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Linking Surveillance to Action: Incorporation of Real-time
Regional Data into a Medical Decision Rule

ANDREW M. FINE, MD, MPH, LISE E. NIGROVIC, MD, MPH, BEN Y. REIS, PHD, E. FRANCIS COOK, SCD,
KENNETH D. MANDL, MD, MPH

Abstract Objective: Broadly, to create a bidirectional communication link between public health surveillance and
clinical practice. Specifically, to measure the impact of integrating public health surveillance data into an existing
clinical prediction rule. We incorporate data about recent local trends in meningitis epidemiology into a prediction
model differentiating aseptic from bacterial meningitis.

Design and Measurements: Retrospective analysis of a cohort of all 696 children with meningitis admitted to a large
urban pediatric hospital from 1992 to 2000. We modified a published bacterial meningitis score by adding a new
epidemiological context adjustor variable. We examined 540 possible rules for this adjustor, varying both the number of
aseptic meningitis cases that needed to be seen, and the recent time window in which they were seen. We performed
sensitivity analyses with each of 540 possibilities in order to identify the optimal rule—namely, the one that included
the most cases of aseptic meningitis without missing additional cases of bacterial meningitis, as compared with the
published prediction model. We used bootstrap methods to validate this new score.

Results: The optimal rule was found to be: “at least four cases of aseptic meningitis in the previous 10 days.” The
epidemiological context adjustor based on surveillance of recent cases of meningitis allowed the correct identification of
an additional 47 cases (7%) of aseptic meningitis without missing any additional cases of bacterial meningitis. The
epidemiological context adjustor was validated, showing significance in 84% of 1,000 bootstrap samples.

Conclusion: Epidemiological contextual information can improve the performance of a clinical prediction rule. We
provide a methodological framework for leveraging regional surveillance data to improve medical decision-making.
� J Am Med Inform Assoc. 2007;14:206–211. DOI 10.1197/jamia.M2253.
Introduction
Healthcare “situational awareness”—real-time information
about the local, regional and national incidence of disease—
has the potential to improve clinical decision-making by
extending clinicians’ knowledge beyond what can be
gleaned from patient history, physical examination, clinician
experience, and the medical literature. One tool used by
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clinicians to make diagnoses is the clinical prediction rule
which typically takes as inputs, patient history, physical
exam, and readily available diagnostic test results to calcu-
late the probability of a disease state and to support medical
decision-making.1,2 This approach is static and does not
factor in community-level disease trends when estimating
disease likelihood. For infectious diseases which are person-
to-person transmissible, an individual’s likelihood of infec-
tion is dependent on the local disease incidence.3 A clini-
cian’s knowledge and cognitive interpretation of disease
incidence is dependent on observed trends or unusual
cases,4 or through recent personal clinical experience.5 Ide-
ally, clinicians should be prepared to respond clinically to
changes in environmental context. To date, no published
prediction rules have incorporated epidemiological factors
from regional, real-time surveillance data. Yet the increasing
uses of biosurveillance technologies will make the necessary
regional data widely available.

We propose a method for adjusting prediction rules for
epidemiological context, and evaluate it using a prediction
rule for bacterial meningitis among pediatric patients. Pedi-
atric patients who present to the emergency department
with cerebrospinal fluid (CSF) pleocytosis present a diag-
nostic and management challenge to the clinician trying to
distinguish between aseptic and bacterial meningitis. Most
patients with CSF pleocytosis have aseptic, rather than
bacterial meningitis. Bacterial meningitis is very rare, but the

consequences can be devastating, because it causes severe
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morbidity and mortality.6 While CSF culture is the definitive
test to exclude bacterial meningitis, the result may take days,
which means the clinician must make a decision about
treatment and patient disposition based on incomplete data.
Clinicians often take the conservative approach of admit-
ting patients to the hospital for intravenous antibiotics for
what ultimately proves to be self-limited cases of aseptic
meningitis. This conservative approach can lead to over-
use of antibiotics, as well as the risks of hospitalization,
including nosocomial infections, allergic reactions to ther-
apies, and unnecessary use of inpatient beds.7–9 Accu-
rately distinguishing bacterial from aseptic meningitis at
the time of patient presentation could save significant
health care resources, reduce hospital admission rates for
viral disease, and decrease antibiotic resistance by de-
creasing the empirical use of antibiotics.10,11 Previously
published prediction rules have combined patient specific
factors, such as historical, physical exam, and laboratory
features to help identify patients at low-risk for bacterial
meningitis.12–19

F i g u r e 1. Sensitivity for bacte-
rial meningitis (ability of score to
identify bacterial meningitis) us-
ing epidemiological context adjus-
tor at different cut-offs.

