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The classical treatment of the thermodynamic properties of electrolytic solutions
by Debye and Hickell leads to the now familiar limiting square-root law which
has been amply confirmed by experiment. At nonzero concentrations, however,
positive deviations from the limiting law appear; there has been considerable
speculation about their physical origin since 1923. The purpose of this communica-
tion is to show, by means of a more detailed study of the ionic potentials, that the
properties of electrolytic solutions, specific for each electrolyte at nonzero concen-
trations, do not appear to be derivable by extension of the limiting solution of the
Poisson-Boltzmann equation to higher concentrations, but rather must be sought
in the projection of a theory of fused salts into and through the region of concen-
trated solutions.
We shall use the conventional model of charged spheres of diameter a in a di-

electric continuum to represent the solution. Let there be ni ions of charge ei in a
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total volume V7. Restriction to the case of simple electrolytes then requires that

n1El + n2t2 = 0 (1)

where ni = n2 = n and El = E = - E2, with E equal to the elementary charge times
the valence. The Poisson-Boltzmann equation for the potential LTj of an ion of
species j then takes the form

Aj = (K2E/D/3) sinh (E;,/kT), (2)

where K2 = 8rnE2/DkT cm-2 (3)

and = E2/DkT cm (4)

By expansion of the hyperbolic Sine as a series and neglect of all but the leading
term, (2) is linearized and has the well-known solution

vkj = Eje-KeK/rD(1 + Ka) (5)

when the boundary conditions Vkj(oo) = 0 and continuity of potential and field
strength at r = a are satisfied.

Reduction of (2) to a linear equation implies that EVj1kT may be considered so
small compared to unity that the cubic and higher terms in the series expansion
may be neglected. For hypothetical solvents of very high dielectric constant and
for distances r >> a in general, this approximation is justified, but at ionic contact,
even in water (D = 78.54), the procedure appears hazardous: in this case, ECk/kT

E2/aDkT = 2 for a = 3.57 X 10-8 cm and sinh 2 = 3.63.
It has been clearly established that the screening term e - Kr correctly accounts

for the long-range interactions of ions, but the high-energy short-range electro-
static interactions have been too casually rejected as negligible fluctuation terms.
Bjerrum,2 by his ad hoc hypothesis of ion association, made the most successful
approach to the problem of dealing with the effects of pairwise contacts of ions
of opposite charge, and a substantial body of experimental observations has justified
the fundamental soundness of explicitly including these effects in a general descrip-
tion of the properties of electrolytic solutions. Our treatment of the problem is in
effect a re-integration of the Poisson-Boltzmann equation, using boundary condi-
tions which permit the reference ion to control the electrostatic situation in its
immediate vicinity, while still allowing for the atmosphere screening at large
distances.
The distinction between "large" and "small" distances will be made on the basis

of a criterion originally proposed by Bjerrum. It will be recalled that the proba-
bility that an anion and a cation will be found at a distance r from each other has
in general'- a minimum near the distance r = p/2. For short distances, where, by
hypothesis, r < fl/2, we set

is = E/Dr + p(r) (6)
where E/Dr is the potential at a distance r from an isolated ion and (p(r) is the
perturbation in the Coulomb potential produced by nearby ions in a real solution.
(Even in dilute solutions, short-range approaches will occasionally occur.) Sub-
stitution in (2) gives

Ai0 = (K2E/2DI3)e /rce /kT [1 - exp - (203/r + 2e</kT) } ]. (7)
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The exponential term in the brackets is in any practical case negligible compared
to unity; as a first approximation, we shall also neglect eep/kT compared to fl/r
in the exponent of the coefficient (i.e., approximate e"s/kT by unity), thereby reduc-
ing (7) to the equation

= (K2E/2DO)e/. (8)

Integration and substitution in (6) gives

ts = E/Dr + (K2flE/2D) [Af3/r + B + F1(r)], (9)

where A and B are coefficients of the solutions of the homogeneous equation and
Fi(r) is the particular integral of (8):

