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Summary
Structural studies of large proteins and protein assemblies are a difficult and pressing challenge in
molecular biology. Experiments often yield only low-resolution or sparse data which are not
sufficient to fully determine atomistic structures. We have developed a general geometry-based
algorithm that efficiently samples conformational space under constraints imposed by low-resolution
density maps obtained from electron microscopy or X-ray crystallography experiments. A
deformable elastic network (DEN) is used to restrain the sampling to prior knowledge of an
approximate structure. The DEN restraints dramatically reduce over-fitting, especially at low
resolution. Cross-validation is used to optimally weight the structural information and experimental
data. Our algorithm is robust even for noise-added density maps and has a large radius of convergence
for our test case. The DEN restraints can also be used to enhance reciprocal space simulated annealing
refinement.

Introduction
Many experiments on biomolecules only yield low-resolution or sparse structural data; for
example, electron cryo-microscopy, small-angle X-ray scattering (SAXS), or fluorescence
resonance energy transfer (FRET) measurements. Such data are usually insufficient to
completely define the structure of a macromolecule. Even for macromolecular X-ray
crystallography and NMR experiments the structure determination problem is often
underdetermined, which means the number of parameters exceeds the number of independent
experimental observations. It is therefore common to use prior knowledge to provide the
missing information needed to reduce over-fitting the data. This is typically done using a
molecular mechanics energy function together with the experimental data combined in a hybrid
energy function for the structure refinement (Jack and Levitt, 1978) to restrain local geometric
quantities such as bond lengths, bond angles, and planarity, which are sequence- and
conformation-independent and are therefore known a priori. However, for low-resolution data
such general information is insufficient to uniquely determine the structure, and it needs to be
complemented by other knowledge about the specific macromolecule. This additional
structural knowledge could come from a homology model or from a known structure of the
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same molecule in a different conformation. Here we assume that all prior structural knowledge
is represented by this initial structure. The main task is then to optimally combine the initial
structure with the experimental data. In this work we focus on low-resolution density maps
obtained from electron microscopy or x-ray crystallography, although the approach presented
is general enough to handle many types of experimental structural data.

For density maps obtained from X-ray crystallography or electron microscopy, the over-fitting
problem has been addressed before in various different ways, mostly by reducing the
dimensionality of the refinement problem. Manual decomposition into domains was used
together with subsequent rigid body fitting into an electron density map (Rossmann, et al.,
2005; Gao and Frank, 2005; Fabiola and Chapman, 2005). For rigid body fitting into density
maps, a number of programs (Wriggers, et al., 1999; Rossmann, 2000; Chacon and Wriggers,
2002; Roseman, 2000; Volkmann and Hanein, 1999; Wu, et al., 2003; Rath, et al., 2003;
Ceulemans and Russell, 2004; Ritchie, 2005; Goddard, et al., 2007; Dror, et al., 2007) have
been developed. A flexible docking approach has been developed in combination with the Situs
program, which defines representative points in the protein and in the density map, and from
a correspondence between these points, restraints were derived to be used in molecular
dynamics simulation (Wriggers, et al., 2004). Molecular dynamics simulations have also been
combined directly with real-space refinement (RSRef/X-PLOR:RSMD) (Chen, et al., 1999;
Chen, et al., 2003), but for low-resolution density maps, the rigid domains still need to be
defined manually. Low-frequency normal modes of an elastic network model (Tirion, 1996)
have been proposed (Delarue and Dumas, 2004; Suhre, et al., 2006; Tama, et al., 2004) and
used (Hinsen, et al., 2005; Mitra, et al., 2005; Falke, et al., 2005) to guide global conformational
changes during fitting of protein structures to low-resolution electron density maps. A small
number of low-frequency normal modes were also used to improve structure refinement in X-
ray crystallography (Diamond 1990; Kidera and Go, 1991; Poon, et al., 2007) and in particular
enhancing the molecular replacement technique (Suhre and Sanejouand, 2004). Another recent
method combines comparative modeling and density fitting to improve the sequence alignment
and obtain better homology models (Topf, et al., 2006). For dimensionality-reducing methods
in general, it seems reasonable to use only collective low-frequency degrees of freedom to fit
a structure into a low-resolution density map, since the map determines only global
rearrangements rather than local structural changes. However, in general it is not apparent
which degrees of freedom are to be constrained and which are to be released. An increasing
number of low-resolution (i.e., 3.5 – 4.5 Å resolution) X-ray crystal structures have been solved
and refined (Brunger, 2005; DeLaBarre and Brunger, 2006). However, the process of
interpreting low-resolution electron density maps is difficult and highly subjective. A more
objective method is required that takes into account already known structural information.

Here we present a new method in order to take previously determined structures into account.
The rationale behind our approach is to adapt only those degrees of freedom for which the
density map actually provides information, and to keep all other degrees of freedom as close
to the initial structure as possible. Cross-validation is used to determine the optimum degree
of adaptation (or relative weighting of experimental data and restraints) to prevent over-fitting.
We use a Deformable Elastic Network (DEN) as a restraining potential, defined so that at the
beginning of the refinement process, the network has its minimum at the initial structure. A
very efficient geometry-based conformational sampling algorithm is extended to generate a
structural ensemble that is biased by both the restraining potential as well as by the particular
density map. It is critical to make this elastic network potential deformable and to carefully
adapt it to fit the density map during the refinement simulation. Our DEN approach is devised
to deform the elastic network only along those degrees of freedom that are strongly influenced
by the density map. For all other degrees of freedom, the elastic network potential remains
unchanged and keeps the model close to the initial structure. An important feature of this
approach is that there is no need to manually select which degrees of freedom are constrained
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and which are left free: the elastic network deforms itself to trade off between the initial
structure and the density map. In this way, the dimensionality of the system is not reduced; in
principle each conformation could potentially be visited. The extent of deformation is
controlled by a single parameter γ, for which we show that an optimal value can be estimated
by use of cross-validation.

In contrast to high-resolution X-ray crystallography which completely defines a structure, low-
resolution data from X-ray crystallography or electron microscopy only provide information
about a certain region in conformational space that contains the correct structure. To assess the
complete information content of the density map one needs to find in principle the largest
ensemble of structures that fit the map. The objective is, thus, not only to find a single best-
fitting structure, but rather to determine an ensemble of structures. Our conformational
sampling approach allows exploration of a conformational space that fits an experimental low-
resolution density map and, thus, yields a whole ensemble of possible solutions. The combined
use of the sampling algorithm and the DEN method therefore prevents that the ensemble of
possible solution structures contains over-fitted and therefore unlikely structures. This
approach is implemented in our program DireX.

