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    Introduction 
 Polarized exocytosis is important for many biological processes 

ranging from the secretion of neurotransmitters to the establish-

ment of epithelia membrane asymmetry. The budding yeast 

 Saccharomyces cerevisiae  undergoes polarized growth (bud-

ding), which requires exocytosis of newly synthesized materials 

at the daughter cell membrane for cell wall remodeling and sur-

face expansion. This property, combined with its facile genet-

ics, makes the budding yeast an excellent model system to study 

the molecular mechanisms of polarized exocytosis. 

 Exocytosis is accomplished when the exocytic vesicles 

are docked to and fused with the plasma membrane. The initial 

contact of the vesicles with the plasma membrane (also known 

as tethering) is believed to be mediated by the exocyst complex, 

which consists of Sec3, 5, 6, 8, 10, and 15 and Exo70 and 84 

(for reviews see  Pfeffer, 1999 ;  Guo et al., 2000 ;  Whyte and 

Munro, 2002 ;  Hsu et al., 2004 ). In yeast, defects in exocyst pro-

teins lead to accumulation of secretory vesicles in cells ( Novick 

et al., 1980 ;  Guo et al., 1999a ,  Zhang et al., 2005a,b ). Members 

of the exocyst are localized to the bud tip or mother – daughter 

junction, where active exocytosis and cell surface expansion 

take place ( TerBush and Novick, 1995 ;  Finger et al., 1998 ;  Guo 

et al., 1999a, 2001 ;  Zajac et al., 2005 ). The exocyst component 

Sec15 directly interacts with the Rab protein Sec4, a master 

regulator of post-Golgi secretion ( Guo et al., 1999b ). Sec3 and 

Exo70 interact with the Rho family of small GTPases, which 

are key regulators of polarized cell growth in yeast ( Adamo 

et al., 1999 ;  Robinson et al., 1999 ;  Guo et al., 2001 ;  Zhang et al., 

2001 ). Recent crystallographic studies suggest that many of the 

exocyst components are composed of contiguous helical bun-

dles with an overall rodlike extended conformation, and the exo-

cyst complex assembly involves orderly packing of these rodlike 

structures (for review see  Munson and Novick, 2006 ). 

 In this paper, we fi nd that Sec3 directly interacts with 

phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in the plasma 

membrane. In addition, we have identifi ed key residues on Sec3 

that are critical for its binding to Cdc42. We demonstrate that 

both PIP 2  and Cdc42 binding are required for the polarization 

and function of Sec3 at the bud tip membrane. Disruption of the 

interaction of Sec3 with Cdc42 or PIP 2  not only blocks exocytosis 

but also causes defects in cell morphology. Our studies shed 

light on the molecular basis of vesicle targeting to the plasma 

membrane and reveal the critical role the exocyst plays as a 

downstream effector of PIP 2  and Cdc42 during cell polarization. 

 Results 
  sec3 Δ N  is synthetic lethal with the 
 exo70-38  mutant 
 We have previously shown that the N terminus of Sec3 (Sec3N, 

aa 1 – 320) interacts with the Rho GTPases ( Guo et al., 2001 ;  Zhang 

et al., 2001 ). Surprisingly, cells expressing N terminus – deleted 
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portant roles in exocytosis and polarized cell growth.
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polybasic region of Gic2 are essential for the ability of the 

 gic2-sec3  chimera to functionally replace  SEC3  in yeast cells. 

 Localization of Sec3 in tropomyosin 
mutants and cells treated with latrunculin 
 It was previously reported by  Finger et al. (1998)  that polarized 

localization of Sec3-GFP to the bud tip is independent of actin. 

In addition, fl uorescence recovery after photobleaching (FRAP) 

of Sec3-GFP and Exo70-GFP at the bud was found to take place 

properly in the presence of latrunculin, which disrupted actin 

cables in cells ( Boyd et al., 2004 ). Consistent with these observa-

tions, Sec3-GFP was found to remain polarized in the tropomyosin 

mutant,  tpm1-2 tpm2 Δ   ( Zajac et al., 2005 ), in which actin cables 

were disrupted upon shifting to the restrictive temperature 

( Pruyne et al., 1998 ). However, using an anti-Sec3 antibody, 

 Roumanie et al. (2005)  reported that Sec3 immunofl uorescence 

signals at the bud were lost in the tropomyosin mutant. In this 

study, we performed the immunostaining experiment using a 

Sec3 antibody (generated against a fusion protein containing 

aa 445 – 711 of Sec3) in parallel with GFP-tagged Sec3. This anti-

body detects Sec3 in wild-type ( SEC3 ) but not  sec3 -null ( sec3 Δ  ) 
cells by Western blotting or immunofl uorescence ( Fig. 2 A ). The en-

dogenous Sec3 was polarized in the  TPM1 tpm2 Δ   cells shifted 

to 34.5 ° C for 10 min (72% of the cells;  n  = 300) or 60 min (58% 

of the cells;  n  = 300;  Fig. 2 B ). Sec3 remained polarized in 

many of the  tpm1-2 tpm2 Δ   cells shifted to 34.5 ° C for 10 min 

(53% of the cells;  n  = 300) or 60 min (36% of the cells;  n  = 300). 

However, in many cases, the polarized signals in these mutant 

cells were not concentrated as tight patches like those observed 

in the control cells. We also observed fl at disc-shaped signals 

near the mother – daughter connections in the cells after zymo lyase 

treatment (not counted as polarized signals in the experiments). 

In contrast, the Rab protein Sec4 was completely depolarized in 

the mutant cells. Sec3-GFP was well polarized in the  tpm1-2 
tpm2 Δ   mutant cells. We noticed that some of the  tpm1-2 tpm2 Δ   
mutant cells were easily lysed during the immunofl uorescence 

procedure. The zymolyase and SDS treatments during yeast cell 

wall removal and membrane permeabilization steps may have led 

to the partial dispersion of the Sec3 signals in  tpm  mutant cells. 

This is supported by a side-by-side comparison of the proce-

dures for direct GFP observation and immunofl uorescence in 

cells (Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200704128/DC1). In addition, the antibodies used in  Roumanie 

et al. (2005)  and in this study were generated against different 

regions of Sec3, which may also contribute to the discrepancy. 