Table 1 y The Bacterial Meningitis Score
Predictor Variable Points

Positive CSF gram stain 2
CSF absolute neutrophil count �1,000 cells/mm3 1
Peripheral blood absolute neutrophil count �10,000

cells/mm3
1

CSF protein �80 mg/dL 1
History of seizure prior to or at time of

presentation
1

Patients with a total score of zero were considered very low risk for
bacterial meningitis, and one to six were considered not very low
risk for bacterial meningitis. Score can range from 0–6.
We sought to examine the effect of a new surveillance
data-derived variable that adds real-time epidemiological
context to a published meningitis prediction rule12 to deter-
mine whether and to what extent, data about recent menin-
gitis epidemiology could improve the performance of the
existing prediction model in differentiating aseptic from
bacterial meningitis.

Materials and Methods
We performed a retrospective analysis of a dataset used to
derive a published multivariate logistic regression model.12

The dataset consisted of 696 patients aged 29 days to 19
years admitted to a tertiary care pediatric hospital from
1992–2000 with a final diagnosis of meningitis. One hundred
and twenty five (18%) patients had bacterial meningitis, and
571 (82%) had aseptic meningitis. Details of the patient
population, definitions, exclusion criteria, data collection,
and statistical methods have already been published.12 The
Children’s Hospital Boston’s institutional review board ap-
proved the study. Bacterial meningitis was defined as posi-
tive CSF culture, or CSF pleocytosis (�7 WBC per mm) with
positive blood culture or positive CSF latex agglutination for
Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus
influenzae, or Streptococcus agalactiae (group B Streptococcus).
Aseptic meningitis was defined as a CSF pleocytosis with
negative cultures and negative latex agglutination if per-
formed. Using logistic regression and recursive partitioning,
the bacterial meningitis score was derived and validated
using a split set methodology. The following high-risk
predictors were identified: positive CSF gram stain (two
points), CSF protein �80 mg/dL (one point), CSF acute
neutrophil count �1,000 cells/mm3 (one point), peripheral
acute neutrophil count �10,000 cells/mm (one point), sei-
zure at or prior to the time of presentation (one point) (Table
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1). Patients with a total score of zero were considered very
low risk for bacterial meningitis; score of one to six were
considered not very low risk for bacterial meningitis. This
prediction rule was recently validated in a multicenter
study.20

We created a new variable called the epidemiological context
adjustor. This adjustor is a binary variable that reflects whether
there have been more than n cases of aseptic meningitis during
the past d days. To find the optimal adjustor, we examined 540
different possible adjustor rules by varying both n (anywhere
from 1–20 cases) and d (anywhere from 3–30 days). A three day
minimum was chosen for d because exclusion of bacterial
meningitis requires negative CSF and blood cultures which
takes two to three days to reliably exclude bacterial growth.21

We performed sensitivity analysis for all of the 540 possible
rules. For each rule, we incorporated the adjustor variable
into the bacterial meningitis score by decreasing the score by
one point if the number of patients (n) admitted over the
previous number of days (d) had been exceeded on the day
that a patient (p) presented with meningitis. For example, if
n�2 and d�6, then for a patient whose bacterial meningitis
score was one, we would decrease the score from one to zero
if two or more cases of aseptic meningitis had been admitted
in the previous six days. We then calculated the sensitivity
and specificity for bacterial meningitis at each threshold
(n, d). Keeping sensitivity for bacterial meningitis high to
avoid the catastrophic error of missing additional cases of
bacterial meningitis, we sought to maximize the specificity
for bacterial meningitis—that is to identify the threshold that
would identify correctly the maximum number of aseptic
meningitis cases.