In this paper our method is tested using the ribose-binding protein, for which several structures
have been solved by X-ray crystallography (Bjorkman, et al., 1994; Bjorkman and Mowbray,
1998) and which is known to undergo a large conformational change upon ligand binding.
Starting from an ‘open’ conformation, the goal is to find the ‘closed’ conformation using
synthetic density maps computed from the closed conformation at increasingly lower
resolutions. We find that our approach is superior to simple rigid-domain fitting. Because of
its large radius of convergence and noise-robustness for our test case, we expect our method
to be useful in numerous low-resolution structure solution or refinement applications. We also
show that DEN restraints can also be implemented in simulated annealing refinement in
reciprocal-space, enhancing the convergence of the refinement.

Results and Discussion
Sampling of electron density maps without any elastic network

To obtain a control for comparison to our DEN approach, we first applied our conformational
sampling algorithm as a ‘free’ refinement, i.e., without using DEN restraints, but maintaining
local geometry, such as bond lengths and bond angles. Synthetic density maps (our
‘experimental’ data) were calculated from the closed conformation (1URP) of the ribose-
binding protein (RBP) to dmin = 3, 4, 6, 8, 10, 15, and 20 Å resolution (Figure 1). Starting from
the open conformation (2DRI) 1000 steps of the sampling algorithm were performed yielding
a trajectory of protein conformations. During the course of the sampling simulation the
structure was pulled into the density map to varying degrees. Overall, the structure became
more similar to the target structure, which is of course known for this test case.

Figure 2 A shows the all-atom root mean square deviation (RMSD) from the target (closed)
structure for the density maps computed to different resolutions. In all simulations the RMSD
decreased within the first ~ 30 steps, but did not converge to a stable value for any of the
simulations. Furthermore, none of the simulations reached structures with an RMSD below
1.5 Å. The RMSD increase that occurred after reaching a minimum value is mainly due to a
loss of local structure. This is quantified by the percentage number of residues that maintain
the secondary structure of RBP; the number dropped from an initial value of 76% down to a
value between 32 and 39%, i.e., about half of the secondary structure was lost in these
simulations. At low resolution, the density maps clearly do not provide enough information
about local structural features; even the 3 Å density map was not able to sufficiently stabilize
the structure during the DireX sampling simulations.
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As a measure of how well the current model fits the ‘experimental’ density map, we calculated
the correlation coefficient between the density map derived from the current model and the
target map (see Equation 1). During all simulations, the map correlation was monotonically
increasing showing that the fit to the data was continuously improving. As expected, the final
map correlation, shown in Table 1, is always higher than the map correlation of the starting
structure. In addition, the map correlation tends to be higher for lower resolution. This general
trend is due to the fact that model errors have a smaller effect on low-resolution maps: to obtain
a high map correlation at high resolution, the model needs to be much closer to the correct
structure than at low resolution.

A general problem in real-space (and also in reciprocal-space) refinement is that the density
map information alone is not well suited to move the model towards the correct structure; this
is especially true at the beginning of the refinement (Brunger, et al., 1987). Only when the
refinement proceeds, do the forces become more effective. For example, for the free simulation
with the density map computed to dmin = 3 Å, the structure became heavily distorted (resulting
in physically unreasonable local geometry) before a good fit could be reached; the lowest
RMSD for the simulation at dmin = 3 Å is 1.69 Å, which is somewhat higher than the 1.47 Å
RMSD for the simulation at dmin = 4 Å (Figure 2 A). As the map correlation, i.e. the fit to the
data, is improving even though the RMSD increased, the data were being over-fitted and so
yielding unusable structures. Application of the deformable elastic network approach is able
to overcome this problem, as is shown in the following.

Sampling with DEN
We performed the same simulations as described above, but this time included the DEN
restraints (see Experimental Procedures). Figure 2 B shows the RMSD to the target structure
for density maps computed to different resolutions, using γ = 0.8, a good compromise at all
density map resolutions (discussed further below). Including the DEN restraints has a dramatic
and very significant change of the sampling simulation process: for all density maps, the RMSD
drops quickly and converges to a constant plateau value, which is, as expected, consistently
better (lower RMSD) for higher resolution density maps. The resulting structures are much
closer to the correct structure than in the free simulations without the DEN. Specifically, the
sampling simulations at dmin =3, 4, 6, 8, 10, and 15 Å all yielded structures with RMSD value
at or below 1.5 Å (see shaded area in Figure 2 B). Furthermore, the local structure was very
stable: the percentage number of residues that maintain the secondary structure of RBP stays
between 72% and 76%, compared to 76% in the target (closed) structure. The Ramachandran
statistics depend on the density map resolution: the number of residues in the core region of
the Ramachandran plot, as defined by Procheck (Laskowski et al., 1993), decreased from 86%
for simulations at dmin = 3 Å to 71% at dmin = 20 Å resolution.

For computational efficiency, bond lengths and angles are only approximately maintained by
DireX. Consequently, the corresponding differences to expected equilibrium values are
relatively large: 0.12 Å for bond lengths and 0.24 Å for the distance intervals that restrain bond
angles. The choice of the width of these intervals is a trade off between precision of coordinates
and convergence speed of the algorithm. In high-resolution refinements those distance intervals
could easily be further reduced requiring more time for the algorithm to converge. A more
efficient approach is to refine the resulting structure with a conventional method, such as
reciprocal space minimization or simulated annealing. To illustrate this, we further refined the
best structure obtained from the simulation at dmin = 3 Å using the program Crystallography
and NMR System (CNS) (Brunger et al., 1998) with the MLHL target function, which refines
against both, amplitudes and phases of the structure factors corresponding to the calculated
density map of RBP in the closed conformation. During the course of the refinement the free
R value dropped from 0.32 to 0.17, and the RMSD dropped from 0.68 Å to 0.20 Å. For
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comparison, starting the simulated annealing refinement directly from the open conformation
was not successful and yielded a structure with an RMSD of 3.2 Å.

