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Collection of Cancer Stage Data by Classifying Free-text
Medical Reports
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A b s t r a c t Cancer staging provides a basis for planning clinical management, but also allows for
meaningful analysis of cancer outcomes and evaluation of cancer care services. Despite this, stage data in cancer
registries is often incomplete, inaccurate, or simply not collected. This article describes a prototype software
system (Cancer Stage Interpretation System, CSIS) that automatically extracts cancer staging information from
medical reports. The system uses text classification techniques to train support vector machines (SVMs) to extract
elements of stage listed in cancer staging guidelines. When processing new reports, CSIS identifies sentences
relevant to the staging decision, and subsequently assigns the most likely stage. The system was developed using
a database of staging data and pathology reports for 710 lung cancer patients, then validated in an independent
set of 179 patients against pathologic stage assigned by two independent pathologists. CSIS achieved overall
accuracy of 74% for tumor (T) staging and 87% for node (N) staging, and errors were observed to mirror
disagreements between human experts.
� J Am Med Inform Assoc. 2007;14:736–745. DOI 10.1197/jamia.M2130.
Introduction
Cancer stage categorizes the size and location of the primary
tumor, the extent of lymph node involvement, and the
presence or absence of metastatic spread to other body parts.
The clinical management of most cancers according to
evidence-based guidelines1 is dependent on the stage of
disease at diagnosis, and documentation of cancer stage at
diagnosis is increasingly being recommended as a standard
of care by national cancer bodies.

International standards for cancer staging have been devel-
oped, such as the TNM (Tumor Node Metastases) standard
defined by the American Joint Committee on Cancer (AJCC)
and International Union Against Cancer (UICC), summa-
rized in Table 1.2

Apart from the important role played by cancer staging in
the clinical management of individual patients, there is
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increasing acknowledgement that outcomes analysis of can-
cer management or intervention programs on a population,
governance, or facility level is meaningful only if interpreted
in the light of this major prognostic factor. As the main
population-based data repositories, cancer registries have
moved to incorporate clinically relevant fields such as cancer
stage to enable more accurate and useful outcomes analysis.
Despite these changes, stage data in registries is still com-
monly absent or incomplete. After four years of mandated
stage data collection for prostate cancer by the Maryland
Cancer Registry, data were still missing in 13% of cases on
average, and up to 20% in some regions.3 A similar study in
the Ottawa Regional Cancer Centre found missing staging
information in 10% of lymphoma cases and 38% of breast
cancer cases.4 An earlier study at that center showed that
mandated stage data collection across all cancer types led to
complete stage data being available for 71% of cases on
average.5 Organized stage data collection as undertaken in
these two North American centers is in contrast to many
other regions. For instance, in 2005 the National Cancer
Control Initiative reported that there was no ongoing pop-
ulation-based collection of staging information in any Aus-
tralian state or territory.9

Even when collected, there is evidence that stage data are
often inaccurate. A study of demographic differences in
prostate cancer staging in Connecticut found that 23% of
cases in the registry were incorrectly coded,6 because of
either incomplete medical records or staging errors. A
review of lung cancer stage data in the Maastricht Cancer
Registry in the Netherlands found major discrepancies in
12% and minor discrepancies in 23% of cases.7 Many of these
were caused by incorrect application of staging guidelines,
as well as data entry errors. Similarly, a review of stage data

in Ottawa Regional Cancer Centre found staging errors
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occurred in 2% to 5% and data entry error in 3% to 6% of all
cases.5 There were differences between registry stage and
stage as determined from available clinical information in
31% of lymphoma and 8% of breast cancer cases.4

When not obtained directly from clinicians prospectively, it
is possible to perform retrospective staging based on re-
trieved medical records. A Nottingham prostate cancer
study that retrospectively assigned stage using case notes
showed that stage information regarding the primary tumor
(T stage) could be abstracted for 96% of cases; however, only
limited information was available for staging lymph node
and metastatic involvement (N and M stage).8 The Western
Australian Cancer Registry feasibility study of staging from
medical records for 20 cancer types found that, under
various assumptions, stage data could be collected using
current data sources for seven cancer types, but were not a
feasible or required system change for the others.9 The same
group subsequently undertook a project to retrospectively
collect stage data for all colorectal cancer cases over a
one-year period.10 They were able to fully stage 76% of cases
from available data sources (pathology reports, case notes,
hospital registries, etc.), and a further 22% of cases if M stage
was omitted. A study in which stage data were retrospec-
tively sourced from medical reports was used to monitor
cancer outcomes for indigenous Australians in the Northern
Territory.11

Therefore, although staging is a recognized component of
providing quality cancer care, data on stage often are
incomplete, inaccurate, or not recorded. Furthermore, al-
though it is possible to retrospectively retrieve data from
available medical reports, doing this manually can be time
and labor intensive.

