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Abstract

Mannan-binding lectin (MBL), a member of the collectin family, is known to have opsonic
function, although identification of its cellular receptor has been elusive. Complement Clq,
which is homologous to MBL, binds to complement receptor 1 (CR1/CD35), and thus we in-
vestigated whether CR1 also functions as the MBL receptor. Radioiodinated MBL bound to
recombinant soluble CR1 (sCR1) that had been immobilized on plastic with an apparent equi-
librium dissociation constant of 5 nM. N-acetyl-D-glucosamine did not inhibit sSCR1-MBL
binding, indicating that the carbohydrate binding site of MBL is not involved in binding CR1.
C1q inhibited MBL binding to immobilized sCR 1, suggesting that MBL and C1q might bind
to the same or adjacent sites on CR1. MBL binding to polymorphonuclear leukocytes (PMN)
was assoclated positively with changes in CR1 expression induced by phorbol myristate ace-
tate. Finally, CR1 mediated the adhesion of human erythrocytes to immobilized MBL and
functioned as a phagocytic receptor on PMNs for MBL-immunoglobulin G opsonized bacte-
ria. Thus, MBL binds to both recombinant sSCR1 and cellular CR 1, which supports the role of

CR1 as a cellular receptor for the collectin MBL.
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Introduction

Mannan-binding lectin (MBL)! is a C-type or Ca?*-depen-
dent lectin with primary specificity for fucose, mannose,
and N-acetylglucosamine (1). MBL is composed of 32-kD
polypeptides, each of which has an NH,-terminal cysteine-
rich region, a middle stretch of a collagen-like sequence,
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and a calcium-binding carbohydrate recognition domain
(CRD) in the COOH terminus (2, 3). The collagen re-
gions of three polypeptides form a triple helix, thus forming
the 90+ kD trimeric subunit. In serum, large molecular
mass complexes (200-700 kD) of MBL circulate, which are
probably stabilized by interaction through the cysteine-rich,
NH,-terminal regions of adjacent trimeric subunits (4).
MBL, which is present constitutively in plasma at ~2
wg/ml, is part of the innate immune system because of its
ability to recognize carbohydrate expressed by pathogens
(for reviews, see references 5—7). Once the CRDs of MBL
firmly bind to foreign carbohydrates, there are two path-
ways by which MBL may participate in a host defense re-
sponse. The first is by activating MBL-associated serine
protease (MASP)-1 and MASP-2 (8, 9). MASP-2 has the
capacity to cleave and activate complements C4 and C2, in
a manner analogous to C1, and thereby generates the op-
sonic fragments C4b and C3b (8-11). The second pathway
MBL uses to effect host defense is by functioning as a pri-
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mary opsonin. MBL opsonizes Salmonella (12) and influ-
enza A (13) for uptake by phagocytic cells. While the puta-
tive receptor for MBL has been called a “collectin
receptor,” identification of the receptor(s) has been elusive.
Two different molecules termed C1q receptors, with re-
ported activity also for MBL, do not fully explain the op-
sonic activity of MBL. The first molecule described to bind
soluble C1q and MBL (14, 15) is now thought to be cal-
reticulin, which is an intracellular protein (for a review, see
reference 16). Although calreticulin is likely an important
C1g-binding protein during tissue damage, it is not a cell
surface receptor (17). The second C1q receptor was identi-
fied by screening mAbs (18) that reacted with monocytes
and partially inhibited this cell’s ability to be stimulated by
either immobilized Clq (19) or MBL (20) for enhanced
phagocytosis of erythrocyte targets coated with either IgG
or C4b/C3b. The mAbs recognized a 126-kD transmem-
brane protein (21), termed C1q receptor for phagocytosis
(ClgRp). While C1qRp has a definite role in this assay,
there are no unequivocal data that C1qRp actually binds
Clq or MBL. Thus, identification of receptor(s) that bind
MBL-opsonized particles has remained an open question.

CR1 has recently been shown to act as a receptor for sol-
uble Clq (22, 23). Because of the structural homology be-
tween Clq and MBL at the primary, secondary, and tertiary
(by electron microscopy) levels (24), it was logical to assess
if CR1 might also function as a receptor for MBL. Using in
vitro assays with purified proteins, we have determined that
MBL can bind to recombinant soluble CR1 (sCR 1), which
is comprised of the entire extracellular domain of the com-
mon form of CR 1 but lacks the cytoplasmic and transmem-
brane domains (25). Although MBL—sCR 1 binding was fa-
vored by the presence of calcium, it did not involve the
CRD of MBL. MBL binding to cells paralleled CR1 ex-
pression on PMNs. Immobilized MBL also mediated E ad-
hesion, which was specifically inhibited by polyclonal anti-
CR1 Fab. MBL-opsonized Salmonella were not ingested by
PMNs unless either the bacteria were coopsonized with
suboptimal doses of anti—Salmonella IgG, or the PMNs were
preactivated by incubation with soluble fibronectin. Under
both of these phagocytic conditions, the opsonic effects of
MBL could be blocked by the pretreatment of PMNs with
polyclonal anti-CR 1 Fab. These data provide evidence that
cellular CR1 is a functional receptor for MBL.

