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Topological Analysis of Large-scale Biomedical Terminology
Structures

MICHAEL E. BALES, MPH, YVES A. LUSSIER, MD, STEPHEN B. JOHNSON, PHD

A b s t r a c t Objective: To characterize global structural features of large-scale biomedical terminologies
using currently emerging statistical approaches.

Design: Given rapid growth of terminologies, this research was designed to address scalability. We selected 16
terminologies covering a variety of domains from the UMLS Metathesaurus, a collection of terminological systems.
Each was modeled as a network in which nodes were atomic concepts and links were relationships asserted by
the source vocabulary. For comparison against each terminology we created three random networks of equivalent
size and density.

Measurements: Average node degree, node degree distribution, clustering coefficient, average path length.

Results: Eight of 16 terminologies exhibited the small-world characteristics of a short average path length and
strong local clustering. An overlapping subset of nine exhibited a power law distribution in node degrees,
indicative of a scale-free architecture. We attribute these features to specific design constraints. Constraints on
node connectivity, common in more synthetic classification systems, localize the effects of changes and deletions.
In contrast, small-world and scale-free features, common in comprehensive medical terminologies, promote
flexible navigation and less restrictive organic-like growth.

Conclusion: While thought of as synthetic, grid-like structures, some controlled terminologies are structurally
indistinguishable from natural language networks. This paradoxical result suggests that terminology structure is
shaped not only by formal logic-based semantics, but by rules analogous to those that govern social networks and
biological systems. Graph theoretic modeling shows early promise as a framework for describing terminology
structure. Deeper understanding of these techniques may inform the development of scalable terminologies and
ontologies.
� J Am Med Inform Assoc. 2007;14:788–797. DOI 10.1197/jamia.M2080.
Introduction
Terminologies serve as shared data standards for public
health reporting, health care reimbursement, indexing the
biomedical literature, and interoperability between systems.
While many are simply lists of concepts, some include
explicitly defined properties and relationships. It is widely
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acknowledged that local design constraints affect large-scale
structure or topology. In this descriptive study we use
standard graph theoretic measures of network structure to
analyze 16 biomedical terminologies, and we consider how
these emerging approaches may contribute to terminology
development, maintenance, and auditing.

Background
Network Modeling Has Been Used to Study Many
Phenomena
Network analysis methods have been used to model many
phenomena, including biological networks, transportation
networks, and the Internet. The methods draw upon the
mathematical formalisms of graph theory and upon analytic
methods refined over decades of social network research.
Networks consist of nodes, which represent entities, and
lines, or links, drawn between the nodes to indicate a
connection between them.

Analysis of network topology has been used in a variety of
domains. In the informatics community, early uses of net-
work modeling approaches have occurred mainly in bioin-
formatics and computational biology.1 Various biological
systems such as protein-protein interaction and genetic
regulatory networks have been studied, sometimes yielding

new insights into cellular and molecular pathways and
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interdependencies. Despite the prominence of these meth-
ods in the computational biology community, they are only
just beginning to be adopted in other domains of informat-
ics.

Standard Measures Are Used to Characterize
Terminology Structure
Several articles summarize the graph theoretic measures
used in this research, including a review by Steyvers (2005).2

Additional details can be found in our recent review3 and in
the glossary in Appendix A (available as a JAMIA online
data supplement at www.jamia.org). To summarize, in
graph-theoretic modeling, a graph is comprised of a set of
nodes, also referred to as vertices, along with a set of links
which connect pairs of nodes.2 The number of nodes to
which a given node is immediately connected is its degree.
A link from a node to itself is a loop. A node with no links
is an isolate.

Networks vary widely depending on topological features.
Five measures used in this research are the average node
degree, the node degree distribution, the average path
length, the diameter, and the clustering coefficient. The
average node degree, a measure of the density of a graph, is
the average number of links per node. It is calculated by
dividing the number of links by the number of nodes, and
then multiplying by two. The degrees of all the nodes in a
network can be characterized as a node degree distribution.
In this research the distribution is represented as a scatter-
plot with node degree plotted logarithmically on the x-axis,
and frequency logarithmically on the y-axis.

The average path length, sometimes called the “average
shortest path,” refers to the average distance between any
two nodes. A simple algorithm determines the minimum
distance between any node and any other node. An average
is then calculated based on all of these values. The diameter
is the longest distance between any two nodes in the
network.