Motivated by these limitations, we developed CSIS (Cancer
Stage Interpretation System), a prototype software system to
assign cancer stage data by automatically extracting relevant
information from free-text medical reports stored in clinical
information systems. CSIS could be used by a cancer registry
to support collection of staging information for those pa-
tients not formally staged by human experts, allowing more
comprehensive population-level analysis of outcomes. Al-
ternatively, if deployed at the point of reporting, it has the
potential to improve the efficiency and consistency of stag-
ing by clinicians. Although the system was developed on
lung cancer data available to us, it could in principle be

Table 1 y Summary of the TNM Staging Protocol2

T: Primary Tumor X Primary tumor cannot be assessed
0 No evidence of primary tumor
is Carcinoma in situ
1,2,3,4 Increasing size and/or local extent

of the primary tumor
N: Regional Lymph

Nodes
X Regional lymph nodes cannot be

assessed
0 No regional lymph node metastasis
1,2,3 Increasing involvement of regional

lymph nodes
M: Distant Metastasis X Distant metastasis cannot be

assessed
0 No distant metastasis
1 Distant metastasis
applied to stage other cancer types. For an individual
patient, input to the system consists of textual reports
describing pathology tests. The objective is to estimate
pathologic stage by applying machine learning text catego-
rization techniques.12 Because metastatic lung cancer is
defined as involvement of other organs, it is not usually
assessable from pathological studies of the lung; therefore,
the current system does not attempt to determine the M
stage.

Previous work investigated direct classification of the cancer
stage using binary support vector machines (SVMs) operat-
ing on the concatenated reports of a given patient,13,14

essentially posing the problem as document-level topic
categorization.12 Although results were promising, there
was a need to improve system performance. Furthermore,
the direct report-level stage classification meant it was not
possible to detail reasons for the stage classification, which
was desirable to interpret errors and build user trust.
Traditional topic categorization models a document as a
collection of words representing a number of topics. Al-
though this is an appropriate model for tasks such as news
report categorization, it does not well fit the current task. A
better model of medical reports is a sequence of specific
statements relating to different diagnostic factors. With this
motivation, the system proposed in this article instead
determines the stage indirectly, by first determining the
presence or absence of specific staging factors using sen-
tence-level classifiers. The staging protocol, such as shown
in Table 1, is then applied to assign the most advanced stage
associated with a positive finding. As well as potentially
improving the accuracy of the eventual stage assignment,
decomposing the stage in this way declares reasons behind
the decision, linked to the supporting sentences.

Background
This article presents a system to automatically extract cancer
stage information using text categorization techniques.
Other researchers have previously presented automatic can-
cer staging algorithms using high-level structured input
data coding major diagnostic factors for cervical, ovarian,
and prostate cancer.26–31 Other than these automatic meth-
ods, software has been developed for staging with synoptic
data entry forms,32,33 as well as converting between differ-
ent staging protocols.33

In previous work, we reported a novel approach to auto-
matic staging by direct report-level classification of the stage
from free-text histology reports using SVMs and a bag-of-
words representation.13,14 By using available free-text re-
ports rather than relying on expert coding, the approach
allowed for broader applicability than previous staging
software, particularly for retrospective data collection and
when access to expert knowledge of staging is limited. A
review of the literature on medical text categorization has
been presented,13 and is summarized here. Traditionally,
text categorization is the task of determining whether a
given document belongs to each of a predefined set of
classes.12 Most recent research has concentrated on ma-
chine learning approaches, which automatically build
classifiers by learning the characteristics of each category
from a set of preclassified documents.12,15 These most
commonly use a bag-of-words document representation

and SVM classifiers,16,17 although many other classifiers
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have been investigated.12,18–20 Within the medical domain, a
number of comparative studies21,22,25 have demonstrated that
SVMs outperform other classifier types across a range of
medical text classification tasks.