Materials and Methods

Buffers and Reagents.  The following buffers were used: Tris-
buffered saline (TBS: 150 mM NaCl, 50 mM Tris-HCl [pH
7.5]), TBST (TBS, 0.05% Tween 20), TBST-Ca?* (ITBST, 10
mM CaCl,), and TBST-EDTA (TBST, 10 mM Na,EDTA);
“binding buffer” was used in microtiter well-binding assays (140
mM NaCl, 0.05% Tween 20, 10 mM Tris-HCI [pH 7.5]); E ad-
hesion bufter (HBSS= [HBSS without calcium and magnesium]
diluted with an equal volume of 5% D-glucose, 0.1% gelatin);
protein-coating buffer for the immobilization of protein to plastic
(0.04 M NaHCO;, 0.01 M Na,COs;, pH 9.6); borate buffer for
FITC labeling (50 mM borate, pH 9.2, 200 mM NaCl, 20 mM
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CaCl,, 100 mM mannose); and FACS® buffer (HBSS™, 0.1% gel-
atin, 0.1% sodium azide). Trypan blue was purchased from
Sigma-Aldrich.

SDS-PAGE (4 pg/lane) of reduced samples (5% 2-mercapto-
ethanol) was performed using 12% precast gels (Novex) with a
Tris-glycine buffer system. The gel was stained with Coomassie
R-250 (Sigma-Aldrich). Protein-binding assays and ELISAs were
performed using Immulon 1 Removawell Strips (Dynatech).

Human Proteins.  Plasma fibronectin (F2006) was purchased
from Sigma-Aldrich. Human C1q was isolated from fresh human
serum as described previously (22). Recombinant human sCR1
was a gift of Drs. U. Ryan and H. Marsh (Avant Immunothera-
peutics, Needham, MA).

MBL was isolated as described previously (26) with minor
modifications. In brief, 1 liter of previously frozen citrated human
plasma (obtained from the Beth Israel Deaconess Medical Center
blood bank) was precipitated with 7% (wt/vol) polyethylene gly-
col 3350 (Sigma-Aldrich) at 4°C. After 2 h, the precipitate was
harvested by centrifugation, resuspended in 400 ml of TBST-
Ca?", and stirred overnight at 4°C. The clotted material was dis-
carded and the supernatant was mixed with a slurry of 30 ml of
mannan-agarose (Sigma-Aldrich). After incubation, with stirring
for 2 h at 4°C, the beads were collected, extensively washed with
TBST-Ca’?* in a Buchner funnel, packed into a column, and
washed with TBST-Ca?*. The column was eluted with TBST-
EDTA. The resulting MBL-containing fraction was recalcified,
adjusted to pH 7.5, and chromatographed on a 3-ml maltose-aga-
rose (Sigma-Aldrich) affinity column equilibrated with TBST-
Ca?*. Material eluted with TBST-Ca?*, 100 mM N-acetyl-D-
glucosamine (Sigma-Aldrich) was dialyzed against TBST-EDTA
and passed through a microcolumn (V; = 300 pl) containing a
mixture of protein A—Sepharose (Pierce Chemical Co.) and rab-
bit anti-human IgM (IgG fraction; Sigma-Aldrich) that was im-
mobilized on Sepharose CL-6B (Amersham Pharmacia Biotech)
at 1 mg/ml packed gel using cyanogen bromide (Sigma-Aldrich).
Isolated MBL was concentrated to 1-1.2 mg/ml using a Cen-
triplus 30 device (Millipore) and the pH was adjusted to 4.5 with
acetic acid. Replicate samples of 150 pl were applied to a TSK
G4000 SWy; column (Supelco). The column was equilibrated
with 50 mM KCl, 0.1 mM EDTA, and 20 mM KH,PO, (pH
4.75) and run at 1 ml/min. MBL eluted with a retention time of
8.3 min (M, = 650 kD). The MBL peaks from several TSK runs
were pooled, dialyzed against TBS, and concentrated using Cen-
triplus 30 devices. Routinely, MBL preparations from the TSK
column step were used in experiments. Recombinant MBL was
provided by Dr. A. Ezekowitz (Massachusetts General Hospital,
Boston, MA [20]).

FITC-labeled MBL was prepared by incubating MBL (0.8 mg)
with FITC (25 pl of 1 mg/ml DMSO; Sigma-Aldrich) in 0.5-ml
borate buffer for 16 h at 4°C. To stop the reaction, NH,Cl was
added (final concentration, 50 mM), and the mixture was kept at
room temperature for 2 h. FITC-MBL was separated from free
FITC by passage over a PD-10 column (Amersham Pharmacia
Biotech) that had been equilibrated in PBS. The ratio of absor-
bance measured at 495 nm to 280 nm was 1.08.

MBL was radioiodinated in mild conditions, which included a
low concentration (5 wg/ml) of coating Iodogen (Pierce Chemi-
cal Co.), and incubated for only 2 min at 0°C with '»*I-sodium
(NEN Life Science Products). Radioiodinated MBL was sepa-
rated from free %[ by passage over a small column of maltose-
agarose equilibrated in TBST-Ca?* and eluted with TBST-
EDTA. The final specific activity was 1.2 X 107 cpm/pg, with
90% of cpm precipitable by 10% TCA.
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Antibodies.  Rabbit anti—Salmonella IgG was purchased from
Fitzgerald Industries International. Anti-C1qRp IgM mAb (R3)
was a gift of Dr. A. Tenner (University of California at Irvine, Ir-
vine, CA). Control mouse IgM was purchased from BD Phar-
Mingen. Anti-MBL mAbs (131-1) and anti-CR1 mAb YZ-1 were
prepared from hybridoma-conditioned media by protein A affin-
ity chromatography. FITC-labeled goat anti—rabbit IgG was pur-
chased from Jackson ImmunoResearch Laboratories. Rabbit
anti-human CR 1 Fab fragments were prepared from an IgG frac-
tion using the ImmunoPure® Fab Preparation kit (Pierce Chemi-
cal Co. [27]). The papain digest was subsequently passed over a
protein A column (Pierce Chemical Co.) and the nonretained
fraction showed a 50-kD band, or a 25-kD band when analyzed
by SDS-PAGE with Coomassie staining under nonreducing or
reducing conditions, respectively. For the E adhesion experi-
ment, an aliquot of the polyclonal Fab anti-CR 1 preparation was
passed through an affinity column of recombinant sSCR1 immo-
bilized on polyacrylamide beads (3M Emphaze; Pierce Chemical
Co.). “Absorbed” Fabs were obtained from the drop-through
fraction. Fab and CR1-absorbed Fab preparations were exten-
sively dialyzed against PBS, and the protein concentrations were
determined by the micro-BCA method (Pierce Chemical Co.),
using BSA as a standard. For the phagocytic assay, polyclonal
anti-CR1 Fabs were neutralized by the addition of sCR1 at a
molar ratio of 3 sSCR1/40 Fab (3 g of sSCR1/10 g Fab).