In fact, different antibodies and staining methods have been suc-

cessfully used to reveal different pools of exocyst in mammalian 

cells ( Yeaman et al., 2001 ;  Oztan et al., 2007 ). 

 To avoid the cell lysis problems, we took another approach 

commonly used to study the role of actin cables in the localiza-

tion of proteins involved in yeast cell polarity ( Ayscough et al., 

1997 ). Cells were fi rst arrested at G 0  phase and then released to 

fresh medium for growth in the presence of latrunculin B (Lat B), 

which disrupts actin in yeast cells. Immunostaining was then 

performed in these cells to detect Sec3 localization. We found 

that although actin cables were clearly disrupted in the Lat B –

 treated cells, Sec3 remained polarized (66%;  n  = 300;  Fig. 2 C ). 

Sec3 ( sec3 �  N  ) as the only copy of Sec3 grew normally at all 

temperatures tested, and these cells did not have any defects in 

secretion ( Guo et al., 2001 ). A recent study showed that Exo70, 

like Sec3, resides on the bud tip membrane and that the other 

subunits, arriving via secretory vesicles, interact with Sec3 and 

Exo70 at the bud tip for exocyst assembly ( Boyd et al., 2004 ). 

Furthermore, it was shown that Exo70 binds directly to PIP 2  

( He et al., 2007b ;  Liu et al., 2007 ). It is thus possible that Sec3 

and Exo70 function together in exocyst targeting in yeast. 

In that case, mutations in Sec3 or Exo70 that alone cause little 

or no phenotype may have a synthetic defect when combined. 

We recently obtained Exo70 mutants ( He et al., 2007a,b ) that 

allowed us to test this hypothesis. Both  sec3 �  N   and  exo70-38  

were expressed under their endogenous promoters in  CEN  plas-

mids.  sec3 Δ N  has no growth defect.  exo70-38  can survive at 25 

but not 37 ° C ( He et al., 2007a ).  sec3 Δ N  is synthetic lethal with 

 exo70-38 , as at all temperatures tested the  sec3 Δ N  and  exo70-38  

double mutant  sec3 �  N exo70-38   cannot survive on 5 – fl uoro-

orotic acid (5-FOA) plates on which the  URA3 -based wild-type 

 SEC3  balancer is eliminated ( Fig. 1 A ). The genetic interaction 

between  sec3 �  N   and  exo70-38  suggests that the N terminus of 

Sec3 becomes indispensable in the  exo70  mutant background. 

Besides  exo70-38 ,  sec3 Δ N  also has synthetic defects with other 

exocyst mutants ( Roumanie et al., 2005 ; unpublished data). 

 Functional replacement of the Sec3 Δ N 
terminus with Gic2 N terminus 
 We have previously shown that the N terminus of Sec3 directly 

interacts with Cdc42, but we were unable to assess the func-

tional importance of this interaction ( Zhang et al., 2001 ). 

Now, taking advantage of the synthetic lethality assay, we tested 

whether the lethality of the  sec3 �  N exo70-38   double mutant 

could be rescued by adding the N terminus of Gic2 (Gic2N, 

aa 1 – 155) to  sec3 �  N   ( Fig. 1 B ). Gic2 is a well-characterized 

effector of Cdc42 ( Brown et al., 1997 ,  Chen et al., 1997 ). Gic2N 

contains a Cdc42/Rac interactive binding (CRIB) domain that 

interacts with the GTP-bound form of Cdc42. We tested whether 

this  gic2-sec3  chimera, when expressed under the   SEC3   pro-

moter, can function as well as the wild-type   SEC3   in the  exo70-38  

background. We found that although  exo70-38  and  sec3 �  N   were 

synthetic lethal, growth of the  exo70-38 gic2-sec3  strain was 

similar to that of the  exo70-38 SEC3  strain on plates at 25 ° C 

( Fig. 1 C ) and all other temperatures tested (not depicted). 

 Next, we performed experiments to identify the sequences 

of Gic2N that are crucial for its functional replacement of the 

Sec3 N terminus. First, we mutated or deleted the CRIB domain 

in Gic2N and tested the synthetic effects of these mutants 

with  exo70-38 . As shown in  Fig. 1 D , the  gic2-sec3  chimeras with 

the CRIB domain mutated or deleted were synthetic lethal with 

 exo70-38 , whereas the mutant proteins were expressed at simi-

lar levels to the wild-type protein (not depicted). Gic2 also con-

tains a cluster of positively charged residues (aa 109 – 121) 

adjacent to the CRIB domain that are implicated in membrane 

association. As shown in  Fig. 1 D , replacing these basic residues 

with alanine (K109A, K110A, K119A, K120A, and K121A) led 

to synthetic lethality between  gic2-sec3  and  exo70-38 . These 

genetic analyses indicate that both the CRIB domain and the 
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As shown in  Fig. 3 A , in cells treated with Lat B, sec3 Δ N-GFP 

was dispersed throughout the cells. However, the full-length 

Sec3 still formed a patch in the presumptive buds. As a control, 

both Sec3-GFP and sec3 Δ N-GFP were well polarized in cells 

treated with DMSO. These results suggest that, unlike full-

length Sec3, the delivery of sec3 Δ N to the bud requires intact 

 Polarization of sec3 Δ N-GFP is sensitive 
to latrunculin 
 The sec3 Δ N protein, when expressed as the only copy of Sec3 

in the cell, was well polarized to the bud tip ( Guo et al., 2001 ). 

We compared the targeting of sec3 Δ N-GFP and Sec3-GFP to 

the emerging bud after G 0  release in the presence of latrunculin. 