After selecting the adjustor rule that resulted in the greatest

increased identification of aseptic meningitis cases without
missing any additional cases of bacterial meningitis, we
used bootstrap methods for validation. One thousand boot-
strap samples were selected, using p�0.05 in over half the
samples for predictor retention.22–27 We performed all sta-
tistical analyses using SAS (SAS, Cary, NC) and SPSS 13
(SPSS Inc, Chicago, IL).

Results
In Figure 1, decreasing the number of cases “n” along the
X-axis, or increasing the duration (number of days “d”)
along the Y-axis, decreases the sensitivity (seen on the
Z-axis)—that is more cases of bacterial meningitis would be
incorrectly identified as having aseptic meningitis. The ceil-
ing of the figure represents a sensitivity of 98%, which is the
performance of the published prediction model for correctly
identifying patients with bacterial meningitis. The bottom
left corner of Figure 1 shows that the worst sensitivity (93%)
of the model is reached when there has been one case in the
previous 30 days.

In Figure 2, the floor of the figure represents the 72% of
aseptic meningitis cases identified by the published predic-
tion model. Decreasing the number of cases “n” along the
X-axis, or increasing the duration (number of days “d”)
along the Y-axis increases the percent of patients correctly
identified with aseptic meningitis (specificity for bacterial
meningitis, seen on the Z-axis). The top left corner of Figure
2 shows that the maximum specificity (89%) of the model
occurs when there has been only one case in the previous 30
days.

In order to identify additional cases of aseptic meningitis
without missing any additional cases of bacterial meningitis,
we set the sensitivity at 98% (equal to the published model)

F i g u r e 2. Specificity for bacte-
rial meningitis (ability of score to
identify aseptic meningitis) using
epidemiological context adjustor
at different cut-offs.
and examined specificity (range 72%–81%). We selected the
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cutoff that gave 81% specificity with the maximum 98%
sensitivity. The greatest improvements in model perfor-
mance were obtained when there were at least four cases of
aseptic meningitis in the previous 10 days. This allowed for
the greatest increase in identification of patients with aseptic
meningitis without missing any additional cases of bacterial
meningitis.

Table 2 shows the confusion matrices for the published
model and for three of the 540 different combinations of
numbers of cases and durations that we examined. Sample
rule C (four cases in previous 10 days) shows the perfor-
mance for the best combination of number of cases “n” and
duration “d”.

Table 3 shows the test characteristics of the previously

Table 2 y Confusion Matrices (2�2 Tables) for
Original Rule and New Rules that Incorporate
“Epidemiological Context Adjustor”
Original Rule (no adjustment for epidemiological context)

Actual

Predicted

Aseptic Bacterial Total

Aseptic 384 151 535
Bacterial 2 117 119
Total 386 268 654

Sensitivity 98%, Specificity 72%.

Sample Rule A (2 cases in previous 6 days)

Actual

Predicted

Aseptic Bacterial Total

Aseptic 433 102 535
Bacterial 3 116 119
Total 436 218 654

Sensitivity 97%, Specificity 81%.

Sample Rule B (8 cases in 4 previous days)

Actual

Predicted

Aseptic Bacterial Total

Aseptic 384 151 535
Bacterial 2 117 119
Total 386 268 654

Sensitivity 98%, Specificity 72%.

Sample Rule C (4 cases in previous 10 days) – Best Rule

Actual

Predicted

Aseptic Bacterial Total

Aseptic 431 104 535
Bacterial 2 117 119
Total 433 221 654

Sensitivity 98%, Specificity 81%.

Table 3 y Test Characteristics of the Prediction Rule W
Nigrovic Published

Prediction Model (%, 95%
Confidence Interval)

Samp
(%, 95

I

Sensitivity 98 (94–100) 97
Specificity 72 (68–76) 81
Positive predictive value 44 (38–50) 53
Negative predictive value 99 (98–100) 99
Negative predictive value of sample rule C is 431/433, which was rounde
published bacterial meningitis score and our refined model,
using the epidemiological context adjustor with three sample
cut-offs (two cases in previous six days, eight cases in
previous four days, and four cases in the previous 10 days).
The best model resulted in an additional 47 patients (7%)
with CSF pleocytosis previously deemed not very low risk
for bacterial meningitis that could now be categorized as
low risk. None of these patients had bacterial meningitis.