Finally, the clustering coefficient refers to the level of clus-
tering in a graph at the local level. It is calculated for a given
node by counting the number of links between the node’s
neighbors and then dividing by all their possible links. This
results in a value between 0 and 1, which is then averaged
over all nodes in a network.4

Two important concepts in this research are small-world and
scale-free characteristics. Several articles2,5 offer concise de-
scriptions of these features. In networks with small-world
properties there are highly clustered neighborhoods and it is
possible to move from one node to another in a relatively small
number of steps. Scale-free networks have a power law distri-
bution in average node degree. This is a distribution in which
one variable is proportional to a power of the other. When
plotted on a double logarithmic scale, individual points are
distributed about a straight line. There are a small number of
nodes (the hubs) which have many neighbors and a large
number of nodes that have only a few neighbors.

In research on large-scale network structure it is customary
to simplify networks in two ways: First, although networks
of semantic entities often have links of several types, it is
common to treat all types of links equally when measuring
structural features. Second, the directionality of links is

often disregarded. Because these simplifications facilitate
comparison of large-scale structure, the networks studied in
this research are simplified in both of these ways.

Because graphs vary topologically, two graphs with the
same number of nodes and links can diverge with respect to
average path length and clustering coefficient. Given this
variability, networks are often compared with an equivalent
randomly configured network. To confirm the presence of
statistically significant differences between selected param-
eters, in this research we use three random networks per
terminology network. Average path length and diameter
measures are particularly stable and only one random
network is needed (see Appenidx B online at www.jamia.
org).

Network Modeling Falls within a Wide Spectrum
of Terminology Research
If large network modeling is adopted by terminologists, the
approach will find its place within a wide spectrum of re-
search. One of the large bodies of research within this spectrum
involves ontologies, which are formal models of the concepts in
a given domain. In ontologies, entities are assigned properties
and relations between entities are defined explicitly. By inves-
tigating combinations of logical rules, ontological researchers
have sought to find an optimal balance between expressiveness
and computational tractability.

Informed in part by ontological approaches, some have
proposed desirable characteristics,6–9 many of them struc-
tural properties, or quality control approaches.10,11 Other
research has focused on issues such as detecting specific
structural problems in the Unified Medical Language Sys-
tem (UMLS),12 for example redundant semantic type assign-
ments,13 cycles in is-a hierarchies,14 and inconsistencies
between the hierarchies of the UMLS Semantic Network and
Metathesaurus.15 Other research has focused on achieving
semantic interoperability16 via ontology merging and align-
ment.17 Our effort is distinct from previous research in that
we use a formal method to describe emergent large-scale
structural properties in terminologies.

Application of social network methods to study terminolo-
gies is like zooming out to take a photograph. The results
can help individual terminology developers to see where a
given terminology fits structurally within the greater uni-
verse of terminologies. There has been some effort to estab-
lish a useful typology of terminological systems.18,19 How-
ever, to our knowledge, there has not been research
comparing large-scale topological structure of biomedical
terminologies. Because these techniques have not yet been
widely adopted in the terminology community, the impli-
cations of the methods for terminology science remain
unclear. We thus propose a methodology that provides
quantitative and qualitative evidence to support formal
topological analysis of terminologies.

Methods
Sixteen UMLS source vocabularies were selected. We sought
to form a balanced selection of larger terminologies covering
a variety of domains. To boost the interpretability of the
results we selected source vocabularies familiar to the ter-
minological research community. For contrastive purposes
we also included two sets of related terminologies (ICD9CM

and ICD10; and SNOMEDCT, SNMI, and RCD). Further
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details are available in see Figure 5, Appendix C online at
www.jamia.org.

To extract the selected terminologies from the Metathesau-
rus we used the MetamorphoSys program.12 We used the
RRF (Rich Release Format) of the 2007AA release. The RRF
is the only UMLS format that allows for source transparency
(the ability to see the terminologies in a format consistent
with that obtainable from the terminology’s authority).20

After importing selected tables into a relational database, we
queried the MRREL table to select the links assigned by each
terminology. Concepts existing in a source vocabulary but
having no associated records in MRREL were excluded.
(These nodes would be considered isolates in a network
model; they were excluded because isolates do not contrib-
ute meaningful information to the statistical measures used
in this study. The numbers of isolated nodes in each termi-
nology network appear in Table 1.) Each terminology was
then modeled as a graph in which the concepts were nodes
and a link was assigned between concept pairs appearing in
MRREL.