 Figure 1.    The  gic2-sec3  chimera is able to rescue synthetic lethality between  sec3 � N    and  exo70-38 .  (A)  sec3 � N  is synthetic lethal with  exo70-38 .  sec3 ∆ N  
and  exo70-38  were expressed under  SEC3  and  EXO70  promoters in  CEN  plasmids. The  sec3 ∆ N exo70-38  double mutant supplemented with a  CEN, 
URA3, SEC3  balancer was streaked out on the plates with (right) or without (left) 5-FOA and incubated for 5 d at 25 ° C. The  sec3 � N  and  exo70-38  single 
mutants were used as controls.  exo70-38 sec3 � N  could not survive when losing the  SEC3  balancer on the 5-FOA plate (right). (B) Diagram of Sec3 and 
 gic2-sec3  chimera in which the N terminus of Sec3 (aa 1 – 307) was replaced with the N terminus of Gic2 (aa 1 – 155; gray). The interaction with Cdc42 is 
indicated by the arrows. (C) The chimera  gic2-sec3  is able to rescue the synthetic lethality between  sec3 � N  and  exo70-38 .  gic2-sec3  was expressed under 
the endogenous  SEC3  promoter in a  CEN  plasmid supplemented with a  CEN, URA, SEC3  balancer. Although  sec3 � N  and  exo70-38  were synthetic lethal, 
the  exo70-38 gic2-sec3  grew well at 25 ° C in the presence of 5-FOA. (D) The CRIB domain and polybasic region at the N terminus of Gic2 are essential 
for the functional replacement of wild-type  SEC3  with  gic2-sec3  chimera in yeast. Chimeras, including  gic2-sec3  and  gic2 (CRIB mutation) - sec3 , in which 
the key residues of the CRIB domain are replaced by alanine (I134A, S135A, and P137A), and  gic2 (CRIB � )-sec3 ,  gic2 (CRIB �   &  polybasic � )-sec3 , and 
 gic2-sec3 (K109A, K110A, K119A, K120A,  and  K121A ), in which the polybasic region of Gic2 was mutated, were expressed under the  SEC3  promoter 
in  CEN  plasmids and tested for their synthetic lethality with  exo70-38 . All chimeras except  gic2-sec3  are synthetic lethal with  exo70-38 .   



JCB • VOLUME 180 • NUMBER 1 • 2008 148

 Figure 2.    Localization of Sec3 in the tropomyosin mutant and cells treated with latrunculin.  (A) The affi nity-purifi ed anti-Sec3 antibody recognizes Sec3 in 
wild-type ( SEC3 ) but not  sec3  deletion ( sec3 �  ) cells by Western blotting (left; molecular masses indicated to the left) and immunofl uorescence microscopy 
(right). (B) Sec3 remains polarized in  tpm1-2 tpm2 ∆   mutant cells. The  TPM1 tpm2 ∆   (left) and  tpm1-2 tpm2 ∆   (right) cells were grown at 25 ° C and then 
shifted to 34.5 ° C for 10 and 60 min before immunostaining with anti-Sec3 or anti-Sec4 antibodies. Both Sec4 and Sec3 were polarized in  TPM1 tpm2 ∆   
cells (left). Sec4 was completely depolarized in the  tpm1-2 tpm2 ∆   cells after the temperature shift, whereas Sec3 was mostly polarized, albeit less concen-
trated than the control cells. Sec3 in these mutants monitored by GFP tagging (Sec3-GFP) was also polarized. (C) Yeast cells were arrested at G 0  phase 
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images were recorded over time. As shown in  Fig. 4 , the full-

length Sec3-GFP was able to recover its fl uorescence at the 

bud tip in the presence of latrunculin, which is consistent with 

the previous observation ( Boyd et al., 2004 ). On the contrary, 

sec3 Δ N-GFP could not recover. As controls, both Sec3-GFP 

and sec3 Δ N-GFP recovered in the presence of DMSO. We 

also compared the recovery time of Sec3-GFP and sec3 Δ N-

GFP (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200704128/DC1). sec3 � N-GFP, like Sec8-GFP, reached 

nearly full recovery by 30 s, whereas Sec3-GFP did not fully 

recover until  � 90 s. The data suggest that sec3 � N may local-

ize to the bud tip through its association with the other exo-

cyst components. 

 The N terminus of Sec3 directly interacts 
with PIP 2  
 Sequence analysis reveals that Sec3, like Gic2, also has a clus-

ter of basic residues, including K134, K135, K136, and R137, 

actin cables in a fashion similar to the other exocyst compo-

nents that associate with secretory vesicles ( Boyd et al., 2004 ). 

Because the  gic2-sec3  chimera is able to functionally replace 

  SEC3   in yeast, we tested whether the initial targeting of gic2-sec3 

to the bud is, as with the full-length Sec3, independent of 

 actin cables. As shown in  Fig. 3 B , similar to Sec3-GFP, 

gic2-sec3 – GFP was localized to the presumptive bud sites in 

cells treated with Lat B. We conclude that the N terminus of 

Sec3 confers its actin-independent localization at the bud tip 

and that the inter action of Cdc42 with Sec3 is important for 

Sec3 targeting. 

 Previous FRAP analyses demonstrated that Sec3-GFP 

fl uorescence recovery at the bud can take place even in the 

presence of latrunculin ( Boyd et al., 2004 ). We asked whether 

sec3 Δ N-GFP fl uorescence could recover after photobleaching if 

actin is disrupted. Cells expressing Sec3-GFP and sec3 Δ N-GFP 

under the   SEC3   promoter were grown at 25 ° C. Small buds of 

these cells were bleached with laser, and pre-and postbleach 

and then released into fresh medium at 25 ° C for 90 min in the presence of 100  � M Lat B (left) or DMSO (right). Cells were fi xed and then processed for 
immunostaining with the anti-Sec3 antibody. In cells treated with Lat B, Sec3 still formed a patch in the presumptive budding site. Actin cables were 
disrupted by this treatment. As controls, both Sec3 and actin were polarized in cells treated with DMSO (right). Bars, 5  � m.   