The system proposed in this article builds on prior work13,14

by determining the presence or absence of specific staging
factors using a two-level sentence classification approach.
For each factor from the staging guidelines, sentences are
first classified for relevance and then as either a positive or
negative finding. There has been little prior work in the text
classification literature where the unit of classification is
smaller than the entire document; however, related ap-
proaches have been proposed for extractive text summari-
zation. Such systems generally include a step in which a
subset of important sentences is classified from a document
using various features, such as sentence length or location,
as well as term frequencies.34,35 A double classification
methodology, in which sentences are first classified as
containing relevant information or not, and then terms of
interest are classified from within these relevant sentences,
has been proposed.37 In other related work, sentences from
Medline abstracts were accurately categorized according to
four types using a sentence-level bag-of-words SVM.36

System Description
Architecture
Figure 1 shows the high-level architecture of the proposed
system. The system components are described in the follow-
ing subsections. CSIS is a prototype software system imple-
menting these components in a command-line application,
which inputs a list of patients with corresponding free-text
report files, and outputs an XML file with the derived
staging metadata. More specific implementation details,
such as SVM training methods, follow under SVM Imple-
mentation in the section on System Development. The
system uses a text preprocessing stage to standardize report
texts, followed by SVM T and N relevance classifiers that
assess the relevance of each report to staging tasks. Sen-
tences from relevant reports are then each analyzed by a
series of SVM-based and rule-based classifiers correspond-
ing to specific contributing factors defined in the staging

Table 2 y Example Output of Each Text Preprocessing
Step 1 There is
Step 2 There is
Step 3 E0060550 E0012152
Step 4 E0060550 E0012152
*In this case, the original eight-word sentence is mapped into a sequence
guidelines. Sentence-level classifier results are postpro-
cessed to determine the final T and N stage.

Text Preprocessing
The purpose of text preprocessing is to standardize the
report texts and to decrease variability by encoding common
terms or phrases using a biomedical dictionary, the Unified
Medical Language System (UMLS) SPECIALIST Lexicon.38

The text preprocessing system in the current system is based
on that reported by McCowan et al.,13 and consists of four
steps: (1) normalization, (2) detection of negation phrases,
(3) conversion to UMLS SPECIALIST term codes, and (4)
negating relevant terms. The steps implementing normaliza-
tion and conversion to UMLS SPECIALIST term codes are
described in our previous work.13 As in the prior work, the
NegEx algorithm23,24 was used to detect negation phrases.
In the current system, the list of approximately 1,400 terms
considered for negation in Step 4 comprised terms occurring
in at least five reports in the development data set. Negation
phrase codes inserted in Step 2 are removed after they have
been applied to surrounding terms. Table 2 shows example
output of each step.

Report Relevance Classification
Pathology reports for lung cancer often contain insufficient
macroscopic detail to enable T or N staging. Most reports on
small lung biopsy samples, in which the emphasis is on
microscopic findings, fall into this category. The purpose of
relevance classification is to identify which of a patient’s
reports are not useful for T or N staging so they are excluded
in subsequent steps. If all reports for a patient are classified
as irrelevant to T or N staging, then the patient is automat-
ically assigned a stage of TX or NX, respectively. T and N
report relevance classifiers are implemented using SVMs
that classify a bag-of-words representation of each report.

Stage Detail Classifiers
The proposed classification strategy (see Figure 1) uses
sentence-level classifiers corresponding to specific factors
from the staging guidelines. Examples of factors influencing
a T stage assignment are the maximum dimension of the
tumor and whether it invades the main bronchus or chest
wall. Factors that affect a particular N stage assignment are

F i g u r e 1. Proposed system
high-level architecture.
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of four input terms for subsequent classification.
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related to tumor involvement of particular anatomical
lymph node groups (e.g., peribronchial, mediastinal, etc.).

The system starts with a default stage of T1/N0 (and thus
assumes patients are known to have lung cancer) and
upgrades this to the highest stage associated with any of the
factors classified as positive across all sentences for that
patient. Factors classified as negative are not explicitly taken
into account when assigning the final stage.

Table 3 lists the sentence-level classifiers that were imple-
mented, along with their type. All classifiers use keyword
filtering as a first step to eliminate entirely unrelated sen-
tences (e.g., a sentence must contain a dimension for it to be
input to the tumor size classifier). Most sentence-level clas-
sifiers use a two-level SVM approach, in which a first-level
SVM classifies a sentence as being either relevant (i.e.,
supports either a positive or a negative finding) or irrelevant
to the factor in question. A relevant sentence is then classi-
fied as supporting a positive or a negative finding by the
second-level SVM.

