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    Introduction 
 The paradoxical nature of the mammalian nucleus as a compart-

mentalized, yet dynamic structure has been well established 

based on studies of nuclear domains (for review see  Spector, 

1993 ,  2006 ) and nuclear protein dynamics (for review see 

 Misteli, 2001 ). The nuclear envelope marks the nuclear periph-

ery in mammalian cells and is composed of an outer and inner 

nuclear membrane interrupted in places by nuclear pore com-

plexes (for reviews see  Goldman et al., 2002 ;  Hetzer et al., 

2005 ). A nuclear lamina consisting of type V intermediate fi la-

ment proteins called lamins and other lamin-associated proteins 

underlies the inner nuclear membrane (for review see  Goldman 

et al., 2002 ). The lamin proteins form a meshwork between the 

inner nuclear membrane and chromatin. Lamins play an important 

role in nuclear envelope assembly/disassembly during mitosis 

and are considered to be an important determinant of nuclear 

architecture and gene expression (for review see  Goldman 

et al., 2002 ). Microscopic analyses of fi xed cells ( Belmont 

et al., 1993 ) and in vitro binding assays with lamins ( Taniura et al., 

1995 ) have suggested that lamins interact with chromatin either 

directly or indirectly via lamina-associated polypeptide (LAP) 2 

(for reviews see  Goldman et al., 2002 ;  Schirmer and Foisner, 

2007 ). In  Drosophila   melanogaster , distinct regions of chromatin 

have been shown to directly interact with the nuclear lamina 

( Marshall et al., 1996 ;  Zhao et al., 1996 ;  Pickersgill et al., 2006 ). 

Most interestingly, cells expressing a mutant form of lamin A 

(LADelta50) associated with Hutchinson-Gilford progeria syn-

drome exhibit a loss of perinuclear heterochromatin, further 

emphasizing the role of the nuclear lamina in chromatin organi-

zation and function ( Shumaker et al., 2006 ). 

 The chromosomes in an interphase nucleus occupy a dis-

crete spatially defi ned subvolume of the nucleus called the chromo-

some territories (for review see  Cremer and Cremer, 2001 ). 

In mammalian cells, chromosomes show probabilistic ( Parada 

et al., 2003 ), yet nonrandom radial positions with gene-rich 

chromosomes at the nuclear interior and gene-poor chromosomes 

at the periphery ( Croft et al., 1999 ;  Cremer et al., 2001 ). However, 

the broad morphological classifi cation of chromatin into euchro-

matin (less-condensed or open chromatin) and heterochromatin 

(more-condensed or closed chromatin) does not always corre-

late with gene activity ( Gilbert et al., 2004 ). 

 The view that individual genes show preferred nuclear po-

sitions (i.e., interior vs. peripheral) based on their transcriptional 

status has been supported by a variety of evidence that the nuclear 

envelope is primarily a silent compartment. However, recent fi nd-

ings in  Saccharomyces cerevisiae  and  D. melanogaster  indicate 

that the nuclear periphery can be associated with both transcrip-

tionally active and inactive genes ( Andrulis et al., 1998 ;  Gerasimova 

et al., 2000 ;  Ishii et al., 2002 ;  Brickner and Walter, 2004 ;  Casolari 

et al., 2004 ;  Gartenberg et al., 2004 ;  Mendjan et al., 2006 ; 

T
he peripheral nuclear lamina, which is largely but 

not entirely associated with inactive chromatin, is con-

sidered to be an important determinant of nuclear 

structure and gene expression. We present here an induc-

ible system to target a genetic locus to the nuclear lamina 

in living mammalian cells. Using three-dimensional time-

lapse microscopy, we determined that targeting of the 

locus requires passage through mitosis. Once targeted, 

the locus remains anchored to the nuclear periphery in 

interphase as well as in daughter cells after passage 

through a subsequent mitosis. Upon transcriptional induc-

tion, components of the gene expression machinery 

are recruited to the targeted locus, and we visualized 

nascent transcripts at the nuclear periphery. The kinetics 

of transcriptional induction at the nuclear lamina is similar 

to that observed at an internal nuclear region. This new 

cell system provides a powerful approach to study the 

dynamics of gene function at the nuclear periphery in 

living cells.

 A genetic locus targeted to the nuclear periphery in 
living cells maintains its transcriptional competence 
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time readout of transcription ( Janicki et al., 2004 ) and mRNP 

traffi cking ( Shav-Tal et al., 2004 ) after the expected trends of 

these processes based on molecular analyses. Using this newly 

developed system, we directly visualized that targeting of a 

genetic locus to the nuclear lamina required passage through 

mitosis. Upon transcriptional induction, components of the gene 

expression machinery were recruited to the targeted locus and 

nascent transcripts were visualized at the transcription site. This 

new cell system is a powerful tool to study the dynamics of gene 

function at the nuclear periphery during normal physiology and 

in disease states, such as envelopathies, in living cells. 

 Results 
 Development of an inducible nuclear lamina –
 targeting gene expression system 
 To address the infl uence of the nuclear lamina on gene expression 

in living human cells, we developed an inducible nuclear lamina –

 targeting gene expression system. For this, we took advantage of 

the existing U2OS-2-6-3 stable cell line developed in our labora-

tory to visualize gene expression in living cells at the level of 

DNA, RNA, and protein ( Janicki et al., 2004 ) and modifi ed it to 

suit our targeting strategy. The 20-kb plasmid used for visual-

ization of gene expression consists of 256 copies of lac operator 

repeats, 96 copies of tetracycline response elements (TREs), a 

minimal cytomegalovirus promoter (pCMV), CFP fused to the 

peroxisomal-targeting signal SKL (CFP-SKL), 24 MS2 transla-

tional operators (MS2 repeats), a rabbit  � -globin intron/exon 

module, and a cleavage/polyadenylation signal ( Fig. 1 A , modi-

fi ed from  Janicki et al. [2004 ]). 200 copies of this gene expression 

plasmid were stably integrated as a 4-Mb transgene array in the 

1p36 region of human U2OS-2-6-3 cells. The genetic locus can be 

 Pickersgill et al., 2006 ;  Taddei et al., 2006 ). Studies of fi xed 

mammalian cells have indicated the positioning of several genes 

to more internal nuclear regions upon activation (for review see 

 Lanctot et al., 2007 ). However, evidence for gene activation at the 

nuclear periphery has been observed during differentiation of 

specialized cell types such as T or B lymphocytes and erythroid 

cells (for reviews see  Brown and Silver, 2007 ;  Lanctot et al., 

2007 ). Because differentiation is associated with rather global 

changes in chromatin condensation, it is diffi cult to distinguish 

the direct cause/effect relationship between gene activity and 

nuclear position. Hence, it has been diffi cult to directly test the 

effects of nuclear position on transcriptional inducibility of a spe-

cifi c locus in differentiated cells. 