   

 Figure 3.    The actin-independent localization of Sec3 is conferred by its N terminus.  (A) The targeting of sec3 � N to the bud tip is dependent on actin. 
Yeast cells expressing Sec3-GFP or sec3 ∆ N-GFP under the  SEC3  promoter as the sole copy of Sec3 were arrested at G 0 . Cells were then released into 
fresh medium at 25 ° C for 90 min in the presence of 100  � M Lat B or DMSO. Cells were then fi xed for fl uorescence microscopy. In cells treated with Lat B 
(left), the full-length Sec3 formed a patch in the presumptive budding site, whereas sec3 ∆ N-GFP was dispersed throughout the cells (left). As controls, both 
Sec3-GFP and sec3 ∆ N-GFP were well polarized in cells treated with DMSO (right). (B) The targeting of  gic2-sec3  to the bud tip is independent of actin. 
gic2-sec3 – GFP was expressed under the  SEC3  promoter in  sec3 �   background. Cells were arrested at G 0  phase and released into fresh medium in the 
presence of 100  μ M Lat B. gic2-sec3 – GFP was polarized at the presumptive buds when actin was disrupted. Bars, 5  � m.   
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PIP 2  was greatly enhanced when 20% PS was added (dissociation 

constant [Kd] = 14.4  ±  4  � M). This result suggests that mem-

brane association of Sec3 involves multiple Sec3 – phospholipid 

interactions. It is possible that PS, though binding to Sec3 with 

low affi nity, synergistically contributes to Sec3 binding to PIP 2  

in physiological membranes. 

 We next tested whether mutating the polybasic region of 

Sec3 affects its binding to phospholipids. Mutagenesis was 

 performed to change these residues to alanine (K134A, K135A, 

K136A, and R137A). As shown in  Fig. 5 C , mutating these

residues impaired the ability of Sec3 to bind to LUVs contain-

ing PIP 2 . 

 Identifi cation of residues on Sec3 that are 
crucial for Cdc42 binding 
 After fi nding the interaction between Sec3 and Cdc42 ( Zhang 

et al., 2001 ), we performed several domain-mapping experiments 

to narrow down the region in Sec3 that mediates its interaction 

with Cdc42. We found that aa 140 – 155 were important for the 

binding ( Fig. 6 A ). We mutated four residues (I140A, L141A, 

S142A, and P145A) in this region and tested the mutant (named 

 sec3-201 ) for Cdc42 binding. The wild-type and mutant forms 

of the Sec3 N-terminal sequence (Sec3N and sec3-201N; 

aa 1 – 320) were expressed as GST fusion proteins, and Cdc42 was 

expressed as a Hisx6-tagged fusion protein. These recombinant 

proteins were purifi ed from bacteria and used in an in vitro 

binding experiment. As shown in  Fig. 6 B , the wild-type Sec3N 

bound strongly to Cdc42 in the presence of GTP � S, which is 

consistent with our previous observation ( Zhang et al., 2001 ). 

However, the  sec3-201  mutant had almost no detectable binding 

to Cdc42. We also mutated four residues in the polybasic region 

(K134, K135, K136, and R137) into alanine ( sec3-202 ) or nega-

tively charged glutamic acid ( sec3-203 ). The  sec3-202  mutant 

(K/R → A) was able to bind to Cdc42 at a level comparable to 

wild-type Sec3. The  sec3-203  mutant (K/R → E) had reduced 

binding to Cdc42. The dramatic charge reversion probably led 

to a certain degree of perturbation of the Sec3N structure. 

The  sec3-201  mutant that failed in Cdc42 binding remains capable 

of binding to PIP 2 -containing lipids in the LUV sedimentation 

assay ( Fig. 6 C ). 

 The polybasic region and the Cdc42-
binding region of Sec3 are critical for 
Sec3 function 
 Taking advantage of the synthetic lethality assay ( Fig. 1 ), we 

assessed the functional implications of the Sec3 interaction with 

phospholipids and Cdc42. First,  SEC3  was replaced with the 

Cdc42-binding – defi cient mutant  sec3-201  in  exo70-38  cells. 

As shown in  Fig. 6 D , the double mutant  exo70-38 sec3-201  was 

 inviable at 32 ° C. Next, we examined the synthetic genetic inter-

action between  exo70-38  and  sec3-202  or  sec3-203 . Both  sec3-202  

and  sec3-203  had clear synthetic growth defects with  exo70-38  

at 32 ° C. The K/R → E mutation in  sec3-203  led to a more severe 

growth defect than the K/R → A mutation in  sec3-202 . When 

mutations in the Cdc42 binding domain ( sec3-201 ) were com-

bined with the mutations in the polybasic region ( sec3-202  and 

 sec3-203 ), the resulting  sec3  mutants  sec3-204  and  sec3-205  

located at its N terminus. In many cases, clusters of basic residues 

are implicated in direct interaction with the negatively charged 

phospholipids, including PIP 2  and phosphatidylserine (PS), dis-

tributed in the inner leafl et of the plasma membrane. Because 

Sec3 is stably localized to the bud tip membrane, it is likely that 

Sec3 directly interacts with phospholipids via its N-terminal 

 basic residues. To test this, we examined the binding of recom-

binant Sec3N to large unilamellar vesicles (LUVs) containing 

various phospholipids. As shown in  Fig. 5 A , Sec3N bound to 

LUVs containing PIP 2  but not to LUVs containing phosphatidyl-

choline (PC). Sec3N also bound to PS; however, the binding 

was indistinct unless the molar ratio of PS in the LUVs was 

raised to 60%. Noticeably, although Sec3N only bound diminu-

tively to 20% PS LUVs, combining PIP 2  and PS (5% PIP 2  + 

20% PS) signifi cantly increased the affi nity of Sec3N for the 

LUVs. As a control, GST did not bind to LUVs of any lipid 

composition. To measure the affi nity of these interactions, we 

examined the binding of Sec3N to LUVs with increasing lipid 

concentrations. As shown in  Fig. 5 B , although Sec3N barely 

bound to 20% PS, the affi nity of Sec3N for LUVs containing 5% 

 Figure 4.    FRAP of sec3 Δ N-GFP at the bud relies on actin cables.  
(A) Recovery of Sec3-GFP or sec3 ∆ N-GFP fl uorescence in cells treated with 
DMSO or 100  � M Lat B. Bar, 5  � m. (B) Fluorescence recovery graphs 
of cells expressing either Sec3-GFP (top) or sec3 Δ N-GFP (bottom) treated 
with DMSO or Lat B. Each data point represents the mean  ±  SEM ( n  = 3; 
P  <  0.05 for every time point after the initial two for sec3 � N-GFP  ±  Lat B).   
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 dispersed throughout the cells. As controls, both Exo70-GFP 

and exo70-38 – GFP were well polarized in cells treated with 

DMSO ( Fig. 7 C ). 