To prepare for analysis, a series of preprocessing steps was
performed. Each loop (relationship between a concept and
itself) was removed. Sibling and allowed qualifier/qualified by
relationships, which are superfluous and interfere with large
network metrics, were also removed (see Figure 6, Appen-
dix D online at www.jamia.org). Relationships with an
inherent directionality, such as broader/narrower and par-

Table 1 y Summary of Topological Features of Selected
world and scale-free characteristics

Source
Abbreviation

2007AA Official Name

CPT† Current procedural terminology, 4th ed., 2006
NCBI*† NCBI taxonomy, 2006
GO*† Gene ontology
RCD*† Clinical terms version 3 (Read codes), 1999
SNOMEDCT*† SNOMED clinical terms, 2006
SMNI*† Systematized nomenclature of human and

veterinary medicine, 1998
NCI*† NCI thesaurus, 2006
HL7V3.0*† Health level seven vocabulary, 1998–2006
MSH*† Medical subject headings, 2007
LNC* Logical observation identifier names and

codes, 2.17.2006
NOC Nursing outcomes classification, 1997
DSM4 Diagnostic and statistical manual of mental

disorders. 4th ed., 1994
ICD10 International statistical classification of

diseases and related health problems, 1998
ICD9CM International classification of diseases, 9th

revision, clinical modification, 2007
NIC Nursing interventions classifications, 2005
ICPC International classification of primary care

The vocabularies were modeled as networks in which concepts are n
of concepts. For each network we created three random controls
represents an average value of all three random networks.
*Small-world networks have a short average path length and stron
†Scale-free networks, characterized by a power law distribution in
ent/child, were replaced with undirected links. Multiple
links connecting any given pair of nodes were replaced with
single links. For each terminology network we also created
three Erdös Rényi random graphs1 with the same number of
nodes and target average node degree (see Background
section Standard Measures Are Used to Characterize Termi-
nology; see also Appendix B online at www.jamia.org).

In determining the metrics to be included in the analysis we
selected simple descriptive statistics and commonly-used
measures of large network structure. For each terminology
network and random network we measured the number of
nodes, number of links, average node degree, and clustering
coefficient. We also measured the average path length and
diameter for all of the terminology graphs and for the first of
the three random graphs created for each network (see
Appendix B online at www.jamia.org). Finally, we repre-
sented the node degree distribution for each terminology
using a scatterplot. We examined these plots to assess
whether or not each terminology was scale-free. Analyses
were conducted using Pajek,21 NetDraw,22 and the statistical
program R.23

Results
Summary Statistics for the Sixteen Terminology
Networks and the Random Networks
The terminology networks ranged in size from 490 to
391,279 nodes (x� � 112,087, SD � 139,426) and from 489 to

LS 2007AA Source vocabularies, arranged by small-

Vocabulary

Nodes Links Isolates Loops
Multiple

Lines

18622 18621 0 0 0
247151 246854 50409 0 0
21234 30105 18503 0 0

320354 319620 27214 0 0
391279 1540680 647854 0 35878
144478 219201 19701 0 4

49056 208436 97468 1 15637
8063 8952 0 0 0

377540 446587 247717 1 0
166843 539422 3246 0 0

3007 3006 49 0 0
490 489 0 0 0

12319 12318 1186 0 0

20958 20957 2 0 0

11256 12175 0 0 0
748 1432 305 0 0

d terminology-asserted relationships constitute links between pairs
ivalent size and density. For these controls, clustering coefficient

ering at the neighborhood level.
e node degree, have a small number of highly-connected hubs.
UM

odes an
of equ

g clust
1,540,680 links (x� � 226,803, SD � 378,958) (see Figure 7,
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Appendix E online at www.jamia.org). The numeric results
of the research are summarized in Table 1.

Node Degree Distribution and Scale-free
Properties
Nine of the networks (56.3%)—SNOMEDCT, SNMI, MSH,
RCD, HL7V3.0, NCI, GO, CPT, and NCBI—exhibited a
power law distribution in node degrees, indicative of a
scale-free architecture (Figure 1).

Average Path Length and Diameter
Average path lengths ranged from 3.03 to 26.49 (x� � 8.67, SD
� 5.26). Diameters ranged from 4 to 63 (x� � 18, SD � 13.65).
For the random networks, average path lengths ranged from
5.09 to 17.36 (x� � 10.34, SD � 3.76) and diameters ranged
from 9 to 45 (x� � 18.44, SD � 13.26). Diameters and path
lengths are graphed in Figure 2.

Path lengths relative to the path lengths of the correspond-
ing random networks ranged from 0.51 to 1.56 (x� � 0.79 SD
� 0.27). As mentioned above, random networks have a short
average path length. Since path lengths of all of the net-
works were similar to those of their corresponding random
networks (up to 1.56 times higher, but still within an order
of magnitude), it follows that all of the networks had a
relatively “short” average path length. This is one of the
hallmark features of a small-world network. (The second is
strong local clustering.)