 Although lamins are known to play a role in establishing 

nuclear architecture, the spatial and temporal targeting of chro-

matin to the nuclear periphery has not been observed in living 

mammalian cells. Initially, lac operator – repressor interactions 

were used to tag DNA and visualize chromatin organization in vivo 

(for review see  Belmont, 2001 ). Subsequently, this approach has 

been used extensively to study large-scale unfolding of chromatin 

structure ( Tumbar et al., 1999 ) and long-range directional move-

ment of a specifi c chromatin site ( Chuang et al., 2006 ) and to 

visualize gene expression in living cells ( Tsukamoto et al., 2000 ; 

 Janicki et al., 2004 ). 

 To target a genetic locus to the nuclear lamina, and to 

visualize the spatial and temporal window of targeting, we de-

veloped a cumate-inducible nuclear lamina – targeting system. 

This system is based on a previously characterized U2OS-2-6-3 

stable cell line developed in our laboratory to visualize gene ex-

pression in living cells ( Janicki et al., 2004 ). Although this cell 

line contains a 200-copy tandem array of a reporter transgene, 

extensive analysis has indicated that it faithfully reports real-

 Figure 1.    Visualization of gene expression.  
(A) Schematic representation of the gene ex-
pression plasmid (modifi ed from  Janicki et al. 
[2004] ). The cassette consists of 256 copies 
of lac operator repeats, 96 copies of TREs, a 
minimal CMV promoter, CFP fused to a peroxi-
somal targeting signal SKL (CFP-SKL), 24 MS2 
translational operators (MS2 repeats), a rabbit 
 � -globin intron/exon module, and a cleavage/
polyadenylation signal. LacI-mCherry binds to the 
lac operator repeats resulting in visualization 
of the DNA. Tet-On (rtTA) expression in the 
presence of Dox induces gene expression from 
the minimal CMV promoter. MS2-YFP (YFP fused 
to the MS2 coat protein) binds to the MS2 re-
peats, allowing visualization of the transcribed 
mRNA. (B) 200 copies of the gene expression 
cassette in A are stably integrated as a transgene 
array at the 1p36 region in human U2OS cells, 
referred to as U2OS-2-6-3 cells ( Janicki et al., 
2004 ). Transient expres sion of LacI-mCherry, 
Tet-On in the presence of Dox, and MS2-YFP in 
U2OS-2-6-3 cells allowed visualization of DNA 
(a, arrow), RNA (b, arrow), and CFP-SKL protein 
(c, blue). Bar, 5  � m.   
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inducible clones required two rounds of stable selection ( Fig. 2 A ). 

U2OS-2-6-3 cells were transfected with pCMV5-CymR repressor 

plasmid ( Fig. 2 A ) and stable G418-resistant clones were screened 

by transient transfection with pCMV-CuO – LacI-mCherry in the 

presence or absence of cumate to obtain a tightly regulated cell line. 

This fi rst stable cell line was referred to as U2OS-2-6-3 – CymR 

( Fig. 2 A ). Subsequently, U2OS-2-6-3 – CymR was transfected with 

either pCMV-CuO – LacI-mCherry (control) or pCMV-CuO – LacI-

mCherry – Lamin B1 (targeting) plasmids and stable puromycin 

resistance lines were screened in the absence or presence of cumate 

to obtain tightly regulated cell lines. These stable cumate-inducible 

cell lines were referred to as U2OS-2-6-3 – CymR – CuO – LacI-

mCherry ( Fig. 2 A , control cell line) or U2OS-2-6-3 – CymR –

 CuO – LacI-mCherry – lamin B1 ( Fig. 2 A , targeting cell line). 

visualized by a lac repressor – mCherry fusion protein ( Fig. 1 B , a), 

RNA transcripts by the MS2 coat – YFP fusion protein ( Fig. 1 B , b), 

and the protein product as a CFP-SKL protein ( Fig. 1 B , c) that is 

targeted to cytoplasmic peroxisomes. 

 We used the U2OS-2-6-3 cells to develop cumate-inducible 

cell lines stably expressing lacI-mCherry or lacI-mCherry – lamin B1. 

The targeting fusion protein (lacI-mCherry – lamin B1) associ-

ates with the stably integrated locus in U2OS-2-6-3 cells via a lac 

operator – repressor interaction and with the nuclear lamina via a 

lamin B1 protein. The cumate expression system has two com-

ponents: a repressor plasmid (pCMV5-CymR repressor) and a 

cumate-inducible response plasmid (pCMV – cumate operator 

[CuO]). The response plasmid has a CMV promoter and a CymR 

repressor binding site (CuO). Development of stable cumate-

 Figure 2.    Generation and characterization of control and targeting cell lines.  (A) Parental U2OS-2-6-3 cells were stably transfected with pCMV5-CymR 
repressor plasmid and selected in the presence of G418 to obtain the fi rst stable line U2OS-2-6-3 – CymR constitutively expressing the CymR repressor. 
U2OS-2-6-3 – CymR cells were then transfected in parallel with one of two cumate-inducible plasmids, pCMV-CuO – LacI-mCherry (control) or pCMV-CuO –
 LacI-mCherry – Lamin B1 (targeting), and selected in the presence of puromycin and absence of cumate to obtain two cumate-inducible stable lines, namely 
U2OS-2-6-3 – CymR – CuO – LacI-mCherry (control cell line) and U2OS-2-6-3 – CymR – CuO – LacI-mCherry – lamin B1 (targeting cell line). Both puromycin-resistant 
lines were screened to obtain cumate-inducible control cell line (red, nontargeted locus) and targeting cell line (red, lamina-targeted locus). (B and C) Immuno-
fl uorescence analysis of control and targeting cell lines in the absence (a – c) or presence (d – f) of cumate. Anti – lamin B1 immunolabeling marks the nuclear 
periphery (B [b, c, e, and f]) and C [b, c, e, and f] green). (B) In the control cell line, when lacI-mCherry was not expressed the locus was not visible (a and c). 
In the presence of cumate and lacI-mCherry expression, the locus was visualized (d and f, red, arrow) internal to the nuclear periphery (f). (C) In the target-
ing cell line, in the absence of lacI-mCherry – lamin B1 (targeting fusion) expression there was no signal for the locus (a and c). Cumate-induced targeting 
fusion expression resulted in targeting the locus to the lamina (d, red, arrow) and the targeted locus colocalized with endogenous lamin B1 (f, yellow, 
arrow). Bars, 5  � m.   
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 To ascertain whether the targeting fusion exhibited prop-

erties similar to endogenous lamin B1, we examined its local-

ization in regard to the localization of lamin B – interacting 

proteins, such as lamin A and LAP2 � . We transiently expressed 

YFP – lamin A or YFP – LAP2 �  ( Fig. 3, A or B ) in targeting cells 

and induced targeting fusion expression for 12 h with cumate. 

The targeted locus was enriched for YFP – lamin A ( Fig. 3 A , 

b and c, arrows) and YFP – LAP2 �  ( Fig. 3 B , b and c, arrows), 

indicating that the targeting fusion behaved analogous to endog-

enous lamin B1 protein. 