 The  sec3 exo70-38  double mutants display 
severe secretion defects 
 We examined the secretion of the periplasmic enzyme invertase in 

the  exo70-38 sec3-201  and  exo70-38 sec3-203  double mutants. 

As shown in  Fig. 8 A , after a 2-h shift to 35 ° C, the  exo70-38  or 

 sec3 �  N   single mutant cells secreted  > 90% of the total invertase, 

whereas the  exo70-38 sec3-201  cells and the  exo70-38 sec3-203  

cells only secreted 34.1 and 38.8% of the total invertase, respec-

tively. We also examined the secretion of the cell wall modifi ca-

tion enzyme Bgl2. As shown in  Fig. 8 B , no Bgl2 accumulation 

was detected in the  exo70-38  or  exo70-38 sec3-201  cells at 25 ° C, 

and only a small amount of Bgl2 was accumulated in the  exo70-38 
sec3-203  cells. After a 2-h shift to 35 ° C, although the  exo70-38  cells 

accumulated only a moderate amount of Bgl2, the  exo70-38 
sec3-201  and  exo70-38 sec3-203  cells showed a much more pro-

nounced amount of Bgl2 accumulation. As a control, the  sec3 �  N   
cells did not accumulate Bgl2 at either 25 or 35 ° C. These results 

indicate that combining  sec3-201  or  sec3-203  with  exo70-38  

greatly aggravates the Bgl2 secretion defects. Overall, these re-

sults suggest that disruption of the Cdc42 or lipid interaction of 

Sec3 in the  exo70-38  background blocks secretion. 

 We also performed thin-section electron microscopy on 

these mutants. As shown in  Fig. 8 (C and D) , the  exo70-38  cells 

began to accumulate vesicles (100  ±  38 vesicles/section) at 

became synthetic lethal with  exo70-38 , even at 25 ° C ( Fig. 6 E ). 

Combining these results, we conclude that the dual interactions 

of Sec3 with Cdc42 and phospholipids are important for Sec3 

function in cells. 

 Cdc42 and PIP 2  interactions are important 
for Sec3 targeting to the bud tip 
 Using these  sec3  mutants, we asked whether the interactions of 

Sec3 with Cdc42 and phospholipids are important for its polar-

ization to the bud tip. The  sec3  mutants were integrated into the 

 SEC3  locus in the yeast chromosome to replace the endogenous 

 SEC3 . These  sec3  mutants were then C-terminally tagged with 

GFP by chromosomal integration. The cells were arrested in 

G 0  phase and then released into fresh medium in the presence of 

Lat B. Polarization of  sec3-201 ,  sec3-202 , and  sec3-203  to the 

presumptive bud emergence site were all affected to various 

extents in the presence of Lat B ( Fig. 7 A ). The  sec3-204  and 

 sec3-205  mutants that combine the Cdc42-binding and 

phospholipid- binding mutations failed to polarize to the bud tip. 

Quantifi cation of the cells that polarized, partially polarized, or 

depolarized Sec3-GFP is presented in  Fig. 7 B . These results 

suggest that the Cdc42 and phospholipid interactions synergisti-

cally control the actin- independent targeting of Sec3 to the bud 

tip during budding. 

 Using the same method, we also examined the polariza-

tion of the exo70-38 protein in cells treated with Lat B. In cells 

treated with Lat B, the wild-type Exo70 still formed a patch in 

the presumptive budding site; however, exo70-38 – GFP was 

 Figure 5.    The N terminus of Sec3 directly 
binds to phospholipids.  (A) 0.3  � m GST-Sec3N 
(aa 1 – 320) purifi ed from bacteria was in-
cubated with liposomes containing 100% PC, 
5% PIP 2 , 20% PS, 60% PS, or a combination 
of 5% PIP 2  and 20% PS. After ultracentrifuga-
tion, proteins in supernatant (S) and pellet (P) 
were subjected to SDS-PAGE and visualized 
by SYPRO red staining (top). Sec3N bound to 
vesicles containing 5% PIP 2  and more strongly 
to vesicles containing both 5% PIP 2  and 20% 
PS. GST did not bind to LUVs with any lipid 
compositions (bottom). (B) 0.3  � M Sec3N was 
incubated with increasing concentrations of 
LUVs composed of 5% PIP 2 , 20% PS, or 5% 
PIP 2  + 20% PS for the binding reaction. 
The percentage of lipid-bound Sec3N was 
plotted with increasing LUV concentration with 
a single rectangular hyperbola equation 
(B = BmaxX/[Kd + X]) using SigmaPlot. Each point 
is the mean of three measurements. Error bars 
represent SD. (C) Changing the polybasic re-
gion to alanine impaired Sec3N binding to 
phospholipids. Wild-type and mutant Sec3N 
(sec3N-mt) fusion proteins were incubated 
with 30  � M of phospholipids containing 2% 
PIP 2  and 20% PS. Proteins in supernatant and 
pellet were analyzed by SDS-PAGE.   
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 Exocyst localization and morphologies of 
the  exo70-38 sec3  double mutants 
 To examine the localization of exocyst components in the mu-

tant cells, we GFP tagged the exocyst components Sec3, 5, and 8 

and Exo84 by chromosomal integration in the single or double 

mutants of  exo70  and  sec3 . As shown in  Fig. 9 , at 35 ° C, in the 

 sec3  and  exo70  single mutants, the exocyst components were 

polarized to the bud tip. However, in the  exo70-38 sec3-201  and 

35 ° C, whereas the  exo70-38 sec3-201  and  exo70-38 sec3-203  

double mutants accumulated much larger amounts of vesicles 

(366  ±  84 and 330  ±  69 vesicles/section, respectively). The double 

mutants accumulated vesicles even at 25 ° C. The  sec3 Δ N  cells 

did not accumulate vesicles at any temperature tested. These 

results clearly show that the secretion defects are aggravated 

when the Cdc42 – Sec3 or lipid – Sec3 interaction is disrupted in 

 exo70-38  cells. 