Average path length values were associated with the types
of links occurring in the networks. In terminologies that
supplemented hierarchical links with lateral, associative

Table 1 y continued

network

Avg.
Node

Degree

Median
Node

Degree

Maximum
Node

Degree Diameter

2.00 2 451 16
2.00 1 4308 63
2.84 2 300 22
2.00 1 163 29
7.88 4 67721 21
3.03 1 3336 19

8.50 3 3168 20
2.22 1 485 19
2.37 1 3937 23
6.47 2 40562 11

2.00 1 28 10
2.00 1 36 8

2.00 1 28 10

2.00 1 25 12

2.16 1 66 8
3.83 2 364 4
relationships, average path length values tended towards
lower values. Among the eight terminologies that were at
least 95% hierarchical (ICPC, GO, NCBI, NIC, ICD10,
ICD9CM, DSM4, and HL7V3.0), the mean value for average
path length was 9.53. By contrast, the average path length
for the terminologies with at least 5% lateral links was 7.81.

When the diameters of the terminology networks were
compared with those of their corresponding random net-
works, the differences in value were associated with the
presence or absence of scale-free features. Among the nine
scale-free terminology networks, four had a diameter at least
as high as the diameter of their corresponding random
networks (average ratio for the eight scale-free terminology
networks, 1.10:1) By contrast, all of the non-scale-free termi-
nology networks had smaller diameters than those of their
random networks (average ratio for the seven non-scale-free
terminology networks, 0.49:1).

Clustering Coefficient and Small-world Properties
Eight (50%) of the terminology networks had a clustering
coefficient of zero. When modeled using our approach, each
of these networks (NCBI, CPT, ICD9CM, ICD10, NIC, ICPC,
DSM4, and NOC) were trees or directed acyclic graphs
(DAGs) with strictly hierarchical links. In these networks,
even the links classified as other relationship or source asserted
synonymy were hierarchical (see Appendix F online at www.
jamia.org). In strict hierarchies, the only links between a
node’s neighbors are via sibling relationships. Sibling rela-
tionships are not used in this research; as such, the clustering
coefficient measure is zero for all nodes in the strictly

Random control

vg. Path
Length

Clustering
Coefficient

Avg. Path
Length

Clustering
Coefficient

8.88 0 13.03 0.000035
26.49 0 16.98 0.000005
10.51 0.001462 9.46 0.000135
14.02 0.000278 17.36 0.000005
5.09 0.195960 6.48 0.000018
9.18 0.002351 10.71 0.000022

6.56 0.170025 5.29 0.000165
6.66 0.000882 10.76 0.000122
7.43 0.003792 14.50 0.000007
3.88 0.002902 6.65 0.000040

7.42 0 10.69 0.000830
5.62 0 7.60 0.003333

7.83 0 12.61 0.000112

9.20 0 13.38 0.000039

6.91 0 11.39 0.000071
3.03 0 5.09 0.005883
A

hierarchical networks. Among the other eight terminology
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networks, clustering coefficients ranged from 0.00028 (for
RCD) to 0.20 (for SNOMEDCT) (x� � 0.047, SD � 0.079). For
all eight of these networks, clustering coefficient measures
were higher than the average clustering coefficients for their
three corresponding random networks (Figure 3). Therefore,
eight (50%) of the terminologies exhibited the small-world
characteristics of a short average path length and strong
local clustering.

F i g u r e 1. Variations in node degree distributions among
degree is plotted logarithmically on the x-axis, and frequency
power-law distribution and are thus scale-free; the bottom

F i g u r e 2. Average path length and diameter for termi-
nology network and corresponding random network, ar-
ranged by scale-free and small-world architecture. The di-
ameters of the non scale-free terminologies were lower than

those of their corresponding random networks.
Summary of Results
The results are summarized briefly in Table 2. The last four
columns indicate whether each terminology is a classifica-
tion system, scale-free, at least 95 percent hierarchical, and
small-world. This research yields an alternate grouping
based on topological structure and shows that the terminol-

orks made from selected UMLS source vocabularies. Node
ithmically on the y-axis. The top nine networks have a clear
do not have clear scale-free features.

F i g u r e 3. Clustering coefficient for terminology network
and average clustering coefficient for corresponding random
network, grouped by scale-free and small-world properties.
Strong local clustering is one of the defining statistical
properties of a small-world network; the other is a short
average path length. Eight of the terminology networks had
a clustering coefficient of zero. All eight nonzero clustering
coefficients were significantly higher than the clustering
netw
logar
coefficients of the corresponding three random networks.