 Targeting the locus to the nuclear lamina 
requires passage through mitosis 
 Having obtained cumate-inducible stable cell lines, we were 

interested in determining the temporal window during which the 

locus is targeted to the nuclear periphery. A cumate-induction 

time course study showed that the percentage of targeted cells in-

creased with the passage of time, indicating that targeting could 

be a postmitotic event (unpublished data). To test this possibility, 

we performed a G1/S-phase block by treating the targeting cells 

with hydroxyurea ( Fig. 4 A ). If cells required passage through 

mitosis for the locus to be targeted to the nuclear lamina, cells 

blocked at G1/S and induced with cumate would have a high per-

centage of nontargeted cells (locus internal to the nuclear lamina) 

compared with targeted cells (locus targeted to the nuclear lamina). 

However, in the absence of a G1/S block, the cumate-induced 

targeting cells would divide asynchronously and, therefore, more 

targeted loci should be observed. 

  Fig. 4 B  shows representative images of cells used for 

counting targeted loci in G1/S-blocked or asynchronous cells. 

When cells were blocked in G1/S phase, there was an approx-

imately twofold increase in the number of nontargeted cells as 

compared with targeted cells ( Fig. 4 C ). However, when cells 

were allowed to divide asynchronously there was a twofold 

increase in the number of targeted cells compared with non-

targeted cells. These results indicated that targeting likely required 

passage through cell division. Furthermore, and consistent with 

 To further evaluate how tightly the stable clones were 

regulated by cumate and to investigate whether the locus is tar-

geted to the nuclear periphery upon cumate-induced expression 

of the targeting protein, both the control and targeting cells were 

treated with (+) or without ( � ) cumate for 12 h. The cells were then 

fi xed in formaldehyde and immunostained with anti – lamin B1 

antibody to mark the nuclear periphery. In the absence of cumate, 

CymR repressor binds to CuO located between the promoter 

and the fusion cassette and sterically represses transcription of 

the fusion cassette. Absence of the locus-mCherry (red) sig-

nal in both the control ( Fig. 2 B , a and c) and targeting cells 

( Fig. 2 C , a and c) when cumate was not added to the medium 

indicated that the cell lines were tightly regulated. However, 

upon addition of cumate, the cumate-bound repressor leaves 

CuO and repression is relieved, initiating expression from the 

CMV promoter in both control and targeting cells. 12 h after 

cumate induction, in the control cells expressing lacI-mCherry 

(control fusion) the locus was visualized as a spherical dot ( Fig. 2 B ,

d and f, red, arrows) internal to the nuclear periphery ( Fig. 2 B , 

f, green). In contrast, in the targeting cells expressing lacI-

mCherry – lamin B1 (targeting fusion) the locus was targeted 

to the nuclear lamina, appearing as a fl attened signal plastered 

against the nuclear periphery ( Fig. 2 C , d, red, arrow), and the 

targeted locus colocalized with endogenous lamin B1 ( Fig. 2 C , 

f, yellow, arrow). Importantly, the targeted locus was easily vis-

ible even in the background of peripheral endogenous lamin B1 

( Fig. 2 C , e). To further establish that the targeted locus at the 

nuclear periphery was indeed the targeting fusion bound to 

the lac operator DNA repeats (genetic locus), we transiently 

expressed a YFP – Tet-on fusion (YFP-rtTA) in targeting cells. 

The cells were induced with cumate for targeting fusion ex-

pression and then with doxycycline (Dox) to induce binding 

of the YFP-rtTA protein to the TREs within the genetic locus. 

The YFP-rtTA protein was enriched at the site of the lacI-

mCherry signal, confi rming that this was the genetic locus 

(Fig. S1, arrow, available at http://www.jcb.org/cgi/content/full/

jcb.200706060/DC1). 

 Figure 3.    Lamin B – interacting proteins are 
enriched at the targeted locus at the nuclear 
periphery.  (A and B) Targeting cells were transiently 
transfected with YFP-LA or YFP – LAP2 �  and induced 
for 12 h with cumate to express the targeting 
fusion protein (red). YFP-LA and YFP – LAP2 �  were 
enriched at the targeted loci (A [b and c] and B [b 
and c], arrows) at the nuclear periphery. Panel a 
shows the targeted locus. Bars, 5  � m.   
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 Figure 4.    Targeting the locus to the nuclear lamina requires passage through mitosis.  (A) G1/S-phase block using hydroxyurea in targeting cell line from 
day 0 (D0) to day 3.5 (D3.5). (B) Representative images of LacI-mCherry – Lamin B1 – expressing cells used for counting to quantify G1/S-blocked non-
targeted (a, red, arrow) and targeted (b, red, arrow) cells and asynchronous nontargeted (c, red, arrow) and targeted (d, red, arrow) cells. Bar, 5  � m. 
(C) Quantifi cation of the percentage of nontargeted and targeted cells in G1/S-blocked and asynchronous cells. The graphical data represents the mean and 
standard deviation of three experiment ( n  = 100 nuclei per experiment). Approximately 10% of the cells did not exhibit a nuclear mCherry signal. (D) Still 
images (a – o) from time series (0 – 90 min, G2 to early G1 phase) of targeting clone H2A-YFP going through mitosis. Targeting cells stably expressing histone 
H2A-YFP (green) were induced to express LacI-mCherry – Lamin B1 (red, arrow). Images are projections of deconvolved z stacks taken after every 10 min. 
Bar, 5  � m. See video 1 (available at http://www.jcb.org/cgi/content/full/jcb.200706060/DC1) for the entire time series.   



JCB • VOLUME 180 • NUMBER 1 • 2008 56

the nuclear lamina during early G1 ( Moir et al., 2000 ). Further-

more, chromatin is most dynamic during early G1 phase of the 

cell cycle before the establishment of chromosome territories 

( Chubb et al., 2002 ;  Walter et al., 2003 ). Based on these obser-

vations, we hypothesized that the best opportunity for the locus 

to be targeted could be during mitosis, at the transition from 

telophase to early G1 phase. To test this hypothesis we followed 

the dynamics of the locus during mitosis in the targeting cell 

line stably expressing histone H2A-YFP in the absence of 

hydroxyurea. To minimize phototoxicity associated with cell 

imaging, we reduced the time window of imaging by roughly 

preselecting cells based on cell size (large nucleus with a spher-

ical nontargeted locus indicative of a cell in G2 phase) before 

this possibility, analysis of the dynamics of loci associated with 

the targeting fusion protein for up to 24 h, during interphase and 

in the absence of hydroxyurea, did not result in the observation 

of targeted loci that were stably associated with the nuclear pe-

riphery ( Fig. 5 ). Interestingly, at the 5-h 20-min time point the 

locus shown in  Fig. 5  transiently contacts the peripheral lamina, 

creating tension at the point of contact ( Fig. 5 , d, arrow); how-

ever, it subsequently moves away from the periphery. These 

results indicate that binding of the lacI-mCherry – lamin B1 target-

ing fusion to the locus is not suffi cient for its stable targeting to 

the peripheral nuclear lamina during interphase. 