The initial RMSD decrease was fastest for the density map calculated at dmin = 8 Å, but slower
for higher and lower resolution maps (Figures 2 A and 2 B). The fact that the RMSD decreases
slower at low resolution can be understood by the way the sampling method moves the atoms
into the density: the force that pulls an atom into the map is proportional to the density values
in its vicinity. As the maps are normalized to have a mean value of zero and a standard deviation
of one, the maximum density values are lower for low-resolution density maps. Therefore, also
the force on the atoms is smaller, which slows down the convergence.

For higher resolution maps one could have expected that the convergence would always be
faster, as the experimental information content is higher and should potentially provide better
forces. The reason this is not the case, is that the density map at higher resolution is more rugged
and, thus, more and higher barriers need to be crossed, slowing down the effective convergence
speed. We refer to this effect as the barrier-effect. Due to this barrier-effect, higher resolution
sampling simulations may be even more efficient if started at lower resolution before switching
to higher resolution after, say, 100 sampling steps. A combination of the DEN approach and
simulated annealing may be able to overcome this problem (see below).

The correlation coefficients between the density maps computed from the final structures and
the target maps, shown in Table 1, are always higher than the respective correlations at the
beginning of the sampling simulation (as also seen in the simulation with no DEN). For the
maps computed at dmin = 6 to 20 Å, the map correlations obtained from the DEN simulations
are very similar to those from the free simulations. Interestingly, for the 3 and 4 Å maps the
map-correlations are significantly better for the DEN simulations, 0.762 and 0.836, than for
the free simulations, 0.638 and 0.795, respectively. Thus, although the DEN simulations
impose more restraints onto the structure, the fit to the data became better. This suggests that
the additional DEN restraints helped to find the correct structure by guiding the fitting process
and by stabilizing the structure especially in the beginning of the refinement.

Optimal choice of the γ parameter
In the next step, we systematically varied the γ parameter values between 0 and 1 in steps of
0.l for all seven density map resolutions, leading to a total of 77 simulations. Figure 3 shows
the average RMSD (<RMSD>) to the target structure averaged over the last 500 steps, for each
of these simulations. At γ = 0, the DEN is not allowed to change at all and therefore behaves
like a regular (non-deformable) elastic network. All curves have a minimum at γ between 0.7
and 0.9. The initial decrease of <RMSD> is due to the fact that increasing γ allows the DEN,
and therefore also the structure itself, to adapt better to the forces imposed by the electron
density. At the same time the influence of the initial structure is weakened.

For very large γ-values almost no information from the initial structure is used; the target
density maps were over-fitted, resulting in an RMSD increase for all values of dmin. In the
extreme case of γ = 1.0, none of the simulations converged within 1000 simulation steps, so
that after a short initial decrease all <RMSD> values were constantly increasing in a similar
manner seen for the free simulation without the DEN (Figure 2 A). In this case there were no
restraints present towards the initial structure, and the DEN could potentially deform to any
point in conformational space. The ensemble obtained for γ = 1.0 should therefore eventually
convergence to the ensemble that is obtained from the free simulation without the DEN.

Obviously, the optimal choice of the γ parameter should yield a minimal <RMSD>. However,
in a real application one would of course not know the correct structure, and the <RMSD>,
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therefore, cannot be used as a suitable criterion for the choice of γ. We will use cross-validation
instead to estimate the optimal value for γ.

Cross-validation
The general statement that a structure is better if the fit to the experimental data is better, is
only true when the data fully determine the structure. In the case of low-resolution data, where
the number of parameters (coordinates of the macromolecular structure) exceeds the number
of independent experimental observations, the structure determination problem is
underdetermined and over-fitting the data can severely corrupt the structure. The goal,
therefore, is to refine a structure just to the point where over-fitting sets in. To detect and prevent
over-fitting of experimental data the concept of cross-validation has been introduced to
structure determination (Brunger, 1992).

To cross-validate the obtained structures, we generated synthetic structure factors from the
closed conformation of RBP and randomly selected 10% of the structure factors, which were
defined as the ‘test set’ and were omitted from the calculation of the target density map.
Therefore, only the remaining structure factors, which form the ‘working set’, are used for
structure refinement. The structure factors from the test set are then used to calculate the free
R value, which quantifies the fit to the omitted data and is used to detect over-fitting. The DEN
restraints are used to prevent over-fitting and the parameter γ takes on the role of controlling
the degree of fitting the data. The optimal choice of γ should yield a minimum free R value.

A series of refinement calculations were performed using the cross-validated density maps at
seven different resolutions (dmin = 3, 4, 6, 8, 10, 15, 20 Å) and eleven different γ-values, from
0 to 1 in steps of 0.1, resulting in 77 additional independent simulations. Figure 4 A shows
<RMSD>, the RMSD of each simulation averaged over the last 500 steps. The best structures
obtained for the sampling simulations at dmin = 3, 4, 6, 8, and 10 Å resolution all reached
<RMSD> values below 1.5 Å. In comparison to the simulations without cross-validation
(Figure 3), reducing the data set for cross-validation does affect the resulting structures, but
the impact is rather small for the high-resolution maps: the best <RMSD> for the 3 and 4 Å
maps were shifted by only +3% and −11% respectively. Note that the effect is larger for the
lower resolution maps: the best RMSD for the 15 and 20 Å maps are shifted by +61% and
+42%, respectively.

We described above the barrier-effect typified by the higher values of <RMSD> for the
simulation at dmin = 3 Å resolution compared to that at 4 Å or 6 Å (Figure 3). This effect is
even more pronounced in Figure 4 A: the 3 Å curve starts much higher for small γ-values than
in Figure 3 but still reaches a similar low RMSD for high γ-values. This suggests that the
modification of the data set for cross-validation has not changed the position of the minimum
of Eρ, but has increased the energy barriers on the path towards the minimum.

Figure 4 B shows the corresponding free R values. The minimum of the free R value should
ideally be at a γ-value, for which also the <RMSD> value is at a minimum. This is indeed the
case for the higher resolution maps (compare the positions of the square symbols in Figure 4
A and B). At lower resolutions, the curves become noisy. This happens as the number of
structure factors is smaller at lower resolutions, and, thus, the statistics for the free R value
becomes much less significant. For example, for the 3 Å map there are 24,741 reflections,
whereas for the 20 Å map there are only 105. Thus, for cross-validation of the 20 Å data, only
11 reflections were used, causing significant statistical noise. This can be quantified by
computing the correlation between RMSD and free R; the average correlation for the
simulations at dmin = 3 to 8 Å was 0.928 and for the 10–20 Å was −0.06. However, the minimum
of the free R value remained to be a good predictor of the lowest RMSD for all resolutions,
which is shown by the fact that the overall correlation between the γ-values at the lowest free
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R value and the lowest RMSD is 0.70. Complete cross-validation might be used to reduce the
noise in the free R values (Brunger, 1993).