A

†In UMLS documentation,24 MSH was listed under the category “Comprehensive” vocabularies.
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F i g u r e 4. Selected UMLS source vocabular-
ies arranged into four groups based on scale-free
and small-world properties. The schematic dia-
grams portray the key differences between the
terminology structures. Scale-free networks,
which are characterized by a power law distri-
bution in average node degree, have a small
number of highly-connected hubs. Although a
scale-free architecture is common in many gen-
eral-purpose semantic networks, several termi-
nologies in our sample (mainly the statistical
classifications) did not exhibit a scale-free topol-
ogy. This is thought to result from constraints
introduced into the development process of such
classifications. The other terminologies were
scale-free. Small-world networks have a short
average path length and relatively strong clus-
tering at the neighborhood level. All eight termi-
nologies with lateral (nonhierarchical) links
were found to have a small-world architecture.
Table 2 y Summary of Terminology Network Properties and Their Descriptions as Reported in the UMLS
Documentation(24)

Source
bbreviation,
2007 AA Official Name Category

Statistical
Classification

Scale-
Free

At least
95%

Hierarchical
Small-
World

GO Gene Ontology, 2005 Gene names no yes yes yes
HL7V3.0 Health Level Seven Vocabulary,

1998–2006
Miscellaneous no yes yes yes

NCBI NCBI Taxonomy, 2006 Gene names no yes yes no
CPT Current Procedural Terminology, 4th

ed., 2006
Procedures only no yes no no

RCD Clinical Terms Version 3 (Read
Codes), 1999

“Comprehensive” clinical vocabularies no yes no yes

SNOMEDCT SNOMED Clinical Terms, 2006 “Comprehensive” clinical vocabularies no yes no yes
SNMI Systematized Nomenclature of

Human and Veterinary Medicine,
1998

“Comprehensive” clinical vocabularies no yes no yes

NCI NCI Thesaurus, 2006 Diseases no yes no yes
MSH Medical Subject Headings, 2007 Organisms* no yes no yes
LNC Logical Observation Identifier Names

and Codes, 2.17,2006
Thesaurus (used for indexing and

retrieval of biomedical literature)†
no no no yes

NOC Nursing Outcomes Classification,
1997

Nursing (currently used primarily for
clinical documentation and
research)

yes no no no

DSM4 Diagnostic and Statistical Manual of
Mental Disorders. 4th ed., 1994

Diagnoses/clinical problems/signs
and symptoms

yes no yes no

ICD10 International Statistical Classification
of Diseases and Related Health
Problems, 1998

Diagnoses only yes no yes no

ICD9CM International Classification of
Diseases, 9th Revision, Clinical
Modification, 2007

Diagnoses and procedures yes no yes no

NIC Nursing Interventions Classification,
2005

Nursing (currently used primarily for
clinical documentation and
research)

yes no yes no

ICPC International Classification of
Primary Care, 1993

Diagnoses/clinical problems/signs
and symptoms

yes no yes no

Scale-free networks, which are characterized by a power law distribution in average node degree, have a small number of highly-connected
hubs. Small-world networks have a short average path length and strong clustering at the neighborhood level.
*In UMLS documentation,24 NCBI was listed under the category gene names.
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ogies fall into four groups based on scale-free and small-
world properties (Figure 4).

Discussion
At the core of any information system is its schema for
representing data and conceptual knowledge. Many bio-
medical systems rely on rigid taxonomies that impose a
single conceptual framework25 on underlying semantic in-
formation. In the interdisciplinary world of biomedicine,
there is no one ‘correct’ information model, and the hetero-
geneity of terminologies, even those dealing with identical
subjects, cannot be controlled.26 In hopes of using natural
semantic networks to derive design principles for more
flexible biomedical terminologies, one of the goals of this
research is to understand the similarities and differences
between the two.

As we have discussed in a recent review,3 many networks
made from natural language are both scale-free and small-
world. These include networks made from corpora,27 word
association studies in which a human subject is shown a
particular word and is asked to name a related word,2 and
an English-language thesaurus.28 Unlike these natural lan-
guage networks, terminologies are developed for the pur-
pose of standardizing biomedical language for use in sys-
tems and applications. Our research demonstrates that
while terminologies are regarded as synthetic, grid-like
structures, some possess the large-scale structural fea-
tures of natural language networks. This paradoxical
result suggests that it is not solely formal logic-based
semantics that governs terminology structure: Rules anal-
ogous to those governing social networks and biological
systems also shape topology.