 Prior studies have shown that lamin B1 is targeted to the 

nuclear envelope in late telophase and is polymerized as part of 

 Figure 5.    Targeting of lamin B1 – associated 
loci does not take place during interphase.  
Targeting cells stably expressing histone H2A-
YFP (green) were induced to express LacI-
mCherry – Lamin B1 (red, arrow) and cells with 
a nontargeted lamin B1 – bound locus were 
selected for imaging. Still images (a – o) are 
shown from an interphase time series (0 – 24 h, 
early G1 to late G2 phase). Images are pro-
jections of deconvolved z stacks taken every 
20 min. Bar, 5  � m.   
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imaging, we used short exposure times and rapid shutters, and 

we placed a UV-blocking fi lter in the light path of our imaging 

system.  Fig. 4 D  shows still images (a – o) from a time series (0 –

 90 min, G2 to early G1 phase) of the targeting line H2A-YFP 

progressing through mitosis (Video 1, available at http://www

.jcb.org/cgi/content/full/jcb.200706060/DC1). At 0 min, the 

locus was spherical ( Fig. 4 D , a and c, red, arrows) and localized 

away from the nuclear lamina. Chromatin marked by H2A-YFP 

( Fig. 4 D , b and c, green) was homogenously distributed within 

the large nucleus, which is indicative of a G2 cell. At the 10-min 

time point, chromatin began to condense, which is indicative of 

cells in early prophase ( Fig. 4 D , e and f, green). The locus was 

still spherical and was not targeted to the intact lamina ( Fig. 4 D , 

d and f, red, arrows). By 20 min, the locus was still visible as 

a round spot, whereas the lamina started to dissociate and the 

chromosomes exhibited a prometaphase confi guration (Video 1). 

By 30 min, the locus continued to appear as a round spot, 

whereas the lamina was completely dissociated and the chromo-

somes began to congress toward the metaphase plate (Video 1). 

At 40 min, the locus ( Fig. 4 D , g and i, red, arrows) was ob-

served aligned at the metaphase plate ( Fig. 4 D , h and i, green). 

At the 50-min time point, chromatids ( Fig. 4 D , k and l, green) 

started moving toward the poles and loci appeared as coaligned 

doublets ( Fig. 4 D , j and l, red, arrows) that were slightly 

stretched along their long axis, possibly because of torsional 

force generated during chromosome segregation at anaphase. 

By 70 min, which marks late telophase, both loci were targeted 

to the nuclear lamina (Video 1). At, the 80- and 90-min time 

points, which mark early G1 phase, chromatin was more dif-

fusely distributed throughout the daughter nuclei ( Fig. 4 D , 

n and o, green; and Video 1) and the targeted loci were anchored 

to the nuclear lamina ( Fig. 4 D , m and o, red, arrows; and Video 1). 

 Figure 6.    The targeted locus is stably anchored to the nuclear 
lamina during interphase.  Targeting cells stably expressing his-
tone H2A-YFP (green) were induced to express LacI-mCherry – 
Lamin B1 (red, arrow) and cells with a targeted locus were selected 
for imaging. Still images (a – o) are shown from an interphase time 
series (0 – 19 h, G1 to G2/M phase). Images are projections of 
deconvolved z stacks taken every 20 min. Bar, 5  � m.   
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mRNA splicing factor SF2/ASF, were recruited to the targeted 

locus at the nuclear lamina. To address this possibility, we took 

advantage of the transcriptional inducibility of the locus by Dox. 

We transiently coexpressed Tet-On with either YFP – RNA pol II 

or YFP-SF2/ASF ( Fig. 8, A or B ) in targeting cells and induced 

targeting-fusion expression for 12 h with cumate ( Fig. 8, A or B ). 

In the absence of Dox ( Fig. 8, A  [a – d]  or B  [a – d]), YFP – RNA pol II 

and YFP-SF2/ASF were not recruited to the targeted loci ( Fig. 8, 

A  [b and d]  or B  [b and d], no green enrichment, arrows) and 

there was no CFP-SKL protein at the cytoplasmic peroxisomes 

( Fig. 8, A  [c and d]  or B  [c and d]). However, in the presence of 

Dox ( Fig. 8, A  [e – h]  or B  [e – h]) for 5 h, YFP – RNA pol II and 

YFP-SF2/ASF were recruited to the targeted loci ( Fig. 8, A  [f] 

 and B  [f], arrows) at the nuclear lamina, and CFP-SKL protein 

was observed at the cytoplasmic peroxisomes ( Fig. 8, A  [g and h] 

 or B  [g and h]). Quantitation showed that  � 76% ( n  = 50) of the 

control loci, 68% ( n  = 50) of lamin B1 – bound internal loci in 

targeting cells, and 64% ( n  = 50) of targeted loci in targeting 

cells showed recruitment of YFP – RNA pol II in the presence of 

Dox. Also,  � 80% ( n  = 50) of the control cells, 76% ( n  = 50) of 

Although in the 2D projection it appears that only one locus is 

at the edge of the nucleus, the targeting of both loci is obvious 

when examined in individual Z sections (Fig. S2 and Video 2). 

Thus, our live cell data showed that the temporal window for 

targeting the locus to the nuclear lamina was during the transi-

tion from late telophase to early G1 phase of the cell cycle. 

 Next, we were interested in examining the stability of the 

targeted locus with the nuclear periphery during interphase. 

As shown in  Fig. 6 , the targeted locus was stably anchored to 

the peripheral lamina throughout the 19-h period of interphase 

observation. Subsequently, we examined cells containing a tar-

geted locus as the cells progressed through mitosis, and we found 

that targeted loci remained targeted in daughter cells ( Fig. 7  

and Video 3, available at http://www.jcb.org/cgi/content/full/

jcb.200706060/DC1). 

 Transcriptional induction at the 
nuclear periphery 
 Next, we addressed whether components of the gene expression 

machinery, such as RNA polymerase II (RNA pol II) and the pre-

 Figure 7.    Upon passage through mitosis, a targeted locus 
remains targeted in daughter cells.  Targeting cells stably ex-
pressing histone H2A-YFP (green) were induced to express 
LacI-mCherry – Lamin B1 (red, arrow) and cells with a targeted 
locus were selected for imaging. Still images (a – r) are shown 
from time series (0 – 120 min, G2 to early G1 phase) of tar-
geting cells stably expressing H2A-YFP progressing through 
mitosis. Images are projections of deconvolved z stacks taken 
every 20 min. Bar, 5  � m.   
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vector expressing both Tet-On and MS2-YFP simultaneously 

( Fig. 9, A and B , pVitro2 – Tet-On + MS2-YFP, green), as shown 

in representative images. The cells were fi rst induced for 12 h 

with cumate for control and targeting fusion expression ( Fig. 9, 

A and B , red, arrows), and then incubated in the absence of Dox 

( Fig. 9, A  [a – c]  and B  [a – c]) or presence of Dox ( Fig. 9, A  [d – f] 

 and B  [d – f]) for 5 h. In the absence of Dox, transcription was not 

induced and MS2-YFP did not accumulate at the site of non-

targeted ( Fig. 9, A , b and c, arrows) or targeted loci ( Fig. 9 B , 

b and c, arrows). Upon induction of transcriptional activity with 

Dox ( Fig. 9, A or B ), MS2-YFP accumulated at both the non-

targeted and targeted active loci ( Fig. 9, A  [e]  and B  [e], arrows). 