Noise
To test our method under more realistic conditions, we added noise to our synthetic data sets.
In X-ray crystallography the phases of the structure factors have higher uncertainties than their
amplitudes, so we added Gaussian noise with a width of 40° to the phases and computed a
density map from these modified phases and the original amplitudes. We are aware that for
electron microscopy, a different noise model could be more realistic. We performed
simulations (again for seven values of dmin and eleven different γ-values) using the noisy
density maps as a target, but otherwise the same simulation parameters as in the previous
simulations. The results, shown in Figures 4 C and D, can be directly compared to the noise-
free simulations (Figure 4 A and B). The <RMSD> values obtained with noise are only slightly
larger, 0.22 Å (+12%) on average, than without noise. The best structures obtained from the
simulations at dmin ranging from 3 to 10 Å, again, have an RMSD below 1.5 Å (gray-shaded
area). Noise increases the <RMSD> of the best structure at dmin = 3 Å by only 0.12 Å (from
0.69 Å to 0.81 Å). Overall, the resulting structures are very similar to the ones obtained from
the noise-free simulations, which means our method is robust against the applied noise.

The previously mentioned barrier-effect at high resolution is even more pronounced in the
presence of noise: the simulation at dmin = 3 Å yields an <RMSD> of 3.4 Å for γ = 0, which
is even higher than the 3.2 Å RMSD obtained from the simulation at dmin = 20 Å (Figure 4 C).
This is expected as the noise creates more and/or higher barriers especially in the high-
resolution density maps and further hinders convergence. The free R value is higher for the
simulations with noise than for the noise-free simulations; it increased on average by 0.04. In
spite of these differences, the γ values for which the free R value is mimimal are very good
predictors of the γ values for which <RMSD> is minimal.

Radius of convergence
As we have shown, our method works well when starting from the open conformation of the
ribose-binding protein. To assess the radius of convergence of our approach, we generated
increasingly difficult test cases. Specifically, we manually opened the open conformation and
generated 16 additional conformations with increasing inter-domain angles from 45 and 137°
and corresponding RMSDs between 5.4 and 12.7 Å. Three of these conformations are shown
in Figure 5 (top). Sampling simulations were started from each deformed structure for the same
seven cross-validated density maps calculated at different resolutions, as described above. A
γ-value of 0.8 was used for all simulations. Figure 5 (bottom) shows the final RMSD after the
sampling simulation versus the initial RMSD of the starting model. Each point is the result of
a 1000 step sampling simulation. The fact that all points lie below the diagonal (dashed line)
shows that all starting structures were moved closer to the correct (closed) structure. All starting
structures with an initial RMSD below about 10 Å could be significantly improved at all tested
values of dmin. For example, for starting structures that had an initial RMSD of up to 10 Å,
final structures below 1.5 Å RMSD (gray-shaded area) were obtained at dmin = 3 Å, and below
2 Å RMSD at dmin = 10 Å.

Rigid-body refinement
A simple and popular way to reduce the dimensionality of the refinement problem is to
manually define rigid domains. Here we use this approach for comparison with our method.
We used the program Dyndom (Hayward and Berendsen, 1998) to break the protein into two
domains A and B. Dyndom takes two structures and determines rigid domains by comparing
and clustering fragments of these two structures. The obtained domain decomposition is an
optimum solution that is usually not accessible in a real application, since the target structure
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would be unknown. The obtained refinement quality is, therefore, an upper limit of what is
achievable by rigid-body refinement. According to Dyndom, domain A comprises residues 3
to 100 and 238 to 262, and domain B comprises residues 105 to 232 and 268 to 269. For the
structure refinement we used the program CNS with the MLHL target function and the same
cross-validation data set as described above (see Figure 4 A and B). The two domains A and
B were defined as rigid groups within CNS. All rigid-body refinement calculations were
performed using the synthetic structure factor computed to dmin = 3 Å.

In a first attempt, energy minimization starting from the open structure (1URP) did not yield
a good solution: the obtained R and free R values were 0.579 and 0.558, respectively, and the
resulting RMSD value was high at 1.82 Å. In the next step, a simulated annealing refinement
was performed using the standard annealing protocol of CNS, which started at a temperature
of 2500 K and decreased it by 25 K every 6 torsional molecular dynamics steps; this yielded
a much better structure with R and free R value of 0.189 and 0.174, respectively, and a RMSD
value of 0.24 Å. To test the radius of convergence of the rigid-body refinement approach, we
used the previously described series of manually opened starting structures. Interestingly,
simulated annealing failed even for the least deformed open model, which had an inter-domain
angle of 45° and a RMSD of 5.4 Å to the closed structure. A ten times slower cooling protocol
did not improve the resulting structure either. Thus, for the case at hand, the radius of
convergence for rigid-body refinement with CNS is much smaller than for the method
presented here.

Implementation of DEN restraints in reciprocal space simulated annealing refinement
In X-ray crystallography only amplitudes are measured: the phases are unknown and must be
determined indirectly. The fastest and most popular method used to solve the phase problem
is molecular replacement. If at least part of the structure is already known, or can be modeled
by homology modeling, useful approximate phases can potentially be reconstructed from this
model. The success of this method strongly depends on the similarity between the starting
model and the correct structure. We test here if application of DEN is beneficial to commonly
used reciprocal space refinement. Synthetic structure factor amplitudes in the resolution range
100 to 3 Å were computed from the closed structure. The open model, which has a RMSD of
4.3 Å to the closed structure, was taken as the starting (replacement-) model to start simulated
annealing refinement.

We implemented the DEN into CNS at the script level, as described in Experimental
Procedures. For cross-validation, 10% of the amplitudes were defined as the test set and were
not used for the refinement. To assess the impact of the DEN on simulated annealing
refinement, two simulated annealing refinement simulations were performed, one with and one
without the DEN restraints. For the simulation with DEN, a γ-value of 0.8 and a κvalue of 0.05
were used. In both simulations, the starting temperature was 2000 K, which was lowered by
10 K every 6 torsion-angle molecular dynamics steps (the molecular dynamics time-step was
set to 4 fs). The refinement without DEN did not converge to the target structure in that the
resulting structure had an RMSD of 3.3 Å to the correct (closed); the R and free R values were
0.57 and 0.58, respectively. In contrast, using the DEN restraints yielded a much better structure
with an RMSD of 0.6 Å; the R and free R values of 0.27 and 0.26, respectively.