Fi(r) = e /r(r2/6fl2 + r/3f - 1/6) + (3/6r - 1/2)Ei(,3/r). (10)

In (10), Ei(x) is the positive exponential integral

Ei(x) = f-',, (e'/u)du. (11)
For distances r > fl/2, the long-range potential is obtained by integrating the

appropriate approximation of (2):

hL = (K26/D/3)[E/lkT + '/6(Ek/kT)3], (12)
which has the solution

A = Ce K/r + (K2613/2D) (2eeKrE4/3r - Be-KrE2/3r) (13)
where En is the negative exponential integral

E. = Ei(nKr) = fJbr (e -uu/)du. (14)
(In (13), we have of course dropped the homogeneous solution eKr/r in order to
satisfy the boundary condition 'L( O') = 0.)
We now have (9) for the potential near the reference ion and (13) for the potential

at distances beyond f3/2; the integration constants must next be evaluated. The
first can be determined from the condition of electroneutrality

-6 fa=L 47rpr2dr; (15)

that is, the integrated space charge must exactly balance the charge on the reference
ion. The other two constants can be evaluated by using the fact that potential and
field strength are continuous for a<r_ oo and specifically at r = #/2:

ks(12 - 0) -bL(//2 + 0) (16)
and (dks/dr),/2-= (dd/L/dr),/2+0. (17)

Substitution of the Poisson relation between potential and density in (15) gives
e - Dfa' r2,A2dr, (18)

and integration, with the Laplacian operator in spherical coordinates, immediately
gives

~~ +D-.r22
dr Ja L dr J/ (19)

whence, using (17), (dks/dr)a = - E/Da2, (20)
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Differentiation of (9) and substitution of (20) in the result evaluates A:

bA = (eb/6b2)(2 + b + b2) -(b/6)Ei(b), (21)

where b is the Bjerrum parameter

b = E2/aDkT. (22)
Elimination of C from (16) and (17) and substitution of

A = F2(b)/b (23)
from (21) evaluates B:

B = (1 + T)-'[-1/T- G3(T)- F2(2) - (1 + T)Fi(2) - 2rF2(b)/b], (24)

where G3(r) 2e 3T/3 - 8Te'Ei(4r)/3 (25)

and T = SK/2 = 4.2016 X 106c1/2/(DT)3/2. (26)

In order to calculate the electrostatic contribution Ge to the free energy, we first
isolate the potential s#* at the reference ion due to the presence of the other ions,
where

*=s (a) -e/Da. (27)
Substitution of r = a and the values given by (23) and (24) for A and B in (9) yields

= [K2#c-/2D(1 + T)][-11T - G3(T) - H(b,2) - rL(b,2) (28)

= [K2f3E/2D(1 + T) ][-1/T -f(b,T) ], (29)

where H(b,2) = 1/2Ei(b) -/2Ei(2) - eb(1 + b)/2b2 + 3e2/8 (30)

and L(b,2) = 1/6Ei(b) - 1/6Ei(2) - eb(b2 + b - 4)/6b3 + e2/24. (31)

Then the relations
Ge = 1/2ZJnj1EJjta* (32)

and kT In fi = IGe/,bfnj (33)

give for the activity coefficient

-ln f, = T/(1 + r) + [T2/(1 + T)][G3(T) + H(b,2) + rL(b,2)]. (34)
While the leading term of (33) is independent of the charging process used to derive
Ge, the detailed form of the higher terms will depend on the process chosen'; these
details are not pertinent to the present discussion.