The partial colocalization of the active loci with MS2-YFP ( Fig. 9, 

A  [f]  and B  [f], arrows) was caused by the highly decondensed 

nature of the loci. Quantifi cation showed that  � 90% ( n  = 100) 

of the control or targeting loci were transcriptionally inactive in 

the absence of Dox. However,  � 70% ( n  = 100) of the targeted 

loci in targeting cells, 76% ( n  = 100) of lamin B1 – bound inter-

nal loci in targeting cells, and  � 90% ( n  = 100) of the  control 

lamin B1 – bound internal loci in targeting cells, and 74% ( n  = 50) 

of targeted loci in targeting cells showed recruitment of YFP-

SF2/ASF in the presence of Dox. In the absence of Dox,  � 96% 

( n  = 50) of the control or targeting loci did not show recruitment 

of YFP – RNA pol II or YFP-SF2/ASF. Because control and tar-

geting cells showed a relatively similar percentage of recruitment 

of the gene expression machinery, association with the nuclear 

lamina does not appear to preclude accessibility to the gene ex-

pression machinery. 

 Because we observed that the gene expression machinery 

was recruited to the targeted locus, we were next interested in 

directly visualizing transcription at the targeted locus. To do so, 

we took advantage of the fact that the mRNA that is transcribed 

from the genetic locus contains 24 tandem MS2 translational 

operators (MS2 repeats;  Janicki et al., 2004 ). As the MS2 coat 

protein directly binds to these repeats, we were able to use an 

MS2-YFP fusion protein to localize RNA transcripts at the locus 

in living cells. To directly visualize transcription, the control or 

targeting cells were transiently transfected with a dual promoter 

 Figure 8.    Components of the gene expression machinery are recruited to the lamina-targeted locus upon gene activation.  Recruitment of YFP – RNA pol II 
(A) or YFP-SF2/ASF (B) to targeted and activated locus at the lamina. Targeting cells were transiently transfected with pTet-On and YFP – RNA pol II or 
YFP-SF2/ASF (green), induced for 12 h with cumate to express the targeting fusion protein (red, arrows), and then incubated in the absence of Dox (A [a – d] 
or B [a – d]) or presence of Dox (A [e – h] or B [e – h]) for 5 h. In Dox ( � ) condition, YFP – RNA pol II or YFP-SF2/ASF was not recruited (A [b and d] or 
B [b and d], arrows) and CFP-SKL protein was not observed (A [c and d] or B [c and d]). In Dox (+) condition, YFP – RNA pol II and YFP-SF2/ASF were recruited 
(A [f] or B [f], arrows) and localized with the locus (A [h] or B [h], arrows) and CFP-SKL protein was observed at cytoplasmic peroxisomes (A [g and h] or 
B [g and h]). Bars, 5  � m.   
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 Figure 9.    Transcription of the targeted locus at the nuclear lamina.  (A and B) Representative images used for counting cells to quantify the percentage 
of cells showing transcription in control or targeting conditions. Control cells or targeting cells were transiently transfected with pVitro2 – Tet-on + MS2-YFP 
(green), induced for 12 h with cumate for targeting fusion expression (red, arrows), and then incubated in the absence (a – c) or presence (d – f) of Dox for 5 h. 
In the Dox (+) condition, MS2-YFP accumulated at the site of the targeted locus (B, e, green enrichment, arrow) and MS2-YFP localized with the locus 
(B, f, arrow). In the presence of Dox,  � 90% of control cells and  � 70% of targeting cells were transcriptionally active. Arrows in A (b) and B (b) represent 
absence of accumulation of MS2-YFP.  n  = 100 nuclei per experiment for each control and test. Bars, 5  � m. (C) Still images (a – p) from time series (0 – 5 h) 
of targeting cells showing transcription at the lamina. At 0 h, in Dox ( � ) condition, targeted locus (a and d, arrows) showed no accumulation of MS2-YFP 
(b and d, arrows) and no CFP-SKL protein in peroxisomes (c and d). In Dox (+) condition, transcription was observed at the targeted nuclear lamina as 
observed by the accumulation of MS2-YFP (f, j, and n, arrows) and CFP-SKL localization (k, l, o, and p) over time. Images are projections of deconvolved 
z stacks taken every 20 min. Arrows: (e, i, and m) decondensed targeted locus; (h, l, and p) accumulation of MS2-YFP. Bar, 5  � m. See Video 4 (available 
at http://www.jcb.org/cgi/content/full/jcb.200706060/DC1) for the entire time series.   
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increased CFP-SKL protein signal marked the peroxisomes 

( Fig. 9 C , o and p). Thus, our live-cell data shows that transcrip-

tion can be induced and RNA synthesis visualized at the nuclear 

periphery in mammalian cells. 

 Having visualized transcription at the nuclear periphery, 

we were next interested in determining whether there was a sig-

nifi cant difference in the kinetics of transcription when the lo-

cus was located at an internal nuclear site versus at the periphery. 

To do so, control or targeting cells were transiently transfected 

with pVitro2 – Tet-on + MS2-YFP and induced for 12 h with 

cumate for control or targeting fusion expression and cells were 

imaged in the YFP and mCherry channels. The ratio of MS2-

YFP fl uorescence intensity of the locus to the entire nucleo-

plasm (mean values) was expressed as a percentage and was 

plotted against time of Dox induction. Such analysis indicated 

that transcription of the lamin B1 – targeted loci at the nuclear 

periphery as well as at internal nuclear regions paralleled that of 

the control nontargeted loci at the nuclear interior ( Fig. 10 ). 

mRNA synthesis was fi rst detected at 20 min after Dox addition 

in both control and targeting cells. The rates of mRNA synthesis 

increased at similar levels over the 5-h period of examination 

( Fig. 10 ). The ability to induce transcription of this locus at 

the nuclear periphery is consistent with the dynamic and freely 

diffusible nature of most nuclear proteins (for review see 

 Misteli, 2001 ). 

 Discussion 
 At the nuclear envelope, lamins bind to chromatin either di-

rectly or indirectly through LAPs (for reviews see  Goldman et al., 

2002 ;  Schirmer and Foisner, 2007 ) and hence are thought to 

regulate higher order chromatin structure. In addition to the 

lamins and various lamina-associated proteins, a multitude of 

nuclear envelope transmembrane proteins of unknown func-

tion have recently been identifi ed (for review see  Schirmer and 

loci were transcriptionally active based on MS2-YFP accumu-

lation in the presence of Dox. These results indicated that 

although association of lamin B with a locus, internal or targeted, 

had some effect on the percentage of loci that were able to be 

transcriptionally induced, a signifi cant percentage of gene loci 

anchored to the nuclear lamina could be induced. However, 

because the transcriptional analysis was performed 12 h after 

cumate-induced expression of lacI-mCherry – lamin B1, it is not 

possible, based on fi xed-cell analysis, to distinguish whether 

Tet-On – induced transcription initiated before or after the locus 

reached the nuclear lamina. 