To summarize, six of the terminologies exhibited both the
scale-free and small-world properties common in natural
language networks, and 10 exhibited at least one of these
properties. These features were more prevalent in larger
terminologies. Among the eight smallest in terms of nodes,
six had neither scale-free nor small-world features; among
the eight largest, all were either scale-free, small-world, or
both. Small-world and scale-free features were also associ-
ated with a relaxation of specific design constraints: Small-
world terminologies were less restrictive as to the nature of
relationships between entities, while scale-free terminolo-
gies placed no upper limit on connectivity (the number of
nodes to which a given entity can be connected).

The Terminologies Fell into Four Groups Based on
Their Structural Features
The terminologies fell into four groups (Figure 4) based on
their structural features. Half the terminologies exhibited the
small-world characteristics of a short average path length
and strong local clustering. These properties were associated
with terminologies that were not restricted to subsumption
(is-a and broader/narrower) relationships, but which also con-
tained lateral links often signifying an associative relation-
ship.

An overlapping subset of terminologies exhibited a power
law distribution in node degrees, indicative of a scale-free
architecture. This feature was found in comprehensive med-
ical terminologies but not in statistical classifications with

imposed constraints on node connectivity. Constraints in
statistical classifications are intentional; to facilitate the
study of the phenomenon being modeled, they have a
limited number of categories.29 As we will illustrate with
examples, these design constraints result in scale-bound
node degree distributions.

Large-scale Terminological Structure Reflects
Small-scale Design Constraints
The most apparent difference between the terminology
networks was between those having only hierarchical links
and those that contained a mixture of hierarchical and lateral
links. All the vocabularies in our sample had a relatively
short path length when compared with their random net-
works, so they possessed the first qualification for small-
world architecture. However, it was only those terminolo-
gies with lateral links that had strong local clustering, which
is the second requirement. (Since the value of the clustering
coefficient is interpreted in relation to each terminology’s
random network, strong local clustering refers to networks
with various degrees of stronger than random clustering.)

The relationship between lateral links and clustering coeffi-
cient can be illustrated by examining a pair of related
terminologies. While the clustering coefficient for SNMI, the
1998 version of SNOMED, was 0.0024, that for SNOMEDCT
was more than 80 times higher (0.20). This can be explained
by examining the relationship type profiles (see Figure 8,
Appendix F online at www.jamia.org). While 52 percent of
the relationships in the SNMI network are strictly hierarchi-
cal parent/child or broader/narrower links, only 39 percent
of the links in the SNOMEDCT network are strictly hierar-
chical. The average node degree of SNOMEDCT, which is
more than double that of SNMI, also contributes to an
increase in the clustering coefficient.

Although a scale-free architecture is common in many
general-purpose semantic networks,2,3 several terminologies
in our sample (mainly the statistical classifications) did not
exhibit a scale-free topology; they had a distinctive scaling in
average node degree. The scale-bound topology of these
classifications is due in part to the fact that they are, by
design, confined to a limited number of categories.29 Each of
the scale-bound terminologies had a constraint on growth
that accounted for the deviation from the more organic
scale-free connectivity.

The reason for scaling in the node degree distribution of the
two ICD terminologies can be explored by comparing ICD10
with CPT. ICD10 and CPT were remarkably similar in most
measures. They had similar numbers of nodes and links, and
(with the exception of two anomalous source-asserted synon-
ymy relations in CPT) were both comprised entirely of
parent/child relationships. They both had an average path
length near 9.0 and, as DAGs, a clustering coefficient of zero.
The key difference between the two was in the distribution
of node degrees. While the node degree distribution for CPT
was scale-free, that for ICD10 was scale-bound.

To understand this difference it helps to consider the struc-
ture of the ICD framework. In both ICD networks, there is a
disproportionately high number of nodes with exactly 10 or
11 neighbors. The structure of the identifier in ICD has long
included a decimal point followed by one or more digits
from 0 to 9. This has resulted in a strong disincentive, albeit

unintentional, for concepts to have more than 9 or 10
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children. This disincentive manifests as a spike in the
distribution (Figure 1); in ICD9CM, several thousand con-
cepts have exactly 10 or 11 neighbors (9 or 10 children, plus
one parent), while only a few hundred have 12 or 13. It has
been suggested that biomedical terminology developers
should avoid structural constraints that unintentionally limit
the expansion of a terminology.7 This research confirms the
fact that constraints on numeric identifiers can affect the
topology of a network.