Conclusions and Future Work
We presented here an approach for flexible fitting and refinement of protein structures into
low-resolution density maps obtained by X-ray crystallography or electron microscopy. Our
approach consists of two components: the deformable elastic network (DEN) model and the
geometry-based sampling algorithm; both are implemented in the program DireX. Our
conformational sampling algorithm efficiently generates an ensemble of structures that fit a
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density map. In the framework of low-resolution data, the DEN acts as a knowledge-based
restraint which helps to overcome the over-fitting problem and prevents that the structural
ensemble contains over-fitted conformations. DireX can also apply general distance restraints,
which makes it also possible to use data obtained from FRET or NMR experiments.

Furthermore we showed that reciprocal space refinement methods benefit from the application
of DEN restraints. In particular, we showed that the combination of torsion-angle simulated
annealing refinement as implemented in CNS and DEN increases the radius convergence. The
simulated annealing helps to improve sampling efficiency by accelerating the crossing of
energy barriers while the DEN restraints prevent that the protein explores conformations that
are too far from the starting structure, which is typically a homology model.

In addition to fitting protein structures into low-resolution density maps, we expect that our
method is able to solve difficult molecular replacement problems, where the replacement model
would be relatively far away from the correct structure. The phases obtained from such a model
would yield heavily distorted density maps when combined with the observed structure factor
amplitudes which poses a considerable challenge to structure refinement. Our conformational
sampling algorithm could be particularly powerful in this respect, since it has been shown to
be robust for noise-added density maps. An important next step is the application of our
approach to structure refinement using real data sets, which is currently in progress.

Experimental Procedures
Test system

The ribose-binding protein (RBP) (Figure 1) is used here as a test case, since it is known to
undergo a large conformational change, and several high-resolution crystal structures have
been solved. We chose an open and a closed structure from the PDB, 1URP and 2DRI,
respectively, and removed any non-protein atoms from the PDB file. These structures each
comprise 271 residues (2465 atoms) and differ by an all-atom root mean square deviation
(RMSD) of 4.3 Å. Synthetic density maps at seven different resolutions (dmin = 3, 4, 6, 8, 10,
15, and 20 Å) have been computed from the closed structure and serve as our ‘experimental’
data. In all simulations the starting structure was superimposed on the target structure (2DRI)
minimizing their RMSD. However, our method is insensitive to the initial position, as tested
in trial simulations using an initial center displacement of 10 Å at dmin =10 Å and DEN
restraints: the structure refines to an RMSD of 1.17 Å to the target structure, compared to 1.15
Å when the center position of initial structure was superimposed on that of the target structure.

Conformational sampling algorithm
Our conformational sampling algorithm, which is outlined in Figure 6 A, is based on the
CONCOORD algorithm (de Groot, et al., 1997) and generates a random walk through the
sterically accessible conformational space. The original CONCOORD program was developed
to sample conformations around a given structure (usually a crystal structure). The general
strategy of CONCOORD is to generate a network of distance restraints from an input structure
and to efficiently generate an ensemble of structures that obey these restraints. We use an all-
atom description of the protein, except for non-polar hydrogen atoms, which are united with
their heavy atom binding partner. The CONCOORD distance restraints are represented as a
list of allowed distance intervals. This list contains two different types of restraints: (1)
topological restraints, which ensure that the model retains correct stereochemistry, e.g. bond
lengths and planar groups, and (2) van der Waals restraints, which prevent atom overlaps and
set an upper limit for the allowed conformational change. There are typically about ten times
more CONCOORD restraints than atoms. In a next step, the coordinates of the structure are
randomly perturbed using a Gaussian distribution with a width of 0.5 Å. Then, the coordinates
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are iteratively corrected to fulfill the CONCOORD restraints and to eventually produce a new
structure. This correction-cycle is the core of the CONCOORD algorithm, which traverses the
list of CONCOORD restraints in a random order, and corrects those distances that lie outside
their allowed interval. For each violated restraint, the two corresponding atoms are moved
along their inter-atomic vector towards a target distance which is randomly picked from within
the allowed interval of the particular restraint. Depending on the initial perturbation, usually
less than 100 complete correction-cycles are sufficient to correct all CONCOORD restraints.

Once the structure eventually fulfills all CONCOORD restraints, the next structure-cycle is
entered by calculating new CONCOORD restraints from this new structure. However, if the
structure does not converge within 500 correction-cycles, a new attempt is made with the same
CONCOORD restraints, but with different random perturbations. Without any DEN restraints
or forces derived from an electron density map, the typical conformational change of the ribose-
binding protein achieved in one structure-cycle is about 0.2 Å and its computation takes about
0.7 seconds on a single Intel PENTIUM 3.0 GHz CPU.

Stochastic gradient of an electron density map
A density map, ρmodel(x⃗), is calculated from the current model at the beginning of each
structure-cycle (Figure 6 A). The goal is to refine the model structure such that ρmodel(x⃗)
becomes as similar to the experimental density ρexp(x⃗) as possible. In X-ray crystallography,
ρexp(x⃗) is obtained using a resolution cutoff (dmin) in reciprocal space. We calculate the model
density ρmodel(x⃗) therefore by convoluting the structure with a kernel function that is the Fourier
transform of a hollow sphere, as described in Ref. (Chapman, 1995). This choice of the kernel
function is most appropriate for applications to X-ray crystallographic data. However, for
electron microscopy data other kernel functions might be more suitable. The densities
ρmodel(x⃗) and ρexp(x⃗) are shifted and scaled to have a mean value of 0 and a standard deviation
of 1, which yields ρm̃odel(x⃗) and ρẽxp(x⃗).