 Figure 6.    The Cdc42 binding domain and 
the polybasic region of Sec3 are important 
for Sec3 function.  (A) Diagram of the Sec3 se-
quence containing the potential Cdc42 bind-
ing site and the polybasic region. Residues 
before R137 may be involved in lipid binding 
and residues after I140 may be involved in 
Cdc42 binding. (B) The  sec3-201  mutant was 
not able to bind to Cdc42 in vitro. GST fusion 
proteins containing the N terminus (aa 1 – 320) 
of Sec3,  sec3-201  (I140A, L141A, S142A, 
and P145A),  sec3-202  (K134A, K135A, 
K136A, and R137A), and  sec3-203  (K134E, 
K135E, K136E, and R137E) were purifi ed and 
conjugated to glutathione sepharose. Cdc42 
was expressed as a Hisx6 fusion and purifi ed 
from bacteria. The in vitro binding assay 
was performed using GST-Sec3N and Hisx6-
Cdc42 in the presence of GTP � S. The Hisx6-
Cdc42 fusion protein bound to the GST-Sec3N 
sepharose was detected by Western blotting 
with anti-Hisx6 antibody (top). Equal amounts 
of wild-type and mutant Sec3 fusion proteins were 
used in the binding assay (bottom; Ponceau S 
staining). Cdc42 bound to GST-Sec3N and 
GST – sec3-202N but not to GST – sec3-201N. 
GST – sec3-203N has reduced binding to 
Cdc42. (C) Mutations at the Cdc42 bind-
ing domain do not impair Sec3 binding to 
phospholipids. GST fusion proteins of wild-type 
Sec3N and sec3-201N mutant were incubated 
with 30  � M LUV containing 2% PIP 2  and 
20% PS. Proteins in supernatant and pellet 
were analyzed by SDS-PAGE. + and  � , with 
or without phospholipids in the protein-lipid 
binding assays, respectively. (D) Synthetic 
growth defects of  sec3  mutants with  exo70-38 . 
 sec3-201  has mutations within the Cdc42 bind-
ing domain.  sec3-202  and  sec3-203  have 
mutations at the polybasic region (K/R → A or 
K/R → E, respectively).  exo70-38 ,  exo70-38 
sec3-201 ,  exo70-38 sec3-202 , and  exo70-38 
sec3-203  were serially diluted and spotted 
onto SC medium plates. Cells were incubated 
at 25 or 32 ° C for 5 d. All  sec3  mutants showed 
clear synthetic growth defects with  exo70-38  
at 32 ° C, whereas  sec3-201  had the great-
est defects and was unable to survive with 
 exo70-38  over 32 ° C. (E)  sec3  mutants with 
combined mutations at both the Cdc42 binding 
domain and polybasic region are synthetic lethal 
with  exo70-38 . Various  sec3  mutants expressed 
under the  SEC3  promoter in  CEN  plasmids were 
introduced into  exo70-38  supplemented with 
a  CEN, URA3, SEC3  balancer.  sec3-204  has 
combined muta tions of sec3- 201  and  sec3-202 . 
 sec3-205  combines the mutations of  sec3-201  
and  sec3-203 . The cells were serially diluted 
onto SC plates with or without 5-FOA and in-
cubated for 5 d at 25 ° C. The  sec3-204  and 
 sec3-205  mutants were synthetic lethal with 
 exo70-38  at 25 ° C.   
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 Figure 7.    Mutations in the Cdc42 binding region or the polybasic region 
of Sec3 affect its targeting to the bud tip in the presence of Lat B.  (A) Yeast cells 
expressing    SEC3    or various  sec3  mutants under the  SEC3  promoter as the 
only copy of Sec3 were GFP tagged and arrested at G 0  phase. Cells were 

then released into fresh medium with 100  � M Lat B (left) or DMSO (right) 
at 25 ° C for 90 min. Cells were fi xed for fl uorescence microscopy. Although 
the wild-type Sec3 formed a clear patch in the presumptive buds when 
treated with Lat B, the mutant  sec3  proteins were dispersed to different 
extents. (B) Quantifi cation of the percentages of Sec3-GFP cells that were 
polarized, partially polarized, or depolarized after treatment with Lat B 
( n  = 300). Partially polarized was scored when the GFP signals were local-
ized at one end of the cell but appeared as multiple patches. (C) Polariza-
tion of exo70-38 protein depends on actin. Cells expressing Exo70-GFP 
or exo70-38 – GFP were arrested at G 0  phase. These cells were released 
into fresh medium at 25 ° C for 90 min in the presence of 100  � M Lat B or 
DMSO and fi xed for fl uorescence microscopy. In cells treated with Lat B 
(left), the wild-type Exo70 still formed a patch in the presumptive budding site. 
exo70-38 – GFP was, however, dispersed throughout the cells. As controls, 
both Exo70-GFP and exo70-38 – GFP were well polarized in cells treated 
with DMSO. Bars, 5  � m.   

 exo70-38 sec3-203  double mutants, the exocyst proteins were 

either completely depolarized or diffused inside or in the vicin-

ity of the daughter cells. The assembly of the exocyst complex 

was mostly unaffected in the  exo70-38 sec3 Δ N  double mutants 

(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.20070 4128/DC1). In addition, Sec4 and actin are mostly polar-

ized in these mutants, whereas Sec4 is less concentrated in the 

bud tip (Fig. S4). 

 Because the correct targeting of the exocytic vesicles to 

the bud tip is required for polarized growth of the yeast cells, 

disrupting the interaction of Sec3 with Cdc42 or phospholipids 

in the  exo70  mutant background would affect cell morphogenesis. 

As shown in  Fig. 10 A , at 25 ° C, in contrast to the ellipsoidal 

shapes of the single mutants, the  exo70-38 sec3  double mutants 

are signifi cantly rounder. The double mutants have smaller axial 

ratios (length/width) compared with the single mutants ( Fig. 10 B ). 

The rounder morphology in the mutant cells suggest that al-

though some vesicles are delivered to the daughter cells, their 

tethering is not restricted to the bud tip. Instead, vesicles are dif-

fusely tethered to the daughter cell plasma membrane resulting in 

isotropic daughter cell expansion. When these round daughter 

cells reach the mother stage, the mother cells also appear round 

in shape. In addition to the rounder shape, the double mutant 

cells are also clearly larger in size (approximately twice as large 

as either the  exo70-38  or the  sec3  single mutants). This mor-

phology suggests that some of the secretion occurs even in mother 

cells, leading to isotropic mother cell surface expansion. The cell 

biological characterization of the various  sec3  mutant alleles 

generated in this study is summarized in  Table I . 