Individual two-level SVM classifiers were implemented for
tumor size (TS) as well as for each type of lymph node
involvement (PLN, HLN, MLN, SCLN; Table 3 defines these
classifier short names). For staging factors related to inva-
sion of body sites by the primary tumor, a common “inva-
sion” classifier was implemented. Each sentence is prepro-
cessed to convert the UMLS SPECIALIST lexicon term
representation of relevant body parts (e.g., visceral pleura,
chest wall, etc.) to a common “_BODYPART_” term. A
similar transformation is applied to tumor terms (e.g., mass,
lesion ¡ _TUMOUR_) and to terms/phrases implying in-
vasion (e.g., involves, extends into ¡ _INVADE_). Each
transformed sentence is then input to a common two-level
SVM classifier as described above. For sentences classified as
positive by the two-level SVM, a rule-based postprocessing
step examines the untransformed version of the sentence to
discover the particular body part that is undergoing inva-
sion by the primary tumor.

Because of lack of positive examples in development data
set, the SEPN (defined in Table 3) was implemented as a

Table 3 y List of Sentence-Level Classifiers Used in th
Classifier

Max. tumor dimension � or �3 cm
Visceral pleural invasion
Main bronchus invasion
Chest wall invasion
Diaphragm invasion
Mediastinal pleural invasion
Parietal pericardium invasion
Great vessel invasion
Mediastinum/heart/trachea/esophagus/visceral pericardium inva
Vertebral body/carina/vagus nerve invasion
Separate tumor nodules in same lobe
No nodal involvement
Peribronchial lymph node involvement
Hilar lymph node involvement
Mediastinal lymph node involvement
Subcarinal lymph node involvement

*Common two-level SVM classifier with postprocessing to determi
rule-based classifier that searches for phrases implying the
existence of secondary tumor deposits in the same lobe.
Similarly, the NONM searches for blanket statements com-
monly used by reporting pathologists to indicate that no
lymph nodes are involved by the cancer. A positive finding
from this classifier overrides the other N-stage factor deci-
sions.

System Development

Development Corpus
To train and validate the system, a corpus of deidentified
medical reports with corresponding pathological staging
data was obtained after research ethics approval. The patho-
logical staging data were obtained from a database41 col-
lected over the five-year period ending in December 2005.
The corresponding medical reports were extracted from a
pathology information system. A total of eight cases from
the available data sources had pathological stages of T0, TX,
Tis, or N3. Automatic classifiers for these stages were
therefore not implemented, and cases with those stages were
omitted from the corpus. The development corpus statistics
are included in Table 4.

Training sets for the report relevance classifiers described
above under Report Relevance Classification were derived
from the development corpus by annotating each of the
reports with a relevant/irrelevant label for both T and N
staging.

A separate training set was derived from the development
corpus for each of the sentence-level factor classifiers de-
scribed above under Stage Detail Classifiers by splitting all
reports into individual sentences, filtering out irrelevant
sentences using the keyword filter for that classifier, and
then annotating remaining sentences with one of three labels

osed System
Short Name Stage Association Classifier Type

TS T2 2-level SVM
VP T2 Invasion SVM*
MB T2 Invasion SVM*
CW T3 Invasion SVM*
DIA T3 Invasion SVM*
MEDP T3 Invasion SVM*
PPER T3 Invasion SVM*
GV T4 Invasion SVM*
T41 T4 Invasion SVM*
T42 T4 Invasion SVM*
SEPN T4 Key-phrase
NONM N0 Key-phrase
PLN N1 2-level SVM
HLN N1 2-level SVM
MLN N2 2-level SVM
SCLN N2 2-level SVM

or.

Table 4 y Key Statistics for the Development Data Set
Data Cases Stage Breakdown Reports

Pathology reports � pTNM 710 T1 204 NX 57 817
T2 405 N0 432
T3 52 N1 149
e Prop

sion
T4 49 N2 72
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(irrelevant, �ve finding, �ve finding). Note that direct
classification of NX was not done because this result was
derived from the N report relevance classifier output.

SVM Implementation
The bag-of-words term weights used for text representation
with all SVMs throughout the baseline and proposed sys-
tems were calculated according to the LTC weighting
scheme.39 The LTC weighting scheme is commonly used in
state-of-the-art text categorization systems because it effec-
tively de-emphasizes common terms (occurring often in
many documents), produces normalized weights across
different-length documents, and reduces the impact of large
differences in frequency through use of the logarithm.