Traditional real-space refinement approaches would typically minimize a pseudo-energy Eρ =
1−CC, where CC is the correlation between ρm̃odel(x⃗) and ρẽxp(x⃗), given by:

CC =
∑
ijk

ρ
∼
model(a→ ijk)ρ

∼
target(a→ ijk)

∑
ijk (ρ∼model(a→ ijk))2∑ijk (ρ∼target(a→ ijk))2

, (1)

where a⃗ijk are the three-dimensional coordinates of the grid points of the density map. Instead,
we take an approximate, stochastic approach, which is more efficient and is expected to be
more robust with noisy maps. The rationale is to move atoms into regions where the model
density does not provide enough density and to push atoms out of regions where the model
density is too high. To achieve this, we consider the difference density:

ρdiff(x
→) = ρ

∼
exp(x→) − λ ρ

∼
model(x→), (2)

which is computed before the coordinate perturbation step, and is kept fixed during the
correction-cycles. The optimal scaling factor λ is found to be 0.6 independent of resolution and
this parameter is not expected to be problem-dependent. Each atom is moved during each
CONCOORD correction-cycle by adding a vector g⃑i determined by:

g⇀i = v(sc)
1
12 ∑

j=1

12
ρdiff(r

⇀
j)

(r⇀ j − x⇀i)

∣ r⇀ j − x⇀i∣
, (3)
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where r⃑j are random positions taken from an isotropic Gaussian distribution with a width of 2
Å around the atom position x⃑i. The valueρdiff (r ⃗j) is set equal to the value of ρdiff at the closest
grid point. Thus, g⃑i is an average over random directions weighted by ρdiff and therefore points
in the direction of higher ρdiff values. The scaling factor, v(sc), depends on the correction-cycle
step, sc, and is made to decrease linearly from 1 to 0 during the first 90 correction-cycles; this
allows the structure generation to converge.

In contrast to calculating the analytical gradient of Eρ which is very sensitive to noise, our
approach incorporates information about the surrounding of an atom position to determine its
move step g⃑i. Equation 3 in fact computes an approximation to the center-of-mass of the
difference electron density weighted by a Gaussian distribution around the given atom.

Deformable Elastic Network (DEN)
The DEN potential or “restraint”, which is key to the present approach, is defined by

EDEN(n) = k ∑
pairs i, j

(dij(n) − dij
0(n))2, (4)

where dij (n) is the distance between atom i and j at structure-cycle number n, dij
0(n) is the

corresponding equilibrium distance, and k is the force constant which typically is 5 kcal/(mol
Å2) As our network is deformable, the equilibrium distances dij

0(n) of the elastic network are
not constant, but instead change after each structure-cycle. A list of 5000 DEN harmonic
distance restraints between random atom pairs having a distance between 3 and 12 Å (which
excludes bond-lengths and bond-angles), is created from the initial structure (Figure 6 A). The
DEN restraints are applied by traversing the list of restraints in random order during each
correction-cycle and moving each pair along the inter-atomic vector closer to the equilibrium
distance, using a step size proportional to dij(n) − dij

0(n). In this way, the DEN-move of the
atoms is similar to applying a harmonic force. Once again, the step size is also scaled by the
factor v(sc), as defined above. As soon as a structure obtained from the correction-cycle fulfills
all CONCOORD restraints, the equilibrium distances dij

0(n) of the DEN are updated using:

dij
0(n + 1) = dij

0(n) + κ γ(dij(n) − dij
0(n)) + (1 − γ)(dij

0(0) − dij
0(n)) (5)

= (1 − κ)dij
0(n) + k γdij(n) + (1 − γ)(dij

0(0) − dij
0(n)) (6)

where dij
0(0) and dij (n) are distances defined above (Equation 4), the damping parameter κ

determines the adaptation speed and is set to be smaller than 1; typically 0.05, as determined
by trial and error, and γ ∈ [0,1]balances two contributions, an adaptation force, κ [γdij (n)] and
a restoring force κ (1 − γ)dij

0(0)  back to the initial equilibrium value dij
0(0). Figure 7 A

illustrates this procedure using a simple two-dimensional example. The adaptation term allows
the DEN to slowly follow the structural change so that if a DEN restraint is distorted by forces
derived from the density map, it can adapt to these forces by changing the particular equilibrium
value.

The restoring force, κ (1 − γ)dij
0(0) , ensures that the equilibrium distance of the elastic network

is pulled back to its initial value when a DEN restraint does not feel a sufficiently strong force
from the density map. Thus, the parameter γ controls to which degree the structure can be
refined to the experimental data which is shown in Figure 7 B. The more experimental
information is available, the closer to 1 should γ be. In extreme cases, γ should be 0 for no data,
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and 1 for high-resolution data, which completely define the structure. We discuss below how
to find an estimate of the optimal γ-value using cross-validation. Note that the effect of γ also
depends on the stepsize of the conformational sampling algorithm and the scaling of the
gradients derived from the density map. The computation time for one structure-cycle including
both DEN restraints and forces from the electron density map, is about 2.5 seconds. The method
is implemented in the program DireX, which will be made available through the SimTK website
https://simtk.org/home/direx.

Implementation of DEN restraints in reciprocal space refinement
The DEN approach has been implemented into the CNS (Brunger et al., 1998) software package
using a modified task file based on the standard CNS simulated annealing task (‘anneal.inp’).
Figure 6 B shows a schematic overview of the implementation. N atom pairs that are within a
distance range of 3 to 12 Å in the starting structure are randomly selected, where N is the
number of atoms. These atom pairs define the list of DEN restraints. The DEN pairs do not
include bonds or bond-angles, which are restrained in CNS. The DEN restraints are defined as
harmonic NOE restraints in CNS. During the simulated annealing calculation the temperature
is lowered by 10 K every 6 steps of torsional-angle molecular dynamics. At the same time the
distances between the DEN pairs dij (n) are calculated and the DEN restraints are updated using
Equation 5.

Acknowledgements

We thank Pavel Strop and Bert de Groot for stimulating discussions. This work was supported by a postdoctoral
fellowship from the Deutsche Forschungsgemeinschaft (DFG) to GFS, by the National Institutes of Health through
the NIH Roadmap for Medical Research Grant U54 GM072970, by HHMI to ATB and by NIH award GM-41455 to
ML.

References
Bjorkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL. Probing protein-protein

interactions. The ribose-binding protein in bacterial transport and chemotaxis. J Biol Chem
1994;269:30206–30211. [PubMed: 7982928]

Bjorkman AJ, Mowbray SL. Multiple open forms of ribose-binding protein trace the path of its
conformational change. J Mol Biol 1998;279:651–664. [PubMed: 9641984]

Brunger AT, Kuriyan J, Karplus M. Crystallographic R factor refinement by molecular dynamics. Science
1987;235:458–460. [PubMed: 17810339]

Brunger AT. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures.
Nature 1992;355:472–474.