Another classification with a scale-bound node degree dis-
tribution is DSM4. The distribution is skewed in part as a
result of the terminology’s association with ICD. Each ver-
sion of the DSM is linked to a corresponding version of ICD;
the fourth version has been coordinated with psychiatric
diagnoses in ICD-10.30 Many of the codes correspond with
one another. DSM4 may thus have inherited its scaled node
degree distribution from ICD.

The two nursing classifications, NIC and NOC, also had
scale-bound node degree distributions. Again, the scaling is
associated with constraints on structure. Both classifications
are partitioned into domains. The structure of NOC will
allow for its eventual expansion to 10 domains and 52
outcome classes, with 99 outcomes per class.31

Among the terminologies that did not have a small-world
architecture, some were scale-free (CPT and NCBI) while
others (DSM4, ICD9CM, ICD10, ICPC, NIC, and NOC) were
not. Both sets were either trees or DAGs. However, CPT and
NCBI had a power-law distribution in average node degree.
This implies that connectivity was allowed to develop
organically; although the developers restricted the types of
relationships to hierarchical (thereby ruling out small-world
features) there was no upper restriction on the number of
concepts to which any given concept could connect. This has
allowed the CPT and NCBI trees to fan out freely. Recent
changes in the Health Level Seven Vocabulary serve to
illustrate the phenomenon of change in large-scale structure
over time. Although the HL7 Vocabulary was not scale-free
as represented in the 2005AA RRF version of the Metathe-
saurus, it is scale-free in the 2007AA RRF version. The
nomenclature in the HL7 Vocabulary now includes entities
of a more diverse range of semantic types, including medi-
cation types, terms pertaining to anatomy, and specific
geographical areas.

The fact that some synthetic terminology networks are
scale-free is a novel finding. Though initiated as tightly
controlled systems, some terminologies have evolved in an
organic-like manner. To our knowledge, this is the first
study that uses graph theoretic approaches and statistics to
establish the increasing relatedness between properties of
large scale terminologies and natural language: Some bio-
medical terminologies, like many networks made from
natural language, have scale-free and small-world features.

Emergent Structural Features Can Affect
Terminology Usability
Terminologies are growing increasingly larger. While they
were once mainly lists of terms with parent/child relation-
ships, now more relationship types are being added and
topological structure is becoming more complex. As the
examples above demonstrate, defined growth constraints

affect the layout of links between entities and therefore
shape a terminology’s emergent large-scale topology. This
topology, in turn, carries implications for the use of the
terminology. Operations conducted in the course of termi-
nology development and maintenance include finding, add-
ing, editing, and deleting concepts. Features of network
topology can help or hinder a user’s ability to perform these
operations.

A small-world architecture implies short average path
lengths and strong local clustering. These features may be
useful when new terms are added. If related words are
already arranged into highly-connected clusters, it should be
easier to identify where a new term should be added. In
terminologies, a short path length also implies an abundance
of lateral links. As terminology developers are aware, these
cross-links provide for efficient navigation. For example,
when searching for the term hay fever in SNMI, which has
other relationship lateral links, it is possible to navigate to the
term via semantically related concepts such as nose, allergens,
and pollen. However, in RCD, it is only possible to navigate
to hay fever via one of its parents, allergic rhinitis, seasonal
allergic rhinitis, or allergic reaction to substance, or via one of its
children, such as hay fever with asthma, or other seasonal
allergic rhinitis. Lateral links thus provide many options for
navigating through the tree.

The existence of lateral links also carries implications when
a term is changed. In SNOMEDCT, the concept diabetes
mellitus is connected to more than 100 other concepts via
other relationship links. By contrast, in ICD9CM, diabetes
mellitus is only connected to a single parent (diseases of other
endocrine glands) and to 10 children, such as diabetes with renal
manifestations. A change to the term in ICD9CM, therefore,
only has immediate effects on the meaning of these 11
neighbors, while any change to the term in SNOMEDCT
subtly affects the meaning of all of these nearby concepts.
This caveat contrasts with the flexibility conferred by inclu-
sion of lateral links.

The unique structural properties of treelike terminologies
have implications for maintenance. One is that the effects of
changes are confined to the immediate neighborhood. The
deletion of a highly-connected hub in a small-world, scale-
free network can affect hundreds or thousands of nodes
throughout the network. If a tree is scale-free, deletion of a
concept can affect many nodes, but the nodes affected will
all be parents, children, or siblings of deleted concept. If the
tree is not scale-free, the deletion will typically only affect a
small number of nearby concepts. Despite this fact, trees are
not as robust as networks with lateral links. Removal of any
non-leaf node (or any link) of a tree will split the tree into
two or more subtrees (for an illustration, see Figure 9,
Appendix G online at www.jamia.org). In addition, the
constraints of a treelike structure restrict link assignment. If
a new concept is added in a tree, it is impossible to assign
links to concepts in other branches, or to concepts more than
one level away. Therefore, the rigid constraints of a treelike
structure confer advantages, but they result in restrictions
on node connectivity and a less robust structure when nodes
are deleted.