Let us first examine the limiting form of (34) for very low concentrations, where
terms of order r2 (proportional to concentration c) in the second term of (34) may be
disregarded:

-lnfj = T/(1 + r). (35)

This equation states that the limiting law for the activity coefficient for ions of
finite size is independent of ion size; the corresponding Debye-Huckel relation is

-In fj = r/(1 + Ka). (36)
A comparison of the two results with experiment is shown in Figures 1 and 2, where
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FIG. 2.-CQomparison of experimental results with (35).

data8 for the alkali halides in water are plotted; in Figure 1, (- ln if) is plotted
against square root of concentration and in Figure 2 against T/(1 + T) where T =
1.1725c0/2 for water at 250. (Successive plots for the various halides are displaced
vertically by constant amounts to avoid confusion.) It will be seen that the -ex-
perimental values begin to show positive deviations from the limiting tangents
(dashed lines of Fig. 1) at quite low concentrations; by inclusion of the term in xa,
the deviations can, of course, be reduced, but at the price of using an arbitrary
constant a. Equation (35), on the other hand, not only predicts the limiting
tangent, but gives the first-order deviations. The difference between (35) and (36)
'is simply the appearance of tle Bjerrum radius f6/2 in the denominator of (35) in
"place of the ionic contact distance a in (36). Punctions ofthis form for the activity
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coefficient have also been proposed by Grunwald9 and by Kortftm'0 on the basis of
heuristic arguments; the present derivation shows that (34) is a direct consequence
of the Poisson-Boltzmann equation alone, plus the continuity and neutrality con-
ditions, without an added hypothesis regarding ion pair formation.
We next consider the higher terms" of (34). These are of two kinds: those

depending only on T and those depending on both a and r. We note first that the
former further decrease In f. We have carried out the integration of (2), retaining
the next highest term in the series. The corresponding contribution G5 to In f
likewise decreases this quantity; furthermore, G5 is considerably smaller than G3
as shown in the accompanying table of numerical values.

TABLE 1
VALUES OF G3(r) AND G5(r)

T 0.0 0.2 0.4 0.6 0.8 1.0
G3 0.6667 0.2454 0.0952 0.0409 0.0186 0.0087
Gb 0.0444 0.0122 0.0074 0.0062 0.0047 0.0031

These terms represent volume effects in the sense that they arise from the fields of
ions distant from the reference ion at the origin. The experimental observation is
that activity coefficients usually go through a minimum with increasing concentra-
tion, eventually exceeding unity. The above analysis strongly suggests that the
observed positive deviations from the limiting law cannot find their origin in the
inclusion of further terms of the Poisson-Boltzmann equation, which, as we have
just seen, work in the opposite direction. Furthermore, the positive deviations are
characteristic of a given electrolyte, and one cannot expect long-range volume
effects to produce specific differences from electrolyte to electrolyte. We therefore
must conclude that the observed positive deviations are due to persistence into the
moderately dilute range of concentrations of the distribution functions which char-
acterize the fused salt and which obviously must depend on size and geometry of the
ions in a highly specific way. As we remarked in the introduction, we therefore
believe that a final theory of electrolytic solutions must proceed from a theory of the
fused salt.

Next, we consider the other higher terms of (34), represented by the functions
H(b,2) and L(b,2). The second is of order C3/2 and may be disregarded for present
purposes. The first takes the suggestive form

r2H/(1 + r) 67rNa3ebc/3000 (37)

for large values of b. This term in the thermodynamic potential has its origin in
configurations involving pairs of ions in contact, via the explicit appearance of a,
and is precisely the expression which would have appeared if we had used the
Debye-Huckel limiting law for the "free" ions and then grafted on, as did Bjerrum,
the ad hoc hypothesis that short-range contacts can be accounted for by considering
the ions involved as "associated" to pairs and not contributing to the atmosphere of
any ion. Furthermore, the coefficient of c in the asymptotic expansion (37) is,
within a numerical factor of 2/3, the value calculated by Fuoss'2 for the association
constant KA. We thus see that the effects which have been ascribed to ion pairs are
simply the expected consequences of a more rigorous integration of the Poisson-
Boltzmann equation in which these contacts are explicitly included.
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One significant practical difference between (35) and (36) calls for comment. If
(35) is accepted, then clearly "ion sizes" computed from (36) plus an added em-
pirical term Bc lose all physical meaning whatsoever, and we must consider new
empirical interpolation formulas for the representation of activity coefficients at
finite concentrations. Since theory so far offers no help in suggesting the form of
the function, any convenient functions, such as c log c or C1/3 may be used, provided
they are introduced in such a way that they do not conflict with the limiting square-
root law, In f ' r.
We have also reconsidered the conductance problem from the present point of