Brunger AT. Assessment of phase accuracy by cross validation: the free R value. Methods and
applications Acta Crystallogr 1993;D49:24–36.

Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Nilges N,
Pannu NS, Read RJ, et al. Crystallography and NMR system (CNS): A new software system for
macromolecular structure determination. Acta Crystallogr 1998;D54:905–921.

Brunger AT. Low-resolution crystallography is coming of age. Structure 2005;13:171–172. [PubMed:
15698560]

Ceulemans H, Russell RB. Fast fitting of atomic structures to low-resolution electron density maps by
surface overlap maximization. J Mol Biol 2004;338:783–793. [PubMed: 15099745]

Chacon P, Wriggers W. Multi-resolution contour-based fitting of macromolecular structures. J Mol Biol
2002;317:375–384. [PubMed: 11922671]

Chapman MS. Restrained real-space macromolecular atomic refinement using a new resolution-
dependent electron-density function. Acta Crystallogr 1995;A51:69–80.

Chen Z, Blanca E, Chapman MS. Real-space molecular-dynamics structure refinement. Acta Crystallogr
1999;D55:464–468.

Schröder et al. Page 12

Structure. Author manuscript; available in PMC 2008 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Chen JZ, Fürst J, Chapman MS, Grigorieff N. Low-resolution structure refinement in electron
microscopy. J Struct Biol 2003;144:144–151. [PubMed: 14643217]

DeLaBarre B, Brunger AT. Considerations for the refinement of low resolution crystal structures. Acta
Crystallogr 2006;D26:923–932.

Delarue M, Dumas P. On the use of low-frequency normal modes to enforce collective movements in
refining macromolecular structural models. Proc Natl Acad Sci USA 2004;101:6957–6962.
[PubMed: 15096585]

Diamond R. On the use of normal modes in thermal parameter refinement: theory and application to the
bovine pancreatic trypsin inhibitor. Acta Crystallogr 1990;A46:425–435.

Dror O, Lasker K, Nussinov R, Wolfson H. EMatch: an efficient method for aligning atomic resolution
subunits into intermediate-resolution cryo-EM maps of large macromolecular assemblies. Acta Cryst
D 2007;63:42–49. [PubMed: 17164525]

Fabiola F, Chapman MS. Fitting of high-resolution structures into electron microscopy reconstruction
images. Structure 2005;13:389–400. [PubMed: 15766540]

Falke S, Tama F, Brooks CL III, Gogol EP, Fisher MT. The 13 structure of a chaperonin GroEL protein
substrate complex by cryo-electron microscopy. J Mol Biol 2005;348:219–23. [PubMed: 15808865]

Gao H, Frank J. Molding atomic structures into intermediate-resolution cryo-EM density maps of
ribosomal complexes using real-space refinement. Structure 2005;13:401–406. [PubMed: 15766541]

Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera. J Struct Biol
2007;157:281–287. [PubMed: 16963278]

de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJC. Prediction of protein
conformational freedom from distance constraints. Proteins: Struct Funct Genet 1997;29:240–251.
[PubMed: 9329088]

Hayward S, Berendsen HJC. Systematic analysis of domain motions in proteins from conformational
change: new results on citrate synthase and T4 lysozyme. Proteins 1998;30:144–154. [PubMed:
9489922]

Hinsen K, Reuter N, Navaza J, Stokes DL, Lacapère JJ. Normal mode-based fitting of atomic structure
into electron density maps: application to sarcoplasmic reticulum Ca-ATPase. Biophys J
2005;88:818–827. [PubMed: 15542555]

Jack A, Levitt M. Refinement of large structures by simultaneous minimization of energy and R factor.
Acta Crystallogr 1978;A34:931–935.

Kidera A, Go N. Refinement of protein dynamic structure: normal mode refinement. Proc Natl Acad Sci
USA 1990;87:3718–3722. [PubMed: 2339115]

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: aprogram to check the
stereochemical quality of protein structures. J Appl Cryst 1993;26:283–291.

Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL III, Ban N, Frank J. Structure of the E.
coli protein-conducting channel bound to a translating ribosome. Nature 2005;438:318–324.
[PubMed: 16292303]

Poon BK, Chen X, Lu M, Vyas NK, Quiocho FA, Wang Q, Ma J. Normal mode refinement of anisotropic
thermal parameters for a supramolecular complex at 3.42-Å crystallographic resolution. Proc Natl
Acad Sci USA 2007;104:7869–7874. [PubMed: 17470791]

Rath BK, Hegerl R, Leith A, Shaikh TR, Wagenknecht T, Frank J. Fast 3D motif search of EM density
maps using a locally normalized cross-correlation function. J Struct Biol 2003;144:95–103.
[PubMed: 14643212]

Ritchie DW. High-order analytic translation matrix elements for real-space six-dimensional polar Fourier
correlations. J Appl Cryst 2005;38:808–818.

Roseman AM. Docking structures of domains into maps from cryo-electron microscopy using local
correlation. Acta Crystallogr 2000;D56:1332–1340.

Rossmann MG. Fitting atomic models into electron-microscopy maps. Acta Crystallogr 2000;D56:1341–
1349.

Rossmann MG, Morais MC, Leiman PG, Zhang W. Combining X-ray crystallography and electron
microscopy. Structure 2005;13:355–362. [PubMed: 15766536]

Schröder et al. Page 13

Structure. Author manuscript; available in PMC 2008 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Suhre K, Sanejouand YH. On the potential of normal-mode analysis for solving difficult molecular-
replacement problems. Acta Crystallogr 2004;D60:796–799.

Suhre K, Navaza J, Sanejouand YH. NORMA: a tool for flexible fitting of high-resolution protein
structures into low-resolution electron-microscopy-derived density maps. Acta Crystallogr
2006;D62:1098–1100.