We validated the multivariate regression analysis with a
bootstrap technique. The epidemiological context adjustor was
significantly associated in 84% of the iterations (p�0.05).

Discussion
In this study, we demonstrate the important role that
surveillance can play in adding epidemiological context to
improve clinical prediction rules for infectious diseases.
Adding information about current infectious diseases circu-
lating in the community can change the predictive probabil-
ity of a diagnostic prediction rule. Using an existing data set,
this strategy worked well—we were able to correctly iden-
tify an additional 47 cases of aseptic meningitis (7%) without
missing a single additional case of bacterial meningitis.

The widespread use of the highly effective conjugate vac-
cines for Haemophilus influenzae type b and Streptococcus
pneumoniae vaccinations have made bacterial meningitis a
rare childhood disease.6,28 The addition of an epidemiological
context adjustor to a validated clinical prediction rule could
add more confidence to a clinician’s diagnosis of aseptic
meningitis in a patient who presents with CSF pleocytosis.
Many clinicians already knowingly or unknowingly incor-
porate this type of information into their clinical decision-
making. Knowledge of recent cases of infectious diseases
may have profound effects on how doctors approach their
next patient.29

Public health agencies now collect emergency department-
based infectious disease surveillance data on many condi-
tions.30,31 The ability to incorporate real-time surveillance
data into existing, validated prediction rules has the poten-
tial to improve diagnostic accuracy by shifting the prior
probability of disease for a given patient, depending on
current conditions. This application of Bayes theorem would
work especially well for conditions that are communicable
or seasonal. For example, a prediction rule that could
incorporate the current burden of strep throat in the com-
munity with the Centor score32 used to evaluate patients
with pharyngitis, might help inform clinicians which pa-
tients should be tested and/or treated with antibiotics.

Our study has some limitations. First, all patient data
come from the era before the widespread pediatric use of

t12 and With Epidemiological Context
e “A”
fidence
l)

Sample Rule “B” (%,
95% Confidence

Interval)

Sample Rule “C” - Best
Model (%, 95% Confidence

Interval)

) 98 (94–100) 98 (94–100)
) 72 (68–76) 81 (77–84)
) 44 (38–50) 53 (46–60)
0) 99 (98–100) 100* (98–100)
ithou
le Rul

% Con
nterva

(93–99
(77–84
(46–60
(98–10
d to 100 from 99.5%.
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the pneumococcal vaccine, a time when bacterial menin-
gitis was more common than currently. Despite this, we
still did not miss any additional cases of bacterial menin-
gitis. Second, we tested the addition of the epidemiological
context adjustor using the same data set from which the
bacterial meningitis score was derived and validated. We
did not split our data into a derivation and validation set,
because of the relatively small size of the data set. Rather,
we chose to use the bootstrap validation method so that
we could include all available data to derive and evaluate
our final model. Ideally we would prefer to have had a
second independent data set to validate our final model.
In the absence of such data we examined fitted models on
bootstrap samples of our data to describe the stability of
our final model. Relying on previously published work as
a standard, we choose 50% as representing a large enough
proportion of statistically significant finding to support
the significance of a variable in our model.27 However, in
our Results section, we state that this proportion actually
exceeded 70% for all variables and was equal to 84% for
the environmental context adjustor.

Our new model needs independent validation because
prediction model performance may differ significantly
when tested in an independent population.33 However,
the purpose of this analysis was to determine whether
epidemiological context could have an impact on a pre-
diction model. This study demonstrates the first step in
establishing that contextual information can add value to
prediction models. Future studies could use public health
surveillance data to adjust the meningitis score to account
for regional variation in meningitis season. These findings
also highlight the opportunity to incorporate contextual
infectious disease surveillance data when creating new
prediction rules for diseases that have seasonal variation
or are communicable.

Incorporating local disease incidence adds valuable context
and can improve the ability to discriminate bacterial from
aseptic meningitis. These findings demonstrate that epide-
miological context can improve the performance of a clinical
prediction rule, and provide a framework for leveraging
regional surveillance data to improve the clinician’s deci-
sion-making.
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