 Discussion 
 The exocyst mediates the tethering of post-Golgi secretory ves-

icles at specifi c areas of the plasma membrane ( Pfeffer, 1999 ; 

 Guo et al., 2000 ;  Whyte and Munro, 2002 ;  Hsu et al., 2004 ). 

As vesicle tethering takes place at a step before vesicle docking 

and fusion, regulation of the exocyst is crucial to the spatial and 

temporal control of exocytosis in the cell. Cdc42 is a master 

regulator of yeast cell polarity. It not only interacts with cyto-

skeleton regulators for polarized actin organization (for review 

see  Pruyne et al., 2004 ) but also regulates exocytosis ( Adamo 

et al., 2001 ;  Zhang et al., 2001 ;  Roumanie et al., 2005 ). However, 
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the molecular mechanism by which Cdc42 regulates exocytosis 

is unclear. We have previously found that the GTP-bound form 

of Cdc42 directly interacts with Sec3 through its N terminus 

( Zhang et al., 2001 ). However, as deletion of this region ( sec3 �  N  ) 
does not cause any detectable secretion or growth  defects, 

 Figure 8.    The  exo70-38 sec3  double mutants display severe secretion defect.  (A) The  exo70-38 sec3  double mutants are defective in invertase secretion. 
The  exo70-38 sec3-201  and  exo70-38 sec3-203  mutants were tested for the secretion of the invertase after being shifted to the restrictive temperature 
of 35 ° C for 2 h.  sec3 � N  and  exo70-38  mutant strains were used as controls in the assay ( n  = 3). The percentage of external invertase (secreted) versus 
total invertase was measured. (B) The  exo70-38 sec3  double mutants display aggravated defects in Bgl2 secretion. Western blot analysis of the internal 
and external pools of Bgl2 in  sec3 � N ,  exo70-38 ,  exo70-38 sec3-201 , and  exo70-38 sec3-203  cells. Cells were either grown at 25 ° C or shifted to 35 ° C 
for 2 h. Alcohol dehydrogenase (ADH) was used as a control to show that equal amounts of proteins were loaded. (C)  exo70-38 sec3  double mutants 
accumulate a large amount of secretory vesicles at the restrictive temperature. The  sec3 � N, exo70-38 ,  exo70-38 sec3-201 , and  exo70-38 sec3-203  cells 
were grown to early log phase at 25 ° C (top), and then shifted to 35 ° C for 2 h and processed for thin-section EM. Bars, 500 nm. (D) Quantifi cation of the 
number of secretory vesicles per section in the single and double mutant cells ( n  = 30; P  <  0.01). Error bars represent SD.   

we were unable to assess the functional implication of this 

interaction. In this study, we found that  sec3 �  N   was syn-

thetic lethal with the  exo70-38  mutant, and this synthetic le-

thality provided us with an effective assay to study the function 

of the Cdc42 – Sec3 interaction in yeast. We demonstrate that 
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 These genetic analyses, together with the sequence com-

parison of the N terminus of Sec3 with that of Gic2, have also 

led to the identification of a polybasic region in Sec3 that is 

crucial for its function. Using the vesicle sedimentation assay, 

Cdc42 spatially and functionally regulates Sec3 in exocytosis 

and polarized cell growth. This study for the fi rst time estab-

lishes the functional signifi cance of the Sec3 – Cdc42 interaction 

in the cell. 

 Figure 9.    Localization of the exocyst components in the  exo70-38 sec3  double mutants.  The exocyst components in  exo70-38 ,  sec3-201 ,  sec3-203 , and 
 exo70-38 sec3  double mutant cells were GFP tagged by chromosomal integration. The cells were shifted from 25 to 35 ° C for 2 h before fl uorescence 
microscopy. GFP-tagged Sec3, 5, and 8 and Exo84 remained polarized to the bud tip in all single mutants but were no longer polarized in double mutants 
 exo70-38 sec3-201  (top) and  exo70-38 sec3-203  (bottom) after the temperature shift. Bars, 5  � m.   
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association of Sec3 with the plasma membrane. PIP 2  and Cdc42 

may act together to control the localization and function of Sec3 

at the bud tip membrane. Our localization studies demonstrate 

that the N terminus of Sec3 is important for its polarization 

when actin is disrupted. Our detailed mutagenesis analyses of 

the polybasic or the Cdc42 binding region of full-length Sec3 

further indicate that PIP 2  binding and Cdc42 interaction control 

the localization of Sec3 to the bud tip membrane. Overall, we 

found that the interaction of Sec3 with Cdc42 and PIP 2  is im-

portant for its function in exocytosis and cell polarity. Besides 

Cdc42, Sec3 also binds to Rho1 ( Guo et al., 2001 ). Cdc42 and 

Rho1 compete for their binding to Sec3 in vitro ( Zhang et al., 

2001 ), suggesting that their controls over Sec3 are executed at 

different times or under different physiological conditions. It is 

known that the major role of Rho1 is to coordinate cellular pro-

cesses during yeast cell wall stress response and remodeling 

( Levin, 2005 ). Experiments are being performed to analyze the 

role of Rho1 and exocytosis during these processes. 

 Analysis of the mammalian Sec3 N-terminal sequence 

(aa 1 – 125) suggests that it forms a structure consisting of 

 �  strands interspersed with  �  sheets, which is similar to that of 

yeast Sec3 aa 75 – 240, which contains the Cdc42 and PIP 2 -binding 

regions (Xu, Z., personal communication). Future functional and 

structural analyses of the mammalian and yeast Sec3 will help 

us understand the conservation of exocyst function in vesicle 

tethering across species. 