Tama F, Miyashita O, Brooks CL III. Flexible multi-scale fitting of atomic structures into low-resolution
electron density maps with elastic network normal mode analysis. J Mol Biol 2004;337:985–999.
[PubMed: 15033365]

Tirion MM. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys
Rev Lett 1996;77:1905–1908. [PubMed: 10063201]

Topf M, Baker ML, Marti-Renom MA, Chiu W, Sali A. Refinement of protein structures by iterative
comparative modeling and cryoEM density fitting. J Mol Biol 2006;357:1655–1668. [PubMed:
16490207]

Volkmann N, Hanein D. Quantitative fitting of atomic models into observed densities derived by electron
microscopy. J Struct Biol 1999;125:176–184. [PubMed: 10222273]

Wriggers W, Milligan RA, McCammon JA. Situs: a package for docking crystal structures into low-
resolution maps from electron microscopy. J Struct Biol 1999;125:185–195. [PubMed: 10222274]

Wriggers W, Chacon P, Kovacs JA, Tama F, Birmanns S. Topology representing neural networks
reconcile biomolecular shape, structure, and dynamics. Neurocomputing 2004;56:365–379.

Wu X, Milne JL, Borgnia MJ, Rostapshov AV, Subramaniam S, Brooks BR. A core-weighted fitting
method for docking atomic structures into low-resolution maps: application to cryo-electron
microscopy. J Struct Biol 2003;141:63–76. [PubMed: 12576021]

Schröder et al. Page 14

Structure. Author manuscript; available in PMC 2008 January 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Test case for sampling simulations. The goal is to fit a target electron density map by smoothly
deforming a starting structure. The test structure is RBP consisting of 271 amino acid residues
for which two different structures have been solved by X-ray crystallography in an open (PDB
entry 2DRI, in orange) and a closed (1URP, in green) conformation. The refinement starts from
the open conformation, which has a RMSD of 4.3 Å to the closed conformation. Synthetic
density maps are calculated at different resolutions (dmin = 3, 4, 6, 8 10, 15, and 20 Å) from
the closed conformation and used in our refinement approach as ‘experimental’ data. The
density map computed to dmin = 10 Å is shown in blue.
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Figure 2.
Sampling simulations without and with DEN restraints. All-atom RMSD are computed with
respect to the target (closed) conformation of RBP for sampling simulations starting from the
open conformation and using electron density maps computed at seven different resolutions
(dmin = 3, 4, 6, 8, 10, 15, and 20 Å). (A) Free sampling simulation without DEN. (B) Sampling
simulations using the DEN restraints with γ = 0.8. With the DEN restraints, all simulations
yielded structures with RMSDs below 1.5 Å (indicated by the grey shaded region).
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Figure 3.
Effect of the γ value on the sampling simulations. For each of the seven density map resolutions,
we performed a series of eleven simulations with the γ value (Eqs. 5 and 6) varying between
0 and 1 in steps of 0.1. All-atom RMSD are shown, averaged over the last 500 steps of each
refinement simulation (1000 steps total each). The smallest RMSD value that can be achieved
depends on the γ value. The optimum choice for γ is different for different resolutions.
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Figure 4.
Use of cross-validation data set to determine the optimum value of the γ value. (A), (B) The
cross-validation data set is formed by selecting at random 10% of the structure factors that
were omitted from the calculation of the density map used to guide the sampling simulations.
These omitted structure factors are then used to calculate a free R value (Free-R) that measures
the fit between the structure factors calculated from the sampled structure and the omitted
structure factors. The curves of <RMSD>, the RMSD averaged over the last 500 steps of each
refinement simulation, versus γ differs from those of free R against γ, but the minimum of free
R at a particular resolution occurs at a γ value that is close to that which minimizes the <RMSD>
value. This provides an approximate method to determine the optimum γ value. In panels (C)
and (D) we show how noise effects the variation of <RMSD> with the γ parameter. Adding
Gaussian noise with a standard deviation of 40° to the phases of the structures factors has a
very small effect at all resolutions. We have marked the minimum values of either <RMSD>
or free-R by square symbols to better show the correspondence of the positions.
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Figure 5.
Radius of convergence of DireX as a function of density map resolution. The open
conformation of RBP (PDB ID 1URP) has been manually opened to different extents to yield
18 structures with an inter-domain angle of between 41° and 137°, and corresponding RMSD
values between 4.3 Å and 12.7 Å, with respect to the closed conformation (PDB ID 2DRI).
Three of these different starting structures (A, B, C) with RMSD values of 5.4, 7.2, and 12.7
Å, respectively, are shown. The final RMSD value after the sampling simulation is plotted
against the initial RMSD value. Points that lie below the diagonal (dashed line) correspond to
starting structures that have been moved closer to the correct structure by sampling simulations
against the density map computed to the particular resolution.
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Figure 6.
Implementation of DEN. (A) Diagram showing the implementation of DEN in combination
with the CONCOORD algorithm in the program DireX. (B) Diagram showing the
implementation of DEN in reciprocal space simulated annealing refinement.
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Figure 7.
Illustration of DEN for an example with two atoms. The elastic network potential is represented
by a spring (orange) between two atoms (black balls) separated by a distance of dij (n) for the
atom pair (i,j) at sampling step n. The density map contours are represented by blue iso-
contours. The energy terms involved are depicted in the diagrams on the right. The current
equilibrium distance dij

0(n) of the DEN potential, EDEN
(n) , can change at each sampling step n.

The blue curve shows the rugged pseudo-energy Eρ (see Experimental Procedures), which is
minimal for the best fit of the model density to the target density map. At the start of the
sampling simulation process, the distance of the atoms dij

0(0) in the starting model is at the

minimum of the DEN potential, EDEN
(0)  (dashed orange line). As the elastic network deforms by

changing the equilibrium distance dij
0(0) to dij

0(n), the DEN potential, EDEN
(n) , also changes (solid
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orange line). (A) Three steps (n, n+1, and n+2) of a sampling simulation are shown for the
parameter γ = 0.5. In the starting model, the two atoms are close to each other. During the
sampling simulation the atoms are pulled into higher density regions. The DEN potential adapts
to this force up to an extent that is controlled by γ (see Eq. 5 in Experimental Procedures). (B)
shows the final converged states of three different sampling simulations for different γ-values
(0.1, 0.5, 0.9). The larger the value of γ, the more the DEN is able to adapt to the forces imposed
by the density map.
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Table 1
Map correlation between target- and model-map for density maps computed at different resolutions obtained
from a real-space refinement simulation with DireX.

Map resolution (Å) Map correlation

dmin initial structure without DEN (free) with DEN (γ=0.8)

3 0.285 0.638 0.762
4 0.416 0.795 0.836
6 0.643 0.927 0.925
8 0.741 0.967 0.965
10 0.818 0.981 0.978
15 0.883 0.985 0.988
20 0.834 0.990 0.989
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