 To directly visualize transcription at the nuclear lamina in 

living mammalian cells, targeting cells were transiently trans-

fected with pVitro2 – Tet-On + MS2-YFP and incubated with 

cumate for 12 h to induce targeting to the nuclear lamina.  Fig. 9 C  

shows still images (a – p) from a time series (0 – 5 h) of target-

ing cells during transcriptional activation at the nuclear lamina. 

Cells that exhibited the locus targeted and plastered onto the 

nuclear lamina and expressed Tet-On and MS2-YFP (based on 

YFP signal) were selected for imaging. At 0 h, in the absence of 

Dox, the locus was condensed ( Fig. 9 C , a and d, arrows), there 

was no transcription, and no MS2-YFP accumulation was visu-

alized at the locus ( Fig. 9 C , b and d, green, arrows). At 20 min 

after the addition of Dox, MS2-YFP was fi rst observed at the 

locus with no visible decondensation of the locus or accumula-

tion of CFP-SKL protein in the peroxisomes (Video 4, available 

at http://www.jcb.org/cgi/content/full/jcb.200706060/DC1). 

By 1 h in Dox (+) condition, the targeted locus started to de-

condense ( Fig. 9 C , e and h, arrows) and an increase of MS2-YFP 

was observed at the locus ( Fig. 9 C , f, arrow). CFP-SKL protein 

was fi rst observed at 1 h 20 min after induction (Video 4), al-

though it was more apparent at later time points, and by 2 h peroxi-

some labeling was very apparent ( Fig. 9 C , k and l; and Video 4). 

By 5 h in the presence of Dox, the targeted locus continued to 

be transcribed at the nuclear lamina ( Fig. 9 C , n, arrow) and an 

 Figure 10.    The kinetics of transcriptional 
induction of the targeted locus parallels that 
of the nontargeted locus.  Control or targeting 
cells were transiently transfected with pVitro2 – 
Tet-on + MS2-YFP and induced for 12 h with cumate 
for targeting fusion expression. The transfected 
cells (control nontargeted [ n  = 7], lamin B1 –
 bound nontargeted [ n  = 8], and lamin B1 –
 targeted [ n  = 10] cells) were then initially 
imaged in the mCherry and YFP channels in 
Dox ( � ) condition (0 h). Subsequently, imaging 
was continued in Dox (+) condition every 
20 min for a total of 5 h. The ratio of fl uorescence 
intensity of the locus to the entire nucleus 
(mean values) was expressed as a percentage 
and plotted against time of Dox induction (each 
time point is represented by the mean and 
standard deviation).   
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Gerace, 2005 ), indicating an increased complexity of the nuclear 

envelope. In vitro studies showed that lamin B1 binds to native 

core histones ( Taniura et al., 1995 ) and to specific DNA se-

quences called matrix attachment regions ( Luderus et al., 1992 ). 

Analysis of  D. melanogaster  B-type lamin (Dmo) revealed 

TRAT amino acid and NLS sequences in the tail domain 

that directly interact with histone H2A ( Mattout et al., 2007 ). 

Recently, a genome-wide screen in  D. melanogaster  Kc cells 

using DNA adenine methyltransferase identifi cation technology 

showed that  � 500 genes interact with Dmo ( Pickersgill et al., 

2006 ). However, these genes show no consensus DNA-binding 

sequence for B-type lamin that would enable anchoring of 

perinuclear chromatin to the lamina. In the absence of such a 

DNA-consensus sequence, it becomes difficult to study the 

anchoring process. However, the targeting system that we de-

veloped has allowed us to address important issues relating to 

the spatial and temporal aspects of targeting as well as its func-

tional consequences. 

 Live-cell studies from different organisms in interphase nu-

clei showed that chromatin, in general, exhibits constrained dif-

fusional random walk motion, with a mean radius of confi nement 

of  � 0.5  � m in the mammalian nucleus (for reviews see  Spector, 

2003 ;  Lanctot et al., 2007 ). These studies also indicated that un-

like in yeast and  D. melanogaster , wherein the dynamic nature of 

chromosomes allows their probing of signifi cant portions of the 

nuclear volume, the mammalian chromosome visits a limited 

nuclear volume during interphase. Furthermore, the diffusion co-

effi cient of human chromatin is fourfold lower than that of yeast 

( Chubb et al., 2002 ). This constraint on mammalian chromatin 

could be a refl ection of the complexity of the genome and the 

constraint posed by the physical attachment of chromatin to nu-

clear compartments ( Chubb et al., 2002 ). Although chromosomes 

are organized as distinct territories in interphase nuclei, several 

studies have shown that they are dynamic in early G1 and can be 

repositioned with respect to each other or other nuclear compart-

ments (for reviews see  Spector, 2003 ;  Thomson et al., 2004 ; 

 Lanctot et al., 2007 ). Furthermore, chromatin has been shown to 

frequently exhibit long-range movements of  > 2  � m during this 

phase of the cell cycle ( Walter et al., 2003 ). This is also the time 

window when lamin B1 is incorporated into the polymerizing lam-

ina ( Moir et al., 2000 ). It is very likely that the constrained diffu-

sion of chromatin results from interaction of chromatin to structural 

elements such as the nuclear lamina or the nuclear pore complex 

( Marshall, 2002 ). It has been suggested that the chromatin – 

nuclear lamina interactions, which are disrupted during mito-

sis, are reformed during early G1 phase of the cell cycle and, 

indeed, this temporal window of increased chromatin mobility is 

in fact when many aspects of nuclear organization are established 

( Parada et al., 2003 ; for review see  Spector, 2003 ). We observed 

targeting of the locus to the nuclear lamina during the same tem-

poral window, correlating with the dynamics of the lamin B1 pro-

tein and bulk chromatin. Hence, we propose, based on our targeting 

study, that the contribution by the lamina in establishing nuclear 

architecture and chromatin organization occurs during the early 

G1 phase of the cell cycle. 

 An important question regarding the role of spatial posi-

tioning to gene function is whether subnuclear position of a gene, 

relative to nuclear landmarks, infl uences gene activity (for re-

views see  Spector, 2003 ;  Misteli, 2005 ). Although a classical case 

involving the phenomenon of position-effect variegation of the 

brown locus in  D. melanogaster  indicates that repositioning to a 

nearby heterochromatic region results in trans-silencing ( Csink 

and Henikoff, 1996 ;  Dernburg et al., 1996 ),  � 5 transgene inser-

tion into heterochromatin in mouse pre-B cells does not result in 

silencing, and repositioning away from heterochromatin was not 

required for gene activation ( Lundgren et al., 2000 ). Together, 

these studies indicate that absolute gene position may not be criti-

cal for gene activation or that position may be critical for some 

genes and not for others. The accessibility of chromosome terri-

tories ( Verschure et al., 1999 ; for review see  Cremer and Cremer, 

2001 ) and the dynamic nature of chromatin and nucleoplasmic 

proteins ( Becker et al., 2002 ;  Dundr et al., 2002 ;  Kimura et al., 

2002 ;  Phair et al., 2004 ;  Chen et al., 2005 ) provides the opportu-

nity for genes anywhere within a chromosome territory to be eas-

ily accessible to both gene activators and repressors ( Meaburn 

and Misteli, 2007 ). Our fi ndings are consistent with the dynamic 

accessibility by nuclear proteins, wherein upon transcriptional 

activation the transcription machinery, as well as the pre-mRNA 

processing machinery, was recruited to the locus irrespective of 

its nuclear location, resulting in location-independent gene ex-

pression. However, we are not excluding the possibility that there 

may be other microenvironments along the nuclear periphery, or 

for that matter at internal nuclear regions, that may be more at-

tuned to transcriptional silencing. It is also interesting to consider 

that the large size of the 200-copy gene array could generate a 

microenvironment. Nonetheless, our study shows that there is not 

a discernible effect on expression of the peripheral versus internal 

nuclear compartments on this array. 