 Materials and methods 
 Plasmids and yeast strains 
 All mutagenesis was performed using the QuikChange site-directed mu-
tagenesis kit (Stratagene) and verifi ed by sequencing.  sec3 � N  (nt 922 –
 4011) was placed behind the native   SEC3   promoter in a  CEN  plasmid 
( LEU2 ). The resulting plasmid (pG1215) was used as a backbone for 
later mutagenesis and  gic2-sec3  chimera construction. Various  gic2 
 N - terminal ( gic2NT ) mutants were generated from a  GIC2 2 �   plasmid by 
PCR using different mutagenesis primers. PCR fragments were placed in 
front of  sec3 � N  in frame to make the fi nal  gic2-sec3  chimera constructs. 
We also mutated key residues in the CRIB domain that have been previ-
ously shown to be essential for Cdc42 interaction ( Burbelo et al., 1995 ) 
and used these in the chimera construction. Various  sec3  mutants were 
generated based on a  SEC3  plasmid with the native   SEC3   promoter in 
a  CEN  plasmid ( LEU2 ). The  sec3  constructs harboring various mutations 
were summarized in  Table I  and Table S1 (available at http://www.jcb
.org/cgi/content/full/jcb.200704128/DC1). 

 Standard methods were used for yeast media and genetic manipula-
tions. To make various  exo70 sec3  double mutants, a  SEC3 URA3 CEN  
plasmid (pG1216) was transformed into the  exo70-38  cells as a balancer, 
and then the endogenous  SEC3  was deleted with a PCR product contain-
ing the  SEC3  promoter and terminator fl anking the Kanamycin gene ( sec3::
Kan R  ). The resulting strain (GY2650) was transformed with various  sec3  
mutants and  gic2-sec3  chimera constructs, and the transformants were 
tested for growth at different temperatures upon losing the  SEC3  balancer 
on 5-FOA plates. For GFP tagging of the  sec3  mutants, the  sec3  mutants 
were fi rst integrated into the  SEC3  locus in the yeast chromosome to re-
place the endogenous  SEC3  using genetic methods as previously described 
( Zhang et al., 2001 ). The GFP sequence was then introduced to the 
C terminus of  sec3  by integration ( Finger et al., 1998 ). All of the major 
strains used in this study are listed in Table S1. 

 Secretion assays 
 To measure the total and external invertase activities, cells were grown 
overnight at 25 ° C in yeast extract/peptone/dextrose medium to early log 
phase. For each sample, part of the cells was immediately pelleted, re-
suspended in ice-cold buffer containing 10 mM NaN 3  and 10 mM Tris-HCl 
(pH 7.5), and stored on ice as the 0-h control. The remaining cells were 

we found that the polybasic region interacts with PIP 2 . Disruption 

of the Sec3 – PIP 2  interaction ( sec3-202  and  sec3-203 ) affects 

Sec3 function. What is the functional implication of this inter-

action? One possibility is that this interaction may serve to 

make Sec3 more accessible as a downstream effector of Cdc42 

at the plasma membrane. However, blocking Cdc42 binding in 

the  sec3-201  mutant affected, but did not totally abolish, the 

function of Sec3N. Only when PIP 2  and Cdc42 binding were 

both disrupted did the  sec3  mutants ( sec3-204  and  sec3-205 ) 

become synthetic lethal with  exo70-38 . Thus, both Cdc42 and 

PIP 2  are needed for the complete function of Sec3N. Another 

possibility is that PIP 2  acts in concert with Cdc42 to coactivate 

Sec3. The synergy in which PIP 2  acts together with the GTP-

binding proteins to activate downstream effectors has been 

observed in other biological situations. One well-characterized 

example is neural Wiskott-Aldrich syndrome protein (N-WASP), 

which binds to both PIP 2  and Cdc42. Both interactions are 

required for the full activation of N-WASP for subsequent 

Arp2/3 activation and actin polymerization ( Prehoda et al., 

2000 ;  Rohatgi et al., 2000 ). Unlike N-WASP, there is no in vitro 

enzymatic approach to assay Sec3 function at present. How-

ever, assays for proper secretion and the polarized localization 

of Sec3 in yeast provided readouts that strongly support the role 

of Cdc42 and PIP 2  in controlling Sec3 function in exocytosis. 

Finally, it is also possible that the interaction of Sec3 with 

Cdc42, a signaling GTPase, may not be suffi cient for the stable 

 Figure 10.    Morphological defects of the  exo70-38 sec3  double mutants.  
(A) Morphology of  sec3 Δ N ,  exo70-38 ,  exo70-38 sec3-201 , and  exo70-38 
sec3-203 . The  exo70 sec3  double mutants were signifi cantly larger and 
rounder than each single mutant, even at 25 ° C. Bar, 5  � m. (B) Quantifi -
cation of the mean axial ratios (length/width) of mother cells from each 
indicated strains. Error bars represent SD among measured samples. 
Asterisks represent signifi cant difference between mutants and control cells 
( n  = 30; P  <  0.05).   
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collected every 3 s for 30 s and then every 20 s for  � 3 min. For each time 
point, the background intensity was subtracted, and in some cases the data 
were normalized by dividing each data point by the mean prebleached 
value. The intensity versus time was plotted, and the graph was used to 
measure the time when the cells reach half of the fi nal inten sity (half-life). 

 Yeast cell electron microscopy was performed as previously de-
scribed ( Zhang et al. 2005b ). All of the statistical analyses were performed 
using the Student ’ s  t  test. 

 In vitro binding between the N terminus of Sec3 and Cdc42 
 Wild-type and mutant forms of Sec3 N terminus (Sec3N; aa 1 – 320) were 
expressed as GST fusion proteins. Cdc42 was expressed as Hisx6-tagged 
fusion protein (Hisx6-Cdc42). 0.3  � M each of the purifi ed recombinant 
fusion proteins was used in the in vitro binding experiment, as previously 
described ( Zhang et al., 2001 ). 

 LUV sedimentation assay 
 LUV sedimentation assay was performed as previously described ( Hokanson 
and Ostap, 2006 ;  He et al., 2007b ). The percentages of PS and PIP 2  
indicated in the text are the molar percentages of total PS and PIP 2 , with 
the remainder being PC. Lipid concentrations are given as total lipid. 
The binding of Sec3N and Sec3N mutants to LUVs was determined by 
sedimentation assays conducted in 200  μ l of total volume in an ultracentri-
fuge rotor (TLA-100; Beckman Coulter). The tubes were preincubated for 
1 h in a 50- μ M solution of PC in the HNa100 buffer to prevent nonspecifi c 
binding of Sec3 to polycarbonate centrifuge tubes. