�� DP
thymocytes in Ptenflox/floxLck-Cre � CD3���� and CD3����

mice indicated that the numbers of icTCR�� DP thy-
mocytes were considerably increased in the absence of
PTEN (Table I). At 1 wk of age, the numbers of icTCR��

DP cells in the thymuses of both mice were similar; how-
ever, at 3–4 wk of age, the numbers of icTCR�� DP thy-
mocytes in the Ptenflox/floxLck-Cre � CD3���� mice were
much higher (13 � 106 and 30 � 106, respectively) than in
the CD3���� mice (0.64 � 106 and 0.08 � 106, respec-
tively). Thus, although the proportion of the icTCR��

cells in the DP compartment decreased as a result of Pten
deletion in CD3���� background, the absolute numbers of
these cells increased as compared with the numbers of DP
thymocytes in CD3���� mice with normal PTEN levels.

Loss of PTEN Rescues Thymic Cellularity in �c�/� Mice.
How did the icTCR�� cells survive in Ptenflox/floxLck-
Cre � CD3���� mice? One possibility was that PTEN de-
ficiency mimicked the IL-7R signal, which is normally
absent in wild-type nonselected DN3 cells. It has been es-
tablished that IL-7 activates PI-3K in thymocytes (32).
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Moreover, PI-3K can associate with the IL-7R� after en-
gagement with IL-7 (33) and a dominant negative form of
p85 inhibited T cell development (8), strongly suggesting
that accumulation of PtdIns(3,4,5)P3 is critical for IL-7–
mediated survival and proliferation of early T cell precur-
sors. It might have been possible that the absence of PTEN,
which catalyzes the reverse conversion of PtdIns(3,4,5)P3
into PtdIns(4,5)P2 leading to elevated basic levels of Ptd-
Ins(3,4,5)P3, would compensate for the loss of the IL-7R
complex. To test this idea, we analyzed the thymus of �c���

mice crossed with Ptenflox/floxLck-Cre mice. The absence of
PTEN in a �c��� background rescued thymic cellularity
(Fig. 5 B) with normal percentages of various TCR�� lin-
eage thymocyte subsets (Fig. 5 A). Interestingly, TCR��
cells were not rescued by the absence of PTEN in �c���

mice (Fig. 5 A). IL-7 (34) and its receptor (35–37) are re-
quired for optimal rearrangements at the TCR� locus and,

thus, for differentiation of TCR�� cells. Our observations
indicate that PTEN deficiency compensates for the prolif-
erative defect of TCR�� lineage precursors caused by the
absence of �c but not for the TCR�� differentiation defect.

Loss of PTEN Reconstitutes Thymic Cellularity in Mice Dou-
bly Deficient for RAG2 and �c. Our findings that loss of
PTEN results in reconstitution of thymic defects caused by
�c and CD3� deficiencies may suggest that the increase in
basal levels of PtdIns(3,4,5)P3 levels by itself bypasses the
proliferation-inducing signals emanating from the IL-7R
and the pre-TCR. However, an alternative possibility was
that PtdIns(3,4,5)P3 levels amplified the �c signal in
CD3���� mice and the pre-TCR signal in �c��� mice. To
distinguish between these possibilities, we investigated the
effect of loss of PTEN on thymic cellularity in mice defi-
cient for both RAG2 and �c. Because both the IL-7R
complex and the pre-TCR are absent in these mice, the
two most important external growth-promoting signals
cannot be transmitted in the developing T cells. We ana-
lyzed three Ptenflox/floxLck-Cre � �c��� � Rag2��� mice
from three different litters at the age of 4–5 wk. The thy-
muses of these three mice contained 50 � 106 (4 wk),
95 � 106 (5 wk), and 123 � 106 (5 wk) cells, respectively.
The thymus phenotypes of these mice were identical. Fig.
6 A shows that loss of PTEN compensated for the loss of
both �c and the pre-TCR with regard to the numbers of
thymocytes. Most of the thymocytes in the Ptenflox/floxLck-
Cre � �c��� � Rag2��� mice were DP (70%), but also
some CD4� and CD8� SP cells could be observed (Fig. 6
A). As expected, the DP thymocytes expressed icCD3�,
but did not express cell surface CD3� nor icTCR� (Fig. 6
A and not depicted), confirming the absence of a pre-

Figure 4. The absence of PTEN in CD3���� thymocytes results in a
strong increase of the percentages of CD4�CD8� icTCR�� cells. Flow
cytometry of thymocytes. Intracellular TCR� staining of 3-wk-old con-
trol (wild type; n 
 4), Ptenflox/floxLck-Cre (n 
 4), CD3���� (n 
 4) or
Ptenflox/floxLck-Cre � CD3���� (n 
 4) mice. Intracellular TCR� expression
is analyzed on CD4�CD8� DP thymocytes. Numbers in histogram plots
indicate percentages of negative and positive populations.

Table I. Thymus Cell Counts, Percentages, and Absolute Cell Numbers of CD4�CD8�icTCR�� or CD4�CD8�icTCR�� Cells 
in Wild Type, Ptenflox/floxLck-Cre, CD3����, and Ptenflox/floxLck-Cre � CD3���� Mice

Age Genotype n
Thymus

cellularity
CD4�CD8�

total
CD4�CD8�

icTCR��

CD4�CD8�

icTCR��

CD4�CD8�

icTCR��

wk no. � 10�6 % % no. � 10�6 no. � 10�6

1

wild type ND ND ND ND ND ND
Pten��� ND ND ND ND ND ND
CD3���� 9 4.4 � 1.4 12 � 4.4 88 � 2.7 0.48 � 0.26 0.07 � 0.04
Pten��� � CD3���� 1 3.4 26 46 0.40 0.47

2

wild type 7 96 � 20 81 � 5.6 99 � 0.1 80 � 15 0.3 � 0.1
Pten��� 4 108 � 10 81 � 6.8 99 � 0.1 88 � 13 0.3 � 0.1
CD3���� 7 12 � 2.4 8.7 � 7.7 58 � 5.1 0.64 � 0.56 0.44 � 0.41
Pten��� � CD3���� 3 56 � 23 83 � 1.5 27 � 9.1 13 � 7.1 34 � 16

4

wild type 3 144 � 32 81 � 0.9 99 � 0.9 114 � 23 2.0 � 1.2
Pten��� 2 162 � 29 78 � 3.3 99 � 0.4 124 � 27 1.6 � 0.8
CD3���� 4 5.4 � 0.3 2.0 � 0.7 70 � 7.0 0.08 � 0.03 0.03 � 0.003
Pten��� � CD3���� 3 180 � 4.0 72 � 5.0 23 � 3.0 30 � 5.3 100 � 0.9
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TCR and a mature TCR. Because the up-regulation of
CD2 and CD5 and the down-regulation of CD25 are
considered to be hallmarks of pre-TCR expression, we
also analyzed the expression of CD2, CD5, and CD25.
Fig. 6 B shows that CD2 and CD5 were only very slightly
up-regulated and much less than in wild-type DP thy-
mocytes. CD25 was not expressed on DP cells of
Ptenflox/floxLck-Cre � �c��� � Rag2��� mice. The DP cells
of these mice expressed almost no CD69 (unpublished
data), which was expected because the activation marker
CD69 is only up-regulated as consequence of TCR-medi-
ated positive selection. Despite the presence of small
numbers of SP cells in the thymus of Ptenflox/floxLck-Cre �
�c��� � Rag2��� mice, no CD4� or CD8� cells could be

found in the spleen of the these mice (Fig. 6 C). We con-
clude that the loss of PTEN resulted in proliferation of
thymocytes and induction of CD4 and CD8 in the absence
of IL-7R and pre-TCR signaling.

Discussion
In this work, we demonstrate a critical role of PTEN in

regulation of survival and growth of developing T cells in
the thymus. We have analyzed mice with a T cell lineage-
specific PTEN deletion. In agreement with the observa-
tions of Suzuki et al. (17), we observed that all Ptenflox/flox

Lck-Cre mice developed T cell lymphomas. A comparison
of wild-type and Ptenflox/floxLck-Cre mice before the onset

Figure 5. The absence of
PTEN compensates the thymic
defect in �c��� mice. (A) Flow
cytometry of thymocytes for ex-
pression of CD4CD8, intracellu-
lar CD3�, TCR�, and TCR� of
5 wk-old control (wild type),
Ptenflox/floxLck-Cre, �c���, or
Ptenflox/floxLck-Cre � �c��� mice.
Numbers in quadrants indicate
percentages of each population.
Numbers in histogram plots indi-
cate percentages of each positive
population. The total number of
thymocytes are indicated on top
of the CD4/CD8 dotplots. The
gates were set to include 99% of
the control isotype-stained cells
of each sample in the negative
quadrant. (B) Thymic cellularity
of 5-wk-old control (wild type
or heterozygous; n 
 6), �c���

(n 
 17), and Ptenflox/floxLck-
Cre � �c��� mice (n 
 10).
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of lymphomagenesis revealed no gross differences in thy-
mic cellularity and distribution of various DN, DP, and SP
populations. Using an independently made mouse strain
with a T cell–specific loss of PTEN, Suzuki et al. also
noted little effects on the phenotypes of thymocytes, but
these investigators observed a modest hypercellularity of
the thymus before the onset of lymphomagenesis (38). Our
data indicate that loss of PTEN does not affect thymic cel-
lularity and the distribution of CD4 and CD8 under steady
state conditions. Thus, PtdIns(3,4,5)P3 levels produced in
wild-type mice are not rate limiting for optimal prolifera-
tion of developing T cells. However, we observed a higher
number of DP cells in thymuses of Ptenflox/floxLck-Cre E16
embryos compared with heterozygous or wild-type E16
embryos, suggesting that PTEN deficiency conferred a
proliferative advantage to early pre–T cells before and/or
after the �-selection checkpoint during ontogeny. To ex-
amine this, we introduced the Pten deletion in mice with
deficiencies in IL-7R, pre-TCR signaling, or both. The
size of the thymus was strongly increased in the absence of
PTEN in either context, indicating the importance of sus-
tained PtdIns(3,4,5)P3 levels for expansion of thymocytes
at all stages of differentiation. The observation that the ab-
sence of PTEN compensated for the effect of �c deletion
on thymic cellularity is consistent with the notion that PI-
3K is pivotal for the IL-7–induced proliferation of pre–T
cells (8). However, TCR�� cells were not rescued. Assum-
ing that the Lck-Cre transgene is also expressed in TCR��
cells, our findings indicate that Pten deletion did not reca-
pitulate all effects of the IL-7R. This was expected because
the absence of TCR�� cells in �c��� mice is the result of
inefficient rearrangements at the TCR� locus (34–37),
which is mediated in wild-type mice through activation of
STAT5 by IL-7 (39, 40). However, we cannot formally
exclude that in our mice the Lck-Cre transgene was not ex-
pressed in TCR�� cells.

The deficiency of PTEN in CD3���� mice and mice
with a RAG2 deficiency eventually resulted in a numerical
reconstitution of the thymus and high percentages of DP
cells, indicating that the appearance of CD4 and CD8 is a
consequence of increased PtdIns(3,4,5)P3 levels resulting
from the loss of PTEN. Strikingly, we observed that the
proportion of TCR�� DP cells in the thymus of Ptenflox/flox

Lck-Cre � CD3���� mice is much higher than in CD3����

mice. These TCR�� DP cells were also negative for
icTCR�, but expressed icCD3�. Moreover, loss of PTEN
also rescued the thymic cellularity in mice deficient for
RAG2 and �c, which do not express a pre-TCR at all.
These findings indicate that the absence of PTEN results in

Figure 6. Loss of PTEN compensates the thymic defect in �c��� �
Rag2��� mice. (A) Flow cytometric analysis of expression of CD4CD8,
icCD3�, and icTCR� in thymocytes of 4–5 wk-old control (wild type;
n 
 11), �c��� � Rag2�/� (n 
 1), and Ptenflox/floxLck-Cre � �c��� �
Rag2��� (n 
 3) mice. Numbers in quadrants indicate percentages of each
population. The total numbers of thymocytes are indicated on top of the
CD4/CD8 dotplots. The gates were set to include 99% of the control,
isotype-stained cells of each sample in the negative quadrant. (B) Expres-

sion of CD2, CD5 and CD25 in CD4�CD8� cells of 4–5-wk-old control
(wild type; n 
 11) and Ptenflox/floxLck-Cre � �c��� � Rag2��� (n 
 3)
mice. The cells were stained and expression of CD2, CD5 and CD25
were analyzed on CD4�CD8� DP thymocytes. (C) Expression of CD4
and CD8 on spleen cells of 4–5 wk-old control (wild type; n 
 11) and
Ptenflox/floxLck-Cre � �c��� � Rag2��� (n 
 3) mice. Numbers in quad-
rants indicate percentages of each population. The gates were set to in-
clude 99% of the control, isotype-stained, cells of each sample in the neg-
ative quadrant.
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survival and expansion of early TCR�� lineage cells that
are normally eliminated during �-selection. It is important
to note that, whereas the proportion of icTCR�� cells was
decreased, the absolute numbers of these cells were in-
creased in Ptenflox/floxLck-Cre � CD3���� mice compared
with CD3���� mice (Table I), indicating that the absence
of PTEN in the thymus results in survival and expansion of
cells both with productive (icTCR��) and unproductive
TCR� (icTCR��) rearrangements. We have observed
that the absence of PTEN reconstituted thymic cellularity
in �c��� mice and, thus, compensated for the absence of the
IL-7–mediated survival and proliferation signals.

These data may explain why PTEN deficiency leads to
survival of icTCR�� cells in the context of suboptimal
pre-TCR signaling and suggests a physiological role of
PTEN in �-selection. Approximately one third of TCR�
rearrangements at the first allele are successfully producing
a full-length TCR� protein (2). Assuming that one third of
the cells that fail to successfully complete a TCR� rear-
rangement at one allele complete a productive rearrange-
ment at the second allele, five out of nine cells eventually
produce a TCR� protein, the rest being eliminated (2). It
seems reasonable to assume that these cells die because of
an absence of a survival signal. This implies that IL-7R sig-
naling needs to be shut off in cells that failed to pass the
�-selection. The currently accepted model holds that cells
expressing a functional TCR�–pT� complex are rescued
from death by pre-TCR signaling and proliferate, whereas
the nonselected cells, which do not receive a survival signal
neither from the IL-7R nor from the pre-TCR will die.

A problem with this model is that, although the IL-7R is
down-regulated in icTCR�� DN4 cells compared with
icTCR�� DN4 cells, there is still some IL-7R expressed on
icTCR�� DN4 cells (41), raising the question how IL-7R
signaling is turned off in pre–T cells poised for elimination.
We propose that PTEN shuts off a remaining IL-7–medi-
ated survival signal and ensures that the pre–T cells that
failed to complete productive rearrangements at the TCR�
locus cannot receive a survival signal and, thus, die by ne-
glect. The observation of a dramatic expansion of DP cells in
Ptenflox/floxLck-Cre � �c��� � Rag2��� mice is consistent with
this model. However, it should be noted that we did not
observe increased numbers of TCR�� cells in DP Ptenflox/flox

Lck-Cre thymocytes compared with wild-type cells.
To account for this observation in the context of our hy-

pothesis, we propose that the signal induced by an intact
pre-TCR results in a much higher rate of proliferation than
induced by the mere absence of PTEN. Because of the dif-
ference in proliferation rate, the DP cells expressing an in-
tact pre-TCR in Ptenflox/floxLck-Cre mice preferentially filled
the DP “niche,” whereas in Ptenflox/floxLck-Cre � CD3����

mice, the TCR�� cells did not have a proliferative advan-
tage and hence the DP niche was filled with both TCR��

and TCR�� cells. This notion is supported by the observa-
tion that the CD3� deficiency was only fully compensated
by the absence of PTEN 3 wk after birth (Fig. 4). Thus, be-
fore the first 2 wk after birth, PTEN-deficient thymocytes
that undergo normal pre-TCR signaling had expanded

much more than the PTEN CD3� doubly deficient thy-
mocytes in which pre-TCR signaling is compromised.

Our data indicate that the absence of PTEN sufficiently
elevates basal levels of PtdIns(3,4,5)P3 to mediate survival
and proliferation of thymocytes before and after the
�-selection point in the absence of external growth stim-
uli. Any signaling molecule that has a PH domain that pref-
erentially binds to PtdIns(3,4,5)P3 can be involved in
expansion of thymocytes observed in the Pten-deficient
CD3����, �c���, and Ptenflox/floxLck-Cre � �c��� � Rag2���

thymuses. PDK-1 has an NH2-terminal catalytic domain
and a COOH-terminal PH domain that binds to Ptd-
Ins(3,4,5)P3 with high affinity. PDK-1 appears to be a crit-
ical mediator because T cell–specific deletion of this en-
zyme results in a strong inhibition at the transition of DN
to DP thymocytes (42). PDK-1 is a “master” kinase that
phosphorylates residues in the activation loops of AGC su-
perfamily serine/threonine kinases, including the PI-3K–
controlled serine kinases Akt/PKB, which are corecruited
to PtdIns(3,4,5)P3, and S6 kinase 1. Indeed, Akt/PKB is
phosphorylated in the thymus of Ptenflox/floxLck-Cre mice,
indicating that PDK-1 is active. At least 13 substrates of
Akt/PKB have been identified so far and can be separated
into two main subsets: regulators of survival/apoptosis and
cell cycle regulators (for review see reference 43), giving to
Akt/PKB an important role in the control of the survival/
proliferation of different cell types. Expression of a trans-
gene encoding a constitutive active Akt/PKB (gagPKB) has
been shown to improve survival of thymocytes and mature
T lymphocytes (9). However, introduction of a transgene
encoding another constitutively membrane-targeted Akt/
PKB (myristoylated Akt/PKB) in �c��� mice or in pre-
TCR–deficient Rag2��� mice failed to reconstitute thymic
cellularity in these animals (Di Santo, J., personal commu-
nication). Unless one assumes that myristoylated Akt/PKB,
because of its forced membrane targeting, does not com-
pletely mimic the natural PtdIns(3,4,5)P3-recruited Akt/
PKB in a thymic context, these data suggest that activated
Akt/PKB by itself is not responsible for the generation of a
full size thymus in Ptenflox/floxLck-Cre � �c��� mice. Given
the observations that the myristoylated Akt/PKB transgene
failed to reconstitute thymic cellularity in �c��� mice or in
Rag2��� mice, it is unlikely that known targets of Akt/PKB
as Bad and Caspase 9 are involved in the effect caused by
the loss of PTEN. The antiapoptotic molecule Bcl-2, be-
lieved to be downstream of the IL-7 receptor (44, 45) and
possibly induced in a PI-3K–dependent way, is likely not a
critical element as transgenic overexpression of Bcl-2 is un-
able to rescue the CD3� (46), RAG (44), or �c deficiencies
(7, 21). We could not detect phosphorylation of another
PtdIns(3,4,5)P3-regulated kinase, Itk, in PTEN��� thy-
mocytes before the onset of lymphomagenesis, arguing
against a role of this enzyme. We did observe some phos-
phorylated Itk in the thymus of 14-wk-old thymic tumor-
bearing mice, but the mechanism remains to be established. 

Our data suggest that PtdIns(3,4,5)P3-dependent
molecules other than Akt/PKB or Itk are involved in the
growth-promoting effects of thymocytes. Possible candidates
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are the small GTPases Rac and Rho, which are influenced
by PI-3K (47) and have been shown to affect growth of
early T cell precursors (4, 48). Another possible mediator is
the mammalian target of rapamycin (mTOR) because rapa-
mycin reduces the size of the thymus in the mouse (49) and
inhibits transition of DN to DP cells in the rat thymus (50).
Interestingly rapamycin interferes with GM-CSF signaling
in DCs partly through down-regulation of the antiapoptotic
molecule Mcl-1, indicating that in these cells, mTOR me-
diates expression of Mcl-1 (51). Recent data strongly suggest
that Mcl-1 is involved in IL-7–mediated survival (52), but it
is unclear whether Mcl-1 is involved in pre-TCR–mediated
cell survival. Whether or not Mcl-1 levels are affected by the
loss of PTEN is not yet known. Due to the complexity of
the network of downstream signaling pathways that are con-
nected to PI-3K and PTEN-dependent PtdIns(3,4,5)P3, de-
termination of the exact downstream participants in the
pathway that controls proliferation of T lineage cells during
development will not be straightforward.

Given our observations and those of Hinton et al. indi-
cating that PDK-1 deficiency strongly compromises prolif-
eration and differentiation at the DN to DP transition (42),
PDK-1 and PTEN may be considered to form a switch
that functions as a major regulator of survival and prolifera-
tion of developing thymocytes. The absence of PTEN induces
proliferation and is dominant over the apoptosis-inducing
signals, which may be the reason why the PTEN deficiency
leads to thymic tumors with a rapid onset.
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