Scale-free structure also has implications for terminology
maintenance. A scale-free architecture can help a user iden-

tify a starting place to look for a concept. Highly connected
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hubs, small in number, can serve effectively as landmarks.
As a user delves deeper into the network, there are smaller
hubs at every scale which can also be used for orientation.

Network Modeling Can Be a Tool for Terminology
Developers
Software for visualization and analysis of large networks is
becoming increasingly sophisticated. Some tools allow users
to select nodes and links matching certain criteria and then
to perform operations on the selected nodes. Users can view
networks using a variety of layout algorithms, and zoom in
or out, and display desired levels of detail about nodes and
links. For example, the color of nodes can be assigned based
on node degree, with high-degree nodes assigned a dark
color and low-degree nodes assigned a light color. This
technique highlights areas of high connectivity the network;
areas of low connectivity can then be targeted for mainte-
nance.32 Figure 10 (Appendix H online at www.jamia.org)
contains visualizations of the parent-child relationships in
the 16 terminology networks examined in this research.

Limitations
The results of this research are subject to several limitations.
The data used in this analysis were drawn from the UMLS
Metathesaurus, a collection of terminological resources, and
not directly from the terminologies themselves. Although
the developers of the UMLS have attempted to represent
each source vocabulary as accurately as possible, some
subjective judgments are made when converting each source
into the UMLS standardized database format. Specific limi-
tations are discussed in detail in Appenidx C online at
www.jamia.org.

Future Research
As we have shown in this research, terminology structures
vary depending on design constraints. Although large-scale
network modeling and analysis is not yet widely used in
terminology science, the approaches show some early prom-
ise for visualizing terminology structure, demonstrating the
effects of design constraints on structure, and for terminol-
ogy development and maintenance. There are a number of
compelling possibilities for future research.

First, although this research focused on a set of techniques
that have been widely applied in the study of large net-
works, other topological measures and modeling techniques
may be equally valuable. For example, inclusion of link
directionality in models would allow for a more detailed
analysis of local topological features such as motifs. Other
techniques can be used to understand multiple structural
patterns that may occur within any given terminology. One
could assign weights or ordinal values to entities and links,
create subnetworks of nodes and links of specific types, and
then use cohesive subgroup detection algorithms to identify
clusters of related entities. These techniques could be used to
investigate unexpected results; for example, the fact that the
SNMI network is scale-free even though, like ICD9CM, it
uses a constrained scheme for its identifiers. One could also
investigate whether specific types of lateral links are in fact
strictly hierarchical.

Second, terminology metadata, such as age and number of
participants, could be used to study the effects of social
processes on structure. We suggest that mature terminolo-

gies with multiple contributors, having developed according
to more organic processes, would be more likely to have
scale-free and small-world features. These data could be
combined to develop a fully automated classifier of a
terminology as organic or synthetic.

As we have demonstrated, further research is needed to
determine whether particular structural features are associ-
ated with flexibility. It is not yet clear how these features can
benefit specific terminological functions such as billing sup-
port, coding for electronic health records, and computer-
assisted decision support. Given the need for deterministic
and reliable operations in biomedical information systems, it
would be worthwhile to investigate the implications of
highly-connected hubs, dense communities of nodes, and
cycles, on computational tractability.

Conclusion
Although biomedical terminologies are initiated as tightly
controlled systems, some have the scale-free and small-
world structural features found in networks made from
natural language. This paradoxical result suggests that it is
not solely formal logic-based semantics that governs termi-
nology structure: Rules analogous to those governing social
networks and biological systems also shape topology. In
biomedical terminologies, multiple link types and unre-
stricted node connectivity are associated with small-world
and scale-free features, respectively. These features allow for
efficient navigation and organic growth. Conversely, restric-
tions to hierarchical links and limits on node connectivity,
which are common in statistical classifications, localize the
effects of changes and deletions; however, these restrictions
also result in synthetic structures that are less robust than
organic networks. Since terminology networks with organic-
like scale-free properties are particularly sensitive to the
retirement of highly connected nodes, we propose that
change management policies for scale-free terminologies
should include additional procedures for altering highly-
connected components of the network. Deeper understand-
ing of terminology structure is a key next step in encourag-
ing the development of increasingly flexible, scalable, and
useful biomedical terminologies.
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