view. Briefly summarized, the results are as follows: (1) a universal reduced
conductance equation in terms of the rational variable r and a hydrodynamic con-
stant proportional to viscosity is obtained; (2) in addition to the decrease in
mobility due to volume effects (electrophoresis, and relaxation and velocity fields),
a further decrease in conductance appears which is the explicit consequence of ions
approaching to contact. The functional form of the latter has exactly the form
which would appear as a consequence of hypothesizing ionic association; moreover,
the coefficient contains the expected exponential term 6b. These results are being
prepared for publication.
The description of electrolytic properties in terms of a single universal dimension-

less variable r for all simple electrolytes appears to be fundamentally significant.
This variable is the ratio of two distances, A/2 which in effect states the limit up to
which the central ion has control, and 1/K which is the parameter characteristic of
the long-range screening of the reference ion by the ionic atmosphere. Dimen-
sional analysis shows that T should indeed be the rational independent variable for
the description of electrolytic solutions: we are dealing with electrostatic inter-
actions between ions at average distances proportional to VP/3 with corresponding
energies E2C/3/D. The order which the electrostatic forces attempt to maintain is
opposed by Brownian motion; the ratio E2C /3/DkT therefore logically appears; we
would expect the description of the system to be in the form f(c'/'/DT), and indeed T
is proportional to (c'/P/DT)'/2. There thus appears to be some element of justi-
fication for the arguments that the cube root of concentration should appear in the
theory of electrolytes, and there are in fact many reasons to believe that at moderate
and high concentrations, electrolytic properties do become simple functions of c1/'.
As Debye pointed out,' the fallacy in the Ghosh'3 model was the disregard of kT
and the consequent attempt to extrapolate to zero concentration on a cl/' scale.
In the fused salt and in highly concentrated solutions, however, interionic distances
are necessarily of the order of c-'/; here of course the dielectric constant presents
some serious problems. But it seems reasonable to predict that the goal of elec-
trolyte theory will be the elucidation of the functions in expressions of the form

P = f,(T)(1 - g) + f2(T)g(VS/V) (38)

where P is a property of the solution, Vs is the volume of solute in a total volume V,
and g is a partition function, possibly of the form proposed by Eyring,14 such that
g (1) = 1 and g (0) = 0. Our present thesis is that the limiting form offi is given by
(35) when P is the thermodynamic potential and by other explicit functions of r
when P describes one of the irreversible processes such as conductance or diffusion.

* Contribution No. 1660.
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THE NET HYDRATION OF DEOXYRIBONUCLEIC ACID*,t

BY JOHN E. HEARST: AND JEROME VINOGRAD
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Communicated by Linus Pauling, April 17, 1961

In 1954, Jacobson et al.' presented evidence for the extensive hydration of DNA
from studies of the proton magnetic resonance in aqueous solutions of sodium
DNA. The following year Wang2 concluded that DNA was hydrated to the ex-
tent of only 0.35 gm water/gm dry deoxynucleate from self-diffusion measurements
of water in NaDNA solutions. This paper presents evidence for a net hydration
of 0.2 to 2 gm water/gm CsDNA in certain buoyant solvents.
The hydration of T-4 bacteriophage DNA3 has been studied in density gradient

systems at sedimentation equilibrium in the ultracentrifuge.5 Williams et al.6
showed that the buoyant density is that of the solvated species. The buoyant
density p& is defined by the following thermodynamic equations:

1 M3f3 + rM1v1
pO M3+ rM '

where 1 refers to water, 3 to the unhydrated polymer, and

F- M3(1TPml/eM T,P,ma (M3nT) P,0si

M, v, Au, and m are molecular weights, partial specific volumes, chemical potentials,
and molalities respectively. Molalities for this equation are expressed in moles per
unit weight of salt. The unusual definition of molality is necessary so that r, the
net solvation, remains a positive quantity.7
The net solvation of DNA is shown here to be a monotonic function of water