A common training strategy was used with all SVM-based
classifiers. A cross-validation approach was used to opti-
mize SVM training parameters and decision threshold and
to obtain unbiased classifier output over the entire develop-
ment training set. The SVMlight 40 toolkit was used for all
SVM training and testing. The optimal parameters discov-
ered through cross-validation were used to train a final
classifier on all training data. Decision thresholds were
selected by cross validation to equalize sensitivity and
specificity. No attempt was made to adjust individual clas-
sifier decision thresholds to optimize the global T and N
staging accuracy.

Development Results
Unbiased classifier outputs from the report relevance clas-
sifiers and the sentence-level staging factor classifiers de-
scribed above were merged to obtain final T and N staging
results on the 710-case development set. For T staging, 77.6%
correct (95% confidence interval [CI] � 74.3 to 80.6)1 was
obtained for classifying the five T stages (TX, T1 to T4). For
N staging, 81.8% correct (95% CI � 78.8 to 84.6) was
obtained for classifying four N stages (NX, N0 to N2).

To compare the sentence-level classification with the previ-
ous direct report-level approach, a multiclass SVM system
was used as a baseline. This approach directly classifies T
and N stage from a concatenation of reports for each patient,
with the multiclass classification implemented as a hierarchy
of binary SVMs, and is fully described.14 As TX and NX
classes were not considered,14 to allow direct comparison of
results, the baseline system was augmented with the T and
N report relevance classification stage from the current
proposed system. On the same 710-case development set,
baseline system performance was 62.8% (95% CI � 59.1 to
66.4) and 77.0% (95% CI � 73.7 to 80.1) correct for T and N
staging respectively. This was used as the baseline system in
the trial evaluation described in the following sections.

These development results indicate that accuracy has been
improved by decomposition into sentence-level staging factor
classifiers, as opposed to the more conventional document-
level approach that directly classifies final T and N stages.

Status Report
To evaluate the reliability of the proposed system, a trial was
conducted as described in the following sections. Some

1All 95% confidence intervals reported in this article are calculated

using the Wilson procedure.
findings from this trial were presented in preliminary
form.42

Trial Objectives

1. To study the level of agreement in expert staging decisions.
Subjectivity in the stage decision may arise from incon-
clusive examinations, varying interpretations of staging
criteria, or ambiguity in the way the results are commu-
nicated. The first objective of the trial was to quantify the
degree of variability between two independent human
experts.

2. To evaluate the performance of automatic staging decisions.
The second purpose of the trial was to evaluate the
performance of the automatic cancer stage assignment, in
comparison to a gold standard based on the same input
information. For this purpose the gold standard consisted
of stage independently assigned in perfect agreement
between two human experts. For the few cases in which
human experts disagreed, one expert’s decision was
selected at random as the gold standard.

3. To evaluate the reliability of classifying key stage factors.
Finally, in addition to overall T and N stage assignments,
we evaluated how well the system classified specific
factors based on key sentences in relation to the human
experts.

Method
Input Data

The trial data set consisted of pathology reports for lung
cancer cases that were not seen during the development
phase, and was extracted from the same pathology informa-
tion system as the development data set. The trial set
consisted of reports for 116 cases that had been assigned a
formal pathologic stage in the eight-month period subse-
quent to December 2005, along with 63 unstaged cases that
had a report describing examination of a lung or lobe from
a pneumonectomy or lobectomy procedure.

Output Data
Two expert pathologists competent in lung cancer staging
were presented with the deidentified reports for the 179
patients. They then independently classified the TNM stage
and specific factors (from Table 3) for each patient and
entered the data into an electronic form. Form validation
required the pathologists to enter T and N stages; however,
default values were set for all other data fields (M stage of
MX, and negative for all other details). A text box was also
provided on the form to allow any free-text comments to be
entered.

To determine the gold standard TNM stage for system
evaluation, after independent data collection from the pa-
thologists, a meeting was convened to discuss cases in which
the experts differed in the assigned TNM stage. In this
meeting, a consensus TNM stage was assigned by the
experts for as many cases as possible. If consensus was not

Table 5 y Interexpert Agreement for T and N Staging
Stage Kappa % Agreement (95% CI)

T 0.83 89.9 (84.3–93.8)

N 0.96 97.8 (94.0–99.3)
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reached for a case, due to ambiguity in the report language
or staging guidelines, the two different TNM stages were
retained.

System output consisted of the T and N stage, along with the
output of the detail classifiers from Table 3. To preclude bias,
processing of the trial data was performed by technicians
independent of the development team investigators so that
investigators were blind to the trial data set.