0.6 mg unabsorbed anti-CR1 was mixed with 17 pl FITC (1
mg/ml in DMSO) in 0.3 ml borate buffer for 2 h at 4°C; the re-
action was terminated and the FITC-Fab was isolated as described
for FITC-MBL (see above). The ratio of absorbance measured at
495 nm to 280 nm was 0.6.

Binding of Radiolabeled MBL to Immobilized sCR1.  Microtiter
wells were coated with sCR1 at 5 pg/ml using coating buffer.
The wells were blocked with SuperBlock (Pierce Chemical Co.).
Then, '»I-MBL was added in binding buffer. After the 40-min
binding incubation at 21°C, the wells were emptied by aspiration,
washed twice with the binding buffer, separated, and individually
counted in a 7y counter. The binding data were analyzed using
Prism v2.0 software (Graph Pad). A binding curve was fit to the
data using nonlinear regression, and the Ky was derived from the
curve.

ELISA for Bound sCR1 or Bound MBL.  The coating, block-
ing, and binding steps were performed as described above. After
washing with binding buffer, purified anti-CR1 mAb (YZ-1) or
anti-MBL mADb (131-1) was added. Finally, the assay was devel-
oped using goat anti-mouse IgG conjugated with horseradish
peroxidase (Pierce Chemical Co.) and substrate tetramethylbenzi-
dine as described above.

ILsolation of Cells.  For E, a normal donor was selected whose
E expressed high levels of CR1 on the basis of '25[-(C3b), bind-
ing and monospecific '*I—anti-CR 1 F(ab’), binding (27), and as
reconfirmed by FACS® (see below). 3 ml of venous blood was
collected in a glass tube containing 68 l of 7.5% EDTA solution
(K3, Vacutainer; Becton Dickinson). The blood was centrifuged
for 5 min at 1,000 g. After centrifugation and removal of the
plasma and bufty coat layers, the E were washed several times in E
adhesion buffer.

Leukocytes from a healthy volunteer were isolated from 40 ml
of venous blood drawn into a syringe containing 6 ml of sodium
citrate/citric acid (0.15 M, pH 5.5) and 14 ml of 6% Dextran-70
(McGaw). To minimize the upregulation of CRs which can oc-
cur during cell isolation, all of the procedures were performed at
room temperature and the leukocytes were not fractionated into
subpopulations. After 50 min of sedimentation, the leukocyte-
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rich fraction was removed and the cells were pelleted by centrifu-
gation. Contaminating E were removed by hypotonic lysis, and
the leukocytes were resuspended in HBSS= and used within 30
min of isolation. 98% of the cells were alive as assessed with acri-
dine orange/ethidium bromide staining.

Flow Cytometry.  Replicate samples of PMA-treated or con-
trol leukocytes from the same donor were reacted with either
FITC-labeled, rabbit anti-CR1 Fab (100 pwg/ml) or an equivalent
amount of FITC-MBL. FITC-nonimmune Fab and FITC-oval-
bumin were used to set the respective background gates. All cells
were fixed in 1.5% paraformaldehyde before analysis of 10,000
cells using a FACScan™ instrument with v1.0 CELLQuest™
software (Becton Dickinson).

E Tip-Plate Adhesion Assay. E (10°) were quantified using a
hemacytometer and suspended in 1 ml adhesion buffer contain-
ing anti-CR1 Fab (100 pg), or as a control, an equivalent con-
centration of anti-CR1 Fab that was specifically absorbed to re-
move anti-CR1 reactivity (see Antibodies, above). After 1 h at
room temperature, each E suspension was diluted in adhesion
buffer to 5 X 107 cells/ml for use in the tip-plate assay for cell ad-
hesion. Tip-plate assays were performed as originally described
(28) and modified (23). In brief, 20-pl drops of MBL at 5 or 20
pg/ml in adhesion buffer were applied to marked spots on Lab
Tek petri dishes (100 X 25 mm; Nunc) and incubated at 37°C
for 1 h. After appropriate washing of the individual MBL spots,
the uncoated areas of the plate were blocked by flooding the en-
tire plate with HBSS containing 0.5% gelatin (1 h at 37°C), fol-
lowed by washes with adhesion buffer. Replicate plates were
made for assay with each type of E: buffer treated, anti-CR1
treated, and control anti-CR1 (CR1-absorbed) treated. The E
suspensions were added to the plates to allow adhesion over 1 h at
37°C. Nonadherent E were aspirated and the plate was gently
washed. Adherent cells were fixed with 2% paraformaldehyde in
PBS and the cells were quantified using phase—contrast micros-
copy. After fixation, the plates could be analyzed immediately, or
stored at 4°C for later analysis.

The ligand-coated areas were scanned by low-power micros-
copy to determine the evenness of adherence. Within the ligand-
coated areas, the E in three to five random fields were quantified
at 290X power using an inverted microscope (Diaphot 300; Ni-
kon) with a digital camera (RC 300 CCD; Dage-MTT Inc.) at-
tached to a computer. Images were analyzed using IPlabSpectrum
software v3.1a (Scanalytics).

Phagocytic Assays with PMNs.  Purified PMNs were incu-
bated with either buffer alone (RPMI 1640 plus 2% autologous
serum), a rabbit anti-CR1 Fab (100 pg/ml final), the same
amount of anti-CR1 that had been preabsorbed with sCR1 (3),
or a rabbit nonimmune IgG fraction. Salmonella montevideo (10°
cells; American Type Culture Collection) in 100-pl volume were
opsonized with buffer, MBL at various concentrations, anti—Sal-
monella IgG (0.5 wg/ml), or the sequential addition of MBL and
anti—Salmonella IgG with a wash between additions. PMNs and
opsonized bacteria, at a ratio of 1 effector to 10 targets, were in-
cubated together for 30 min at 37°C with continuous rocking.
The PMNs were washed in cold buffer, and then pelleted on a
slide using a Cytospin centrifuge (Shandon Southern Instru-
ments). The cells were stained with modified Wright-Giemsa
(Hema 3 kit; Biochemical Sciences) and the percentage of PMNs
that had ingested one or more organisms was determined. Ran-
dom fields were chosen, and at least 300 PMNs were scanned. Al-
ternatively, phagocytosis was evaluated using flow cytometry with
Salmonella labeled with FITC before opsonization. At the conclu-
sion of this assay, 0.4% Trypan blue was added for 5 min to



quench the extracellular fluorescence due to adherent, non-
ingested bacteria. Subsequently, the PMNs were washed twice in
FACS® buffer and analyzed within 0.5 h using a FACScan™ in-
strument and v1.0 CELLQuest™ software (Becton Dickinson).

Results

Characterization of MBL.  MBL was isolated as described
in Materials and Methods, and its relative molecular mass of
650 kD was determined by gel filtration chromatography on
a TSK column (Fig. 1 A, peak 1). The identity and purity of
MBL were confirmed by ELISA (data not shown) and SDS-
PAGE (Fig. 1 B), respectively. Under reducing conditions,
MBL is seen as major band of ~~32,000 mol wt as described.
In the sample before the gel filtration step, the additional
band of ~64,000, which has been described as a nonreduc-
ing dimer of MBL, is also seen (9). The lectin function of
the isolated MBL from the TSK peak was confirmed by its
ability to bind, when immobilized to plastic, biotinylated
mannan in the presence of 0.3 mM CaCl,, and this binding
was completely inhibited by either 100 mM N-acetylglu-
cosamine or 10 mM EDTA (data not shown).

MBL Binds to sCR1.  Determination that CR1 was a
receptor for C1q was based in part on the ability of immo-
bilized CR1 to bind labeled C1q (22). Similar studies were
designed to test whether labeled MBL would bind to im-
mobilized sCR 1. Furthermore, since MBL is a Ca>*-depen-
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dent lectin it would be important to determine if any
binding to CR1 were affected by calcium. 'I-MBL was
added to wells containing immobilized sCR1 in binding
bufter with difterent concentrations of CaCl, ranging from
0 to 10 mM. There was measurable MBL binding with no
added CaCl,, suggesting that the CRD of MBL was not in-
volved in binding to CR 1. However, the optimal calcium
concentration was 0.3 mM, which was used throughout
the remainder of the binding experiments that used isolated
proteins (Fig. 2 A). To substantiate that the CRD was not
involved, an experiment was performed with N-acetylglu-
cosamine, which binds to the CRD of MBL with high af-
finity and can displace other carbohydrates from the CRD.
The addition of 100 mM N-acetylglucosamine had no ef-
fect on MBL binding to sCR1 (Fig. 2 B), thus confirming
that the CRD was not involved in MBL-CR 1 binding.

Binding of Clq to CR1 is highly sensitive to ionic
strength (22), prompting an examination of the influence
of salt on MBL—sCR1 binding. In this experiment, MBL
was immobilized on plastic and sCR1 was the soluble
ligand. Bound sCR1 was detected by ELISA using the
anti-CR1 mAb, YZ-1. sCR1 binding to MBL was also in-
hibited by increasing ionic strength (Fig. 2 C). Binding in
high-salt bufters (2X and 5X TBST) was minimal. How-
ever, SCR1 bound in 1X TBST could not be completely
removed by subsequent washings with high-salt buffer
containing 750 mM NaCl. Thus, the initial interaction be-
tween MBL and sCR1 is salt sensitive, but once binding
occurs the interaction becomes relatively salt insensitive.
The ability of MBL-sCR1 binding to withstand the high
salt is also a control that the high salt is not simply remov-
ing the coated sCR1 from the plate, which would be a
trivial explanation for the lack of binding seen in 2X and
5X physiological salt.

Equilibrium binding assays were performed in 1X
TBST, 0.3 mM CaCl,, to determine the apparent dissocia-
tion constant of MBL binding to sCR1. 'I-MBL was
added to microtiter wells containing immobilized sCR1.
Control binding to wells with only blocking agent was
subtracted as a background for all concentrations of labeled
MBL. 'PI-MBL bound to sCR1 in physiologic ionic
strength, with one apparent binding site with a Ky of 5.2
nM (Fig. 3 A). A Scatchard analysis of the data is shown in
Fig. 3 B. This experiment was repeated with a different
preparation of MBL, and analysis of the binding yielded a
K of 3.0 nM. '’I-sCR 1 binding to immobilized MBL was
also analyzed and the calculated Ky was 45 nM. The appar-
ent affinity of '»I-sCR 1 binding to immobilized MBL in-
creased to 28 nM if the MBL were immobilized through its
CRD domain (data not shown).

The fact that Clq and MBL both serve as ligands for
sCR1 raised the question whether C1q is able to compete
with MBL for binding to sCR1. Because C1lq binds sCR1
less avidly than MBL in our assay, it was necessary to design
this experiment so that Clq binding would be maximized.
A low ionic strength binding bufter (0.67X TBST, 0.3
mM CaCl,) was used, and different concentrations of Clq
were preincubated with immobilized sCR1 (2 pg/ml) be-

CR1 Is a Receptor for Mannan-binding Lectin
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oxidase-conjugated antibody. The background values for each buffer condition were subtracted. The net means = SE (n = 4) are plotted. The experi-

ment was repeated with similar results.

fore the wells were washed and MBL (100 wl, 1 pg/ml)
was added. Bound MBL was detected using the ELISA for-
mat. Preincubation of sCR1 with increasing doses of Clq
provided a dose- dependent inhibition of MBL binding to
sCR1 (Fig. 4). These results are compatible with the ho-
mologous proteins C1q and MBL sharing a common bind-
ing site on CR1, or binding to adjacent sites on CR1.

E Adhesion to MBL Is Specifically Blocked by Anti-CR1
Fab. Human E (10°/ml) were pretreated with buffer or
100 pmg/ml of rabbit anti-CR1 Fab, or as a control, 100
pg/ml of the same anti-CR 1 Fab preparation that was spe-
cifically adsorbed with immobilized sCR1. E were able to
adhere to immobilized MBL (application of 20 ul of 5 or
20 wg/ml to plastic) and antigen-absorbed Fab binding to
E had no effect on the adhesion. Pretreatment of the E
with anti-CR1 almost completely inhibited this interac-
tion, which indicated the specificity of CR1 as the receptor
for MBL on E (Fig. 5). There was almost no E binding

(0-3 cells/field) to the background area of the plate, which
was blocked with gelatin (0.5%) containing buffer.

Positive Correlation of MBL Binding and CR1 Expression on
PMNs.  PMNs have the ability to change their surface
expression of CR1. PMA stimulation causes an initial in-
crease in CR1 expression from a preformed intracellular
pool (29-32), followed by a decrease in CR1 expression
due to its ligand-independent endocytosis (33, 34). We as-
sessed PMNs with and without the addition of 50 nM
PMA to see the effects on FITC-MBL binding. After 10
min of PMA stimulation, the mean fluorescent channel
(MEC) of CR1 expression had shifted from 3.2 to 30.7, or
9.6-fold. Correlated with the increase in CR1 expression
was a 15.4-fold increase in FITC-MBL binding (Fig. 6,
top). After 40 min of PMA stimulation, CR1 expression
was downregulated on the PMNs with an associated
downregulation of FITC-MBL binding (Fig. 6, bottom).
PMA induced similar, but less pronounced, coordinate

Figure 3. Derivation of binding con-
stants. (A) Binding of '»I-MBL to im-
mobilized sCR1. Microtiter wells were
precoated with sCR1 (0.1 ml at 5 pg/
ml) and washed before the addition of
increasing amounts of !®I-MBL in
v TBST, 0.3 mM CaCl, for binding (40
min at room temperature). After wash-
ing the plate, the individual wells were
separated and counted in a y counter to

A oo B 0.006-
o
& I_;Q_ 0.005-|
& 10000 3
< 7 €
8 3
= @  0.004-
2
S 5000
o
0.003 T
0.00 0.25
1}
4

Radioidinated MBL, nM

determine the amount of bound !*I-
MBL. 'I-MBL binding to blocked
wells defined nonspecific counts; bind-
ing data: total (H), nonspecific (A), and
calculated specific binding (V). Curves
were fit by nonlinear regression analysis,

T T
0.50 0.75

Bound [ng]

and the K, of 5.2 nM was derived from the specific binding curve, as described in Materials and Methods. Data points are means = SE, n = 4. The ex-
periment was repeated with similar results. (B) Scatchard plot of binding data. The line was fitted with the method of least squares.
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Figure 4. Competition of MBL with C1q for binding to plated sCR1.
Plated sCR1 (2 pg/ml) was preincubated for 20 min at 21°C with 0.67X
TBST, 0.3 mM CaCl, alone, or the same buffer containing different con-
centrations of C1q. After washing, MBL (0.1 pg in 100 pl) was added for
5 min at 21°C. After washing, bound MBL was detected by ELISA using
anti-MBL mAb, second anti-mouse horseradish peroxidase-conjugated
antibody, and tetramethylbenzidine substrate.

changes in CR 1 expression and MBL binding in the gated
monocyte population (data not shown).

MBL Uses CR1 to Synergize with an FcR for the Phago-
cytosis of S. montevideo by PMNs. — S. montevideo avidly
binds MBL (12). In a series of preliminary experiments, iso-
lated serum MBL or recombinant MBL used in concentra-
tions from 0.1 to 20.0 pg/ml were never opsonic alone
(data not shown). We reasoned that if CR1 were indeed
the MBL receptor that mediated phagocytosis, the PMNs
might need a second signal, such as FcyR ligation, as is the
case for opsonization with C3b and C4b. To determine a

800

I:I - sCR1-absorbed anti-CR1

3
2 00| [l -antichi
g
o 400
w400
8
§ 200
§ 0
O Iﬁ ————

5ug/ml 20 ug/ml
Concentration of immobilized MBL

Figure 5. Adhesion of E to immobilized MBL can be blocked by pre-
treatment of the E with anti-CR 1 Fab. 20-pl aliquots of MBL at 5 pg/ml
or 20 pg/ml were each “spotted” three times on a petri dish. After wash-
ing the spots and then blocking the entire dish surface with 0.5% gelatin,
the dish was incubated for 45 min at room temperature with E (15 ml;
5 X 107/ml). The E had been preincubated with 100 pg anti-CR1 Fab,
or as a control, 100 pg anti-CR1 that had been preabsorbed with immo-
bilized sCR 1. The dishes were gently washed twice with adhesion buffer,
fixed in paraformaldehyde (2% in PBS), and quantified by light micros-
copy. Results represent the mean number of adherent cells/field = SD in
nine representative fields (three fields X three spots). Each field was 0.065
mm?. In the regions between the immobilized MBL, the background cell
adhesion to 0.5% gelatin ranged from zero to three cells per field.
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suboptimal dose of IgG, FITC-labeled bacteria were op-
sonized with 0, 0.5, 15, or 100 pwg/ml of anti—Salmonella
IgG and then used in the phagocytic assay, and the results
were analyzed by flow cytometry. The MFC of the PMN
population increased progressively with higher doses of op-
sonizing IgG, and 0.5 wg/ml was selected as a suboptimal
concentration. When the bacteria were opsonized with 0.5
wg/ml of rabbit anti—Salmonella antibodies, the addition of
MBL augmented phagocytosis (Fig. 7). The optimal con-
centration of MBL was 1 wg/ml, which is close to the nor-
mal concentration of MBL in plasma (1.8 pg/ml [35]). The
MBL-augmented phagocytosis was inhibited by 75% if the
PMNs were pretreated with 100 wg/ml of anti-CR 1 Fab.
As confirmation that the Fab preparation was blocking
CR1, its inhibitory activity was completely removed by
preabsorption with sSCR1 (Fig. 8).

Fibronectin-stimulated PMNs Can Utilize MBL Alone as an
Opsonin.  Having evidence that CR1 might be the recep-
tor for MBL, we wanted to determine if fibronectin-treated
PMNs can ingest particles opsonized only with CR1
ligands, as has been shown for monocytes (36, 37). PMNs
were pretreated with buffer or soluble fibronectin and then
added to the phagocytic mixture containing MBL- or
bufter-opsonized bacteria. Again, MBL-opsonized bacteria
were not ingested by unstimulated PMNs. However, pre-
treatment of the PMNs with fibronectin made these cells
competent to ingest MBL-opsonized bacteria. Pretreatment
of the bacteria with fibronectin had no effect. The MBL
opsonic effect was significantly inhibited when the PMNs

Mean Fluorescence
Channel

0 .
12 3 1 2 3

FITC-Fab anti CR1 FITC-MBL

Figure 6. MBL binding parallels PMA-induced changes in CR1 ex-
pression on PMNs. Freshly isolated leukocytes were exposed to buffer
(1), 50 nM PMA for 10 min (2), or 40 min (3) at room temperature.
Samples were removed and assessed for CR1 expression by direct stain-
ing, analysis by flow cytometry, and FITC-MBL (50 pg/ml) binding, as
described in Materials and Methods. FITC-labeled, nonimmune rabbit
Fab binding defined the background (2.6-3.2 MFC) for CR1 expression;
FITC-ovalbumin binding defined the background (3.2—4.0 MFC) for
FITC-MBL binding. PMNs were selected for analysis with flow cytome-
try using forward and side scatter. The results of the histograms (top) are
displayed as bar graphs (bottom). This experiment was repeated with leu-
kocytes from a different donor with similar results.
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Figure 7. Role of MBL in opsonizing S. montevideo for ingestion by
PMNs. FITC bacteria were opsonized with either buffer or 0.5 pg/ml
anti-Salmonella 1gG with or without different concentrations of MBL; at
37°C, the cells were incubated with Trypan blue to quench extracellular
fluorescence. At least 10,000 PMNs for each reaction condition were an-
alyzed by flow cytometry as described in Materials and Methods. The
MEFC was significantly increased for opsonization using MBL at 1.0 and
5.0 pg/ml in combination with IgG compared with opsonization with
IgG alone. *P < 0.05.

were pretreated with anti-CR1 Fab (Fig. 9). These data
confirm a role for CR1 as a receptor for MBL.

Antibody to C1qRp Fails to Inhibit the Ingestion of MBL-
opsonized Bacteria.  ClqRp is present on PMNs (18), and
it has been described as having a role in MBL-mediated in-
gestion by monocytes of IgG-C3b/C4b—opsonized targets
(38). To test for C1gRp involvement in our assay, PMNs
were pretreated with either anti-C1qRp mAb R3, a con-
trol IgM mADb, anti-CR1 Fab, or control IgG. The target

30
Y
3
E‘ 20
S
g
Q
b
§ 104
5
a
ol
Salmonella  MBL IgG -—— |gG+MBL ———»
PMN buffer buffer buffer anti-CR1 anti-CR1
Fab +sCR1
Figure 8. Effect of anti-CR1 Fab on the ability of PMNs to ingest

MBL-opsonized bacteria. PMNs were incubated with buffer, anti-CR1
Fab (100 pg/ml), or sCR1-absorbed anti- CR1 Fab (100 pg/ml) and
mixed with bacteria that had been opsonized under different conditions.
After a 35-min incubation under routine conditions the cells were pel-
leted on a slide and stained to allow the determination of the percentage
of PMNs that had ingested one or more bacterium. Results represent the
mean * SD values for at least 300 PMNs. Anti-CR 1 pretreatment of the
PMNs, compared with pretreatment with either bufter or sCR1-absorbed
anti-CR1, significantly inhibited the phagocytosis of MBL-IgG—
opsonized bacteria. *P < 0.05. This experiment was repeated three times
with similar results.
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Percent phagocytosis
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PMN buffer buffer Fn Fn Fn+anti-CR1
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Figure 9. Effect of fibronectin pretreatment on the ability of PMNs to
recognize MBL-opsonized bacteria. PMNs were pretreated with antibody
fractions or bufter, and then incubated with buffer or 50 wg/ml fibronec-
tin (Fn). Subsequently, the PMNs were added to bacteria that had been
opsonized with buffer or MBL (1 pg/ml). After a 35-min incubation un-
der routine conditions the cells were pelleted on a slide and stained to al-
low the determination of the percentage of PMNs that had ingested one
or more bacteria. Results represent the mean * SD values for at least 300
PMNGs. *P < 0.05. This experiment was repeated with similar results.

bacteria were opsonized with buffer, MBL alone, or MBL
plus suboptimal amounts of anti—Salmonella 1gG. Anti-
C1gRp had a small and statistically insignificant effect on
the ability of PMNs to ingest MBL-IgG—opsonized bacteria
(Fig. 10). As in prior experiments, anti-CR1 pretreatment
of PMNs did significantly inhibit ingestion compared with
a control IgG.

Discussion

The recognition that CR1 could act as a receptor for
C1q suggested that CR 1 might also be a receptor for MBL.

Percent
phagocytosis

Salmonelia buffer MBL  IgG

~———— igG+MBL ——— P>
PMN buffer  buffer buffer buifer anti-CR1 control control anti
Fab IgM ClqRp

Phagocytic conditions

Figure 10. Effect of anti-C1qRp on the ingestion of MBL-IgG—
opsonized bacteria by PMNs. PMNs were preincubated with either
bufter, 100 pg/ml anti-CR 1 Fab, 100 wg/ml rabbit nonimmune IgG, 10
pg/ml mAb anti-C1qRp (R3), or 10 pg/ml control IgM, and then
mixed with bacteria that had been opsonized with MBL (1 wg/ml) with
or without anti—Salmonella 1gG (0.5 pg/ml). After a 35-min incubation
under routine conditions the cells were pelleted on a slide and stained to
allow the determination of the percentage of PMNs that had ingested one
or more bacteria. Results represent the mean * SD values for at least 300
PMNs. *P < 0.05. This experiment was repeated with similar results.



MBL that was purified from plasma (Fig. 1) retained its lec-
tin activity. 'I-MBL was able to bind to immobilized
sCR1 in the absence of added calcium ions, but the bind-
ing was favored by added calcium, with an optimal con-
centration of 0.3 mM CaCl, (Fig. 2 A). The fact that 100
mM N-acetyl-D-glucosamine had no deleterious effect on
MBL-sCR1 binding is strong evidence that the CRD of
MBL is not involved (Fig. 2 A). It is not obvious why cal-
cium should have an effect on the MBL binding to sCR1
because the two tightly bound calcium ions are found in
the CRD. It is possible that the calcium binding in the
CRD aftects the conformation of the more removed
sCR 1-binding site, which by analogy to C1q, is thought to
be in the collagen domain of MBL. It is of interest that an-
other collectin, surfactant protein D, displays calcium-depen-
dent binding to its receptor, and that receptor binding is
also not antagonized by surfactant protein D’s specific sugar
ligand, i.e., maltose (39, 40).

In our previous study, immobilized sCR1 provided
good binding for labeled C1q, but labeled sCR 1 binding to
immobilized Clq was barely measurable (22). We inter-
preted this to mean that Clq had multiple binding sites
(probably located in its six identical collagen stems),
whereas sSCR1 had only one binding site (22). In this study
we found that radioiodinated MBL bound to immobilized
sCR1 with much higher affinity (K of 5.2 nM; Fig. 3, A
and B) than radioiodinated sCR1 bound to immobilized
MBL (K; of 45 nM). Again, the likely explanation is that
polymeric MBL is a better soluble ligand because it has po-
tentially six identical binding sites, whereas sSCR1 has one
apparent binding site. This model is consistent with the ap-
parent single binding constant when either MBL or sCR 1
was the soluble ligand in binding studies.

The adverse eftects of salt on MBL—sCR 1 binding were
not unexpected; similar effects on Clq binding to sCR1
(22) and Clq binding to CR1-bearing cells have been
noted (41-43). What was surprising was the ability of MBL
to exhibit measurable binding to immobilized sCR1 under
conditions of physiological salt (Fig. 2 B) which could not
be demonstrated in equilibrium binding assays using Clq,
although it was demonstrated in kinetic binding studies of
C1q binding to immobilized sCR1 (22). The K 0f 5.2 nM
for MBL binding to sCR1 was in the same range as the K,
(3.9 nM) for Clq binding in physiological salt buffer that
was calculated from kinetic binding studies using a BIAcore
instrument (22). Thus, the affinity of MBL and Clq for
sCR1 is similar, but MBL binding is apparently more sta-
ble. The ability of MBL to bind in physiological salt, and
then remain bound even when the salt concentration was
increased fivefold, is evidence for this (Fig. 2 B, right col-
umn). Thus, the association phase of binding is very salt
sensitive, whereas the dissociation phase is much less salt
sensitive. It will remain to be shown if the more avid
MBL binding translates into MBL being a preferred ligand
for CR1.

The fact that MBL and Clq compete for binding to
sCR1 suggests that the binding site on CR1 is identical or
adjacent such that the binding of one ligand provides steric
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hindrance for the binding of the other (see Fig. 4). We be-
lieve the C1q binding site on CR1 is long homologous re-
peat (LHR)-D (22). Consistent with our results, others
have shown that MBL competes with the collagen domain
of Clq for binding to PMNs and monocytes (20). When
Clq binds to LHR-D, the C4b and C3b binding sites on
CR1, namely LHR-A, -B, and -C, respectively (44—46),
are still available. Functionally, this allows Clq to partici-
pate in additive binding with either C4b or C3b to CR1
(23). By analogy, MBL might recruit C4b or C3b for addi-
tive binding to CR1.

In contrast to our results, Bajtay et al. (47) have recently
reported that MBL and C1q bound to different cell types:
specifically, C1q and MBL both bound to human mono-
cyte—derived macrophages and to monocytoid cell lines,
but only C1q bound to B and T cells. Their results showed
a small positive subpopulation of T cells, which is consis-
tent with CR1 being expressed on only a subset of T cells
(48, 49). We have no explanation for their inability to
demonstrate MBL binding to B cells, which do express
CR1. They showed that MBL and Clq did not compete
for binding to monocytes or THP-1 cells in PBS, whereas
we found it necessary to use low ionic strength buffers to
demonstrate any significant C1q binding to either cells or
purified sCR1 (22). Clq, or trace contaminants in the
preparation, may have more promiscuous binding, as we
have recently reported that high concentrations of immo-
bilized Clq elicit a superoxide response from PMNs and
this response does not involve CR1 (50). As we did, they
found that MBL bound well in normal ionic strength and
that MBL alone was a poor agonist. In sum, most of the
differences in our findings relate to C1q binding and not to
MBL binding.

Our experiments with cells provide evidence that MBL
binding to recombinant sCR1 immobilized on plastic was
relevant to MBL binding to CR1 on cells. MBL binding
could be positively associated with CR1 expression on
resting and PMA-stimulated PMNs (Fig. 6), although these
data do not demonstrate the specificity of the binding.
Others have reported a phorbol ester—induced reduction in
Clq binding to PMNs, which is analogous to our results
with MBL binding (51). The MBL binding was performed
in normal ionic strength, emphasizing that cellular CR1
would function in vivo. However, the adhesion experi-
ment with E required low ionic strength to demonstrate E
binding to immobilized MBL, possibly due to the fact that
the MBL immobilized on plastic may not be in the optimal
conformation to interact with cellular CR 1. The specificity
of the MBL-CR 1 binding was emphasized by the ability of
anti-CR 1 Fab to block E adhesion, whereas a similar con-
centration of the same Fab preparation that had been spe-
cifically absorbed with immobilized sCR1 did not block E
adhesion (Fig. 5).

The lack of an effect of anti-ClqRp on PMN phagocy-
tosis is perhaps not surprising (Fig. 10). The phagocytic as-
say in which C1gqRp has been shown to be active requires
MBL or Clq to be immobilized on plastic (38), whereas
our assay is detecting the ingestion of MBL-opsonized bac-
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teria. Furthermore, there are no data for PMNs that
C1gRp is directly involved in binding MBL or Clgq.

Two lines of evidence strongly support CR 1 as the MBL
receptor on PMNs. First, MBL behaves like C3b and C4b,
the best-characterized CR1 ligands, in terms of not trigger-
ing phagocytosis unless either IgG is also bound to the tar-
get, or the phagocytic cell is preactivated (48-51). Second,
polyclonal anti-CR1 inhibited the eftfects of MBL, and the
inhibition was specifically blocked by absorption of the Fab
preparation with soluble or immobilized recombinant
sCR1. To date, there are limited examples of MBL alone
serving as an opsonin: one involving the phagocytosis of S.
montevideo by PMNs (12) and the second involving the
phagocytosis of influenza virus by PMNs (13). Possible ex-
planations for these findings include substantial activation
of the PMNs during purification, or a small amount of
contaminating IgG in the MBL sample. We have found it a
challenge to remove all the IgG from our MBL prepara-
tions.

Our data emphasize that CR1 is a receptor for all the
primary opsonins of complement, namely, MBL, Clq,
C4b, and C3b. Deficiency of the CR1 ligands MBL, Clq,
or C4b is associated with an autoimmune phenotype in hu-
mans; however, the mechanism is not understood. Defi-
ciency of Clq is almost invariably associated with severe
autoimmune pathology (for a review, see reference 52),
whereas deficiency of MBL has a much less severe pheno-
type, manifest as a predisposition towards infectious and
autoimmune complications (for a review, see reference 6).
If ligand binding to CR1 were involved in the prevention
of an autoimmune phenotype, then our data suggest that
the putative autoimmune trigger might bind C1q well but
MBL poorly. Alternatively, there may be receptor redun-
dancy for some substances that bind MBL but not for those
that bind Clq. For example, particles or antigens that
would ordinarily bind MBL, in the presence of MBL defi-
ciency might interact with mannose receptors to prevent
autoimmunity (5).
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