 Perhaps the best cases that correlate changes in gene posi-

tion to gene activation/expression in relation to nuclear periph-

ery in mammals occur during differentiation of specialized cell 

types, such as erythroid cells, lymphocytes, or embryonic stem 

cells (for review see  Lanctot et al., 2007 ). For example, the re-

positioning of genes, such as  immunoglobulin heavy chain  in 

B lymphocytes,  C-maf  in T cells,  Mash1  in neuronal cells,  Cftr  in 

adenocarcinoma cells, and  MyoD  in myoblasts, from the nu-

clear periphery to the nuclear interior upon activation has been 

well documented ( Kosak et al., 2002 ;  Hewitt et al., 2004 ;  Zink 

et al., 2004 ;  Lee et al., 2006 ;  Williams et al., 2006 ;  Lanctot 

et al., 2007 ). However, gene activation is not always associated 

with movement away from the nuclear periphery, as was ob-

served in other studies based on interferon  � ,  � -globin, and the 

CD8 locus during differentiation or microarray gene expression 

analysis on lamin B1 � / �  mouse fi broblasts ( Hewitt et al., 2004 ; 

 Kim et al., 2004 ;  Ragoczy et al., 2006 ;  Malhas et al., 2007 ). 

This is consistent with our observation that a lamina-targeted 

genetic locus can be activated and transcribed at the lamina. 

Most importantly, although we observed a similar kinetics of 

transcriptional induction between the targeted and nontargeted 

loci, we did observe some differences in the percentage of cells that 

showed recruitment of the gene expression machinery. How-

ever, the complexities of the mammalian nuclear periphery and the 

fact that we are comparing data points from two different cell lines 

(although with the same genomic integration site of lac operator) 
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regulated and were labeled as U2OS-2-6-3 – CymR – lacI-mCherry (control 
cells) and U2OS-2-6-3 – CymR – lacI-mCherry – lamin B1 (targeting cells). 
To make a targeting line stably expressing histone H2A-YFP, targeting cells 
were transfected with pCMV – H2A-YFP as before. 2 d after transfection, 
H2A-YFP – expressing fl uorescent cells were sorted using a FACSVantage SE 
cell sorter with DiVa option (Becton Dickinson), using a helium-neon laser 
at 488 nm to generate the stable targeting line H2A-YFP. 

 Cell synchronization 
 On day 0, targeting cells were subjected to serum starvation in 0.5% FBS 
for a period of 48 h in 10-cm dishes to synchronize cells at G 0  phase 
of cell cycle. On day 2, after 48 h of serum starvation, culture medium 
was replaced with fresh medium containing 10% FBS (to release from 
G 0  phase) and 2 mM hydroxyurea (commonly used for G1/S-phase block) 
for a period of 20 h. To prepare asynchronous cells, targeting cells were 
treated as previously described but in the absence of hydroxyurea. At the 
end of 20 h, dishes containing G1/S-blocked cells or asynchronous cells 
were trypsinized and plated separately on glass coverslips with or without 
hydroxyurea, respectively. The plated cells were then allowed to attach to 
coverslips for a period of 4 h, and then induced with cumate to express the 
targeting fusion. After 12 h of cumate induction, both G1/S-blocked and 
asynchronous cells were fi xed and DNA was stained with HOECHST 
33342 (Invitrogen). 

 Immunofl uorescence 
 Cells were rinsed once briefl y with PBS and fi xed for 15 min in 2% formal-
dehyde in PBS, pH 7.4, at room temperature. Fixed cells were permeabi-
lized in PBS containing 0.5% Triton X-100 and 1% normal goat serum 
for 5 min on ice. After permeabilization, rabbit polyclonal anti – lamin B1 
(N. Chaudhary and G. Blobel, Rockefeller University, New York, NY) primary 
antibody was added (1:500) for 1 h at room temperature. Cells were 
rinsed briefl y with PBS containing 1% normal goat serum, and then incu-
bated with anti – rabbit IgG Alexa Fluor 486 (Invitrogen) secondary anti-
body (1:1,000) for 1 h at room temperature. When required, DNA was 
stained with HOECHST 33342 for 5 min. Immunolabeled cells or formal-
dehyde-fi xed cells expressing fl uorescent proteins in cumate (+) and 
Dox ( � /+) conditions were mounted in medium containing 10% PBS, pH 8.0, 
plus 1 mg/ml paraphenylenediamine. Cells were observed on a Delta-
Vision RT system (Applied Precision) as in Quantitation of RNA synthesis at 
the locus. Z stacks at 0.2- � m intervals were collected and deconvolved 
using SoftWoRx 2.50 software (Applied Precision). 

 Live-cell deconvolution microscopy 
 For time-lapse imaging of transcriptional activation, targeting cells grown 
on coverslips were transiently transfected with pVitro2 – Tet-On + MS2-YFP 
and induced with cumate as before. Cells were then placed in an FCS2 
chamber (Bioptechs), and phenol red – free Leibovitz ’ s L15 (live cell) me-
dium (Invitrogen) containing cumate was perfused into the chamber from a 
syringe. A second syringe with live-cell medium containing 200  μ g/ml 
cumate and1  μ g/ml Dox was also attached to the FCS2 chamber through 
an additional inlet (initially closed). The whole setup was mounted on a 
restoration microscope system (DeltaVision RT; Applied Precision) equipped 
with an inverted microscope (1X-70; Olympus), rapid shutters, and a 
60 × /1.4 NA oil immersion objective lens (planApo; Olympus) using 
CFP/YFP/mCherry fi lters (Chroma Technology Corp.), a cooled charge-
coupled device camera (Photometrics Cool SNAP HQ; Roper Scientifi c) in a 
thermally insulated temperature-controlled chamber at 37 ° C. To minimize 
photosensitivity/phototoxicity from blue light during live-cell imaging, our 
DeltaVision RT has a sharp cut-off (long-pass) fi lter at  � 420 nm. Z stacks 
(0.4  � m, 1 × 1 binning) of transcriptionally inactive cells with a plastered 
locus (mCherry channel), a uniform diffuse nucleoplasmic signal (YFP chan-
nel) with no peroxisomal signal (CFP channel), were collected at 0 min. 
Immediately after imaging, live-cell medium with cumate and Dox from the 
second syringe was perfused into the FCS2 chamber and corrected for any 
z drift before the next time frame of imaging began at 20 min, and imag-
ing was continued with an occasional perfusion of fresh medium. For time-
lapse imaging during mitosis, targeting cells H2A-YFP were grown on 
coverslips and preinduced with 70  μ g/ml cumate for 2 – 3 h and then 
placed in an FCS2 chamber, and live-cell medium containing 70 μg/ml 
cumate was perfused into the chamber from a syringe. To minimize the ex-
posure of cells to fl uorescent light, cells showing a nontargeted spherical 
locus at around G2/M phase were chosen by visualization of the H2A-YFP 
chromatin pattern and nuclear size and imaged through mitosis. Z stacks 
(0.4  � m, 2 × 2 binning) were collected (mCherry and YFP channel) every 
10 min with occasional perfusion of fresh medium. Z stacks were deconvolved 

makes it diffi cult to determine the absolute signifi cance of the 

observed differences. Therefore, as is the case in yeast and 

 D. melanogaster , it is likely that there will not be a single rule 

that dictates the relationship between the nuclear periphery 

and transcription. 

 In summary, we have developed an inducible live-cell sys-

tem in which the position of a genetic locus can be targeted 

from a more internal nuclear region to the nuclear periphery in 

mammalian cells. Interestingly, the mechanism of targeting of 

the locus to the nuclear periphery requires one round of cell 

division and nuclear reassembly. Transcriptional analysis indi-

cated that the targeted locus retained its transcriptional activity, 

which is similar to the locus at an internal nuclear region. This 

new cell system is a powerful tool to study the dynamics of gene 

function at the nuclear periphery during normal physiology and 

in disease states, such as envelopathies, in living cells. 

 Materials and methods 
 Plasmid constructs 
 pTet-On was purchased from Clontech Laboratories, Inc., pVitro2 was pur-
chased from Invivogen, pCMV5-CymR and pCMV-CuO were purchased 
from Qbiogene, and pCMV – lamin B1 and pCMV – lamin A were purchased 
from Open Biosystems. pCMV-CuO – lacI-mCherry was constructed by clon-
ing lacI-mCherry fragment (mCherry was a gift from R. Tsien [University 
of California, San Diego, La Jolla, CA] and was initially PCR amplifed) 
into pCMV-CuO. pCMV-CuO – lacI-mCherry – lamin B1 was constructed by 
cloning lamin B1 into pCMV-CuO – lacI-mCherry. pSV2-YFP – lamin A was 
obtained by cloning lamin A into pSV2-YFP-C1 ( Janicki et al., 2004 ). 
pVitro2 – Tet-On + MS2-YFP was made by sequential cloning of Tet-On and 
MS2-YFP into pVitro2 dual promoter vector. pCMV – MS2-YFP, pSV2-YFP –
 RNA poly II, pSV2-YFP-SF2/ASF, and pYFP-rtTA-N1 plasmids were previ-
ously described ( Janicki et al., 2004 ). pCMV – H2A-YFP and pSV2-YFP – LAP2 �  
were subcloned by S. Janicki (The Wistar Institute, Philadelphia, PA). 

 Cell culture and transfection 
 Cells were grown in DME supplemented with penicillin-streptomycin (Invit-
rogen) and 10% tet system – approved FBS (Clontech Laboratories, Inc.). 
Transient transfection was performed on cells growing on glass coverslips 
using Fugene 6 reagent (Roche) as per the manufacturer ’ s protocol or by 
electroporation ( Janicki et al., 2004 ) using a Gene Pulser II (Bio-Rad Labo-
ratories). Because immediate addition of cumate (Qbiogene) drug seemed 
to decrease transfection effi ciency, 200  μ g/ml cumate was added 2 h after 
transfection and cells were left for 12 h for expression before processing 
for imaging. 

 Development of stable cell lines 
 Parental U2OS-2-6-3 cells ( Janicki et al., 2004 ) grown in DME supple-
mented with 100  μ g/ml each of penicillin-streptomycin and hygromycin B 
(Invitrogen) and 10% tet system – approved FBS were transfected with 2  μ g 
pCMV5-CymR using Fugene 6. Stable clones were selected in 400  μ g/ml 
G418 drug (Invitrogen) for 10 d. 100 individual colonies were picked and 
expanded. Although the clones were being frozen, each clone was seeded 
on coverslips, transfected with pCMV-CuO – lacI-mCherry, treated in the ab-
sence or presence of cumate (control), and screened by visual examination 
for absence of fl uorescence, respectively, with a fl uorescence microscope 
(Axioplan 2i; Carl Zeiss, Inc.) using a 40 × /1.3 NA oil immersion objective 
lens (planApo-Neofl uar). Images were captured using a charge-coupled de-
vice camera (Orca; Hammamatsu) and OpenLab Software (Improvision). 
By this visual screen, the best clone, which expressed the highest CymR 
repressor and hence negative fl uorescence in the absence of cumate, was 
labeled as the U2OS-2-6-3 – CymR repressor clone. The repressor clone was 
then subjected to a second round of transfection as before, but in parallel 
with pCMV-CuO – lacI-mCherry and pCMV-CuO – lacI-mCherry – lamin B1, 
and then selected as before but in the presence of 1  μ g/ml puromycin 
(Sigma-Aldrich) for 7 d. 100 individual colonies for each transfection 
were picked, expanded, and screened by visual examination as before. 
The best clones, which gave no expression in the absence of cumate but opti-
mum expression in the presence of cumate, were considered to be tightly 
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using SoftWoRx 2.50. In-focus sections of deconvolved images were pro-
jected, saved in tif format, and processed using Photoshop 7.0 (Adobe) 
and Illustrator 10.0 (Adobe). tif images from the time series were then com-
bined using QuickTime Pro (Apple) to make videos. 

 Quantitation of RNA synthesis at the locus 
 Control cells or targeting cells grown on live-cell coverslips were transiently 
transfected with pVitro2 – Tet-on + MS2-YFP and induced for 12 h with 
cumate for targeting fusion expression. The transfected cells were then 
imaged in the mCherry and YFP channels in Dox ( � ) condition (0 h), followed 
by imaging in Dox (+) condition every 20 min for a total period of 5 h. 
Raw images were then projected and the mean fl uorescence intensity of 
the locus and of the whole nuclei were extracted using edit polygon and 
edit 2D polygon fi nder programs in SoftWoRx 2.50. The ratio of fl uor-
escence intensity of the locus to the entire nucleus (mean values) was ex-
pressed as a percentage and was plotted against time of Dox induction. 

 Online supplemental material 
 Fig. S1 shows that the expressed targeting fusion is associated with the lac 
operator DNA at the targeted locus at the nuclear periphery. Fig. S2 shows 
serial z sections, which show targeting of the locus to the nuclear periphery. 
Video 1 shows that targeting of the locus to the lamina occurs at the end 
of mitosis. Video 2 shows serial z sections at a single time point, which 
show that the locus is targeted to the nuclear periphery. Video 3 shows that 
the targeted locus at the nuclear lamina remains targeted upon passage 
through mitosis. Video 4 shows transcription from the targeted locus at the 
lamina. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200706060/DC1. 
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