Performance Measures
The following defines the measures used to evaluate results
based on the total number of patients (N), along with counts
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) resulting from classification
decisions. To evaluate the overall performance of the system
for T and N staging, multiclass classification performance is
measured using the accuracy,

Acc �
TP

N

Agreement between human experts was measured by the
kappa statistic, which takes account of agreement occurring
by chance

Kappa �
P(A) � P(E)

1 � P(E)

where P(A) is the observed agreement, and

Table 7 y Interexpert Agreement for Detailed Staging
Factors*

Expert 1 vs. Expert 2

Agree Disagree

Stage Classifier YY NN YN NY Kappa

T TS 96 80 1 2 0.97
VP 63 109 2 5 0.92
MB 0 173 6 0 0.00
CW 5 171 2 1 0.76
DIA 0 179 0 0 N/A
MEDP 0 176 3 0 0.00
PPER 0 178 0 1 0.00
GV 0 179 0 0 N/A
T41 2 170 1 6 0.35
T42 0 179 0 0 N/A
SEPN 8 161 5 5 0.59

N NONM 76 71 19 13 0.64
PLN 27 146 6 0 0.88
HLN 23 150 2 4 0.87
MLN 12 165 2 0 0.92
SCLN 6 172 1 0 0.92

Table 6 y Confusion Matrices Comparing T and N Sta
Expert 2

T1 T2 T3 T4

Expert 1
T1 49 0 2 0
T2 1 94 3 2
T3 0 3 7 2
T4 0 5 0 11
*See Table 3 for classifier name definitions.
P(E) � �
c�1

C N1(c)

N

N2(c)

N

is the agreement expected by chance, where N1(c) is the
number of times annotator 1 selected class c. Binary classi-
fication performance is measured using the sensitivity and
specificity.

Sens �
TP

(TP � FN)
; Spec �

TN

(TN � FP)

The confusion matrix is a two-dimensional tabulation of
frequency counts according to assigned (test) class labels
and actual (gold standard) class labels. By highlighting
commonly occurring class confusions, the confusion matrix
is a useful tool for analyzing multiclass classification sys-
tems.

Results
Expert Agreement

The interexpert agreement is shown in Table 5 in terms of
the kappa statistic and raw percentage agreement for T and
N staging on the complete 179-case trial data set. The
breakdown of cases by stage is shown in the confusion
matrix in Table 6.

The confusion matrices show there were 18 T-stage and four
N-stage disagreements between the experts. In the subse-
quent meeting to determine gold standard stage data for
system evaluation, as explained in the previous section, the
experts were able to reach consensus for 10 of the 18 T-stage
cases and all four of the N-stage cases. Two different T-stage
assignments were retained for the remaining eight cases.

The interexpert agreement for each of the detailed staging
factors is shown in Table 7. A Kappa value of N/A (Not
Applicable) indicates no instances found by experts (divi-
sion by zero). Numbers for advanced T stage factors were
small, so the significance of results for these factors is not
clear.

System Performance
Performance was evaluated against the gold standard of
human expert stage assignments. As described above, the
experts reached consensus on the T stage in only 171 cases.

Table 8 y Accuracy of System with Respect to
Experts for T and N Stage

Accuracy % (95% CI)

Stage Cases Baseline Proposed

T 179 62.6 (55.0–69.6) 74.3 (67.1–80.4)

signed by Experts 1 and 2
Expert 2

NX N0 N1 N2

Expert 1
NX 16 1 0 0
N0 0 107 1 2
N1 0 0 35 0
N2 0 0 0 17
ge As
N 179 76.5 (69.5–82.4) 86.6 (80.5–91.1)
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N stage consensus was attained for all 179 cases. For each of
the remaining eight cases without T-stage consensus, one of
the expert stage decisions was selected at random as the
gold standard. Overall T and N stage accuracy with respect
to the expert staging for a baseline system that classifies the
stage directly from the concatenated reports for each patient,
as described under Development Results in the System
Description, as well as for the proposed CSIS is shown in
Table 8. The breakdown of cases by stage is demonstrated in
the confusion matrix in Table 9.

The performance of CSIS on cases with perfect expert
agreement3 for each of the detailed staging factors in terms
of sensitivity, specificity, accuracy, and kappa statistic is
shown in Table 10. Again, the significance of results for
advanced T factors is not clear due to low numbers of
positive examples.

A final point regarding system performance is the incurred
processing time. For each report, on a single processor 3
GHz Pentium 4 PC, the report-level baseline system re-
quired 1.14 seconds, whereas the sentence-level proposed
system required 1.20 seconds. In both cases, the major
component was the text preprocessing stage, which required
approximately 1 second.

Discussion
Trial Objectives

To Study the Level of Agreement in Expert Staging
Decisions

The comparison between the stages assigned by the two
experts shows that there is a degree of subjectivity in
determining a patient’s T and N stage based purely on the
available pathology reports, particularly for the T-stage
decision. After initial coding, there were 18 disagreements
between Experts 1 and 2 for T staging on the full 179 patient
set, and four disagreements for N staging. The confusion
matrices in Table 6 show that the most common confusions
were between T2 and T3, and T2 and T4. These findings
broadly correspond with agreement levels found in reviews
of registry data.4–7 After discussion between the two ex-
perts, consensus was reached on 10 of these T stages, and all
four N stages. The 10 original T-stage disagreements were
attributed to six reports with ambiguous language and four
interpretation errors. The four original N-stage disagree-
ments were attributed to two data entry errors, one inter-
pretation error, and one report with ambiguous language.

3It was not feasible to resolve disagreements on detailed staging

Table 9 y Confusion Matrix Comparing T and N Stage
System

T1 T2 T3 T4

Experts
T1 39 10 0 1
T2 6 80 2 13
T3 0 7 2 1
T4 1 5 0 12

2Because there were no gold-standard cases, TX results are not repor
TX cases.
factors in the post-trial consensus meeting.
The remaining eight T-stage decisions on which no consen-
sus could be reached consisted of four cases in which the
staging guidelines are ill-defined for distinguishing a single
primary tumor from multifocal tumors (leading to T2M1
and T4M0 stage confusion), and four cases in which the
report was imprecise regarding tumor extent (leading to
T2/T3 confusion).

To Evaluate the Reliability of Automatic Staging
Decisions

CSIS had T-stage accuracy of 74% and N-stage accuracy of
87% on the trial data. This represents an improvement of
approximately 10% over the previous baseline system for
both T and N staging. These results are similar to those
observed on the development data set (see Development
Results under System Description). In general, higher accu-
racy for N stage as compared with T stage mirrors the trend
observed in the expert disagreements, and the CSIS confu-
sions predominantly occurred between the same advanced T
stages as for the human experts.

To Evaluate the Reliability of Classifying Key Stage
Factors

The results in Table 10 show that agreement between CSIS
and the experts for individual key stage factors also follows
the same patterns observed between human experts in Table
7. The sentence-level factor classifier results in Table 10
explain the reasons for CSIS stage errors. Confusion between
T1 and T2 cases (observed in Table 9) is due to both
false-positive findings for the tumor size (TS) classifier and
to the imperfect sensitivity and specificity of the visceral
pleural invasion (VPI) classifier. Erroneous T3 and T4 stage
classifications are mostly due to the chest wall invasion
(CW) and the SEPN (separate tumor nodules in same lobe)
classifiers. The lower performance for those factors is con-
sistent with both their rarity and the subjectivity seen in the
corresponding expert decisions, as shown in Table 7.

Higher accuracy for N-stage sentence-level factor results are
likely to reflect the higher prevalence of N-stage factors than
T-stage factors in the reports; however, there is substantial
agreement between the automatic classifiers and the experts
for all N-stage factors. As seen in the confusion matrix in
Table 9, most of the system-level N-stage errors are false-
positive findings of N0. These result from false-negative
findings from the lymph node involvement classifiers (HLN,
PLN, MLN, and SLN) coupled with false positives from the
NONM classifier.

Other Considerations and Limitations
CSIS has been developed and evaluated for T and N staging

gned by Experts and the Proposed System2

System

NX N0 N1 N2

Experts
NX 10 6 1 0
N0 2 105 0 1
N1 0 8 27 1
N2 0 3 2 13

wever, the system was successful in not inserting any false positive
Assi

ted; ho
of lung cancer based on reports from pathological studies of
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the lung, as proof-of-concept to determine the potential
accuracy of an automatic system. There are several issues to
be addressed for the system to be generalized to other
cancers, or to process other input modalities before deploy-
ment in practice.

The current system was developed on a specific data set, and
there is a risk that over-fitting may limit broader application.
Using more complex natural language processing, richer
medical terminologies (SNOMED CT, MetaMap), as well as
larger and more varied training data sets may improve the
generalization and portability of classifiers to new cancers or
reporting modalities.

A practical consideration is the expert time required for
training SVM classifiers during system development. This
involves annotation of sentences for each staging factor,
which was done manually by the development team in the
current system. It is estimated that the present lung cancer
system involved up to 40 hours of annotation work during
development. Although this is not negligible, it must only be
done once for each new cancer type, and is therefore not a
major concern given eventual productivity gains from auto-
matic stage data collection. Ongoing research is investigat-
ing methods for reducing annotation work in several ways,
such as by identifying reusable classifiers across different
cancers (e.g., tumor dimension, or the common invasion
classifier in the present system), analyzing convergence with
training set size, and using active learning.

Another practical consideration is the need to automatically
discard irrelevant reports. The report relevance stage in the
current system discards reports with no information for T or
N staging, leading to TX or NX classifications. The system,
however, assumes the input reports do relate to lung cancer.
This has been achieved in the development and trial data
sets by filtering on report metadata (e.g., disease codes,
examination type) from the source databases; however, a
practical system may require a more general report filtering
stage.

Much analysis of cancer outcomes is based on the higher-

Table 10 y Performance of System for Classifying Deta
Experts vs. System

Agree Disagree

Stage Classifier YY NN YN N

T TS 93 67 3
VP 55 96 8
MB 0 171 0
CW 3 170 2
DIA 0 179 0
MEDP 0 176 0
PPER 0 178 0
GV 0 178 0
T41 0 170 2
T42 0 179 0
SEPN 5 148 3

N NONM 61 67 15
PLN 23 141 4
HLN 20 143 3
MLN 9 162 3
SCLN 5 171 1
level group stage, rather than the TNM stage. Because CSIS
was developed on pathology reports and M staging is
usually determined clinically or by medical imaging, M
staging was omitted and CSIS therefore cannot output a
proper group stage. Some indication of potential group
stage accuracy can be given by assuming a known M stage.
For all M0 cases with expert agreement on group stage from
the trial, the present system attains an accuracy of 76.7%
across Stages I–III (163 cases, Stage IV could not be assessed
as it is defined as M1 with any T and N). Future work will
investigate adaptability to using additional input sources,
e.g., radiology or non-lung pathology reports, to determine
M stage.

Conclusions
We developed a prototype software system to automatically
determine a patient’s cancer stage from medical reports of
lung cancer patients. The system uses SVM classification
techniques to classify a range of detailed staging factors at
the sentence level, and then combines these into a global
stage decision. CSIS was compared against direct report-
level classification and against staging by two independent
pathology experts. The following conclusions can be made:

1. There is a significant level of disagreement in stage
assigned by independent human experts based on pathol-
ogy reports, particularly for T staging.

2. In comparison with human experts, CSIS achieved over-
all accuracy of 74% for T staging and 87% for N staging.

3. The two-level sentence classification approach improves
on previous direct report-level stage classification by
approximately 10% for both T and N staging.

4. The CSIS error pattern mirrors that observed between
two independent experts.

The level of accuracy required for practical deployment of
such a system would necessarily depend on the use case,
and whether it involved a step of human validation. The
results achieved do, however, lie within bounds of human
staging accuracy observed in studies of registry data.4–7 A
productive avenue of research may be to improve the

Staging Factors

Sensitivity Specificity Accuracy Kappa

0.97 0.84 0.91 0.81
0.87 0.88 0.88 0.74
1.00 0.99 0.99 0.00
0.60 0.99 0.98 0.66
1.00 1.00 1.00 N/A
1.00 1.00 1.00 N/A
1.00 1.00 1.00 N/A
1.00 0.99 0.99 0.00
0.00 1.00 0.99 0.00
1.00 1.00 1.00 N/A
0.62 0.92 0.91 0.34
0.80 0.94 0.87 0.74
0.85 0.97 0.95 0.81
0.87 0.95 0.94 0.77
0.75 0.98 0.97 0.73
0.83 0.99 0.99 0.83
iled

Y

13
13
2
1
0
0
0
1
0
0

13
4
5
7
3

sensitivity of the N-stage detail classifiers through more
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sophisticated natural language processing techniques. The
limitations with the T staging system mostly reflect uncer-
tainty in the report language, as well as the fact that the stage
protocols do not cater to every contingency for more ad-
vanced cancer cases, thus leading to subjective interpreta-
tions. As well as investigating new classification strategies to
improve sensitivity of detail classifiers, ongoing work will
focus on addressing these issues for practical deployment of
the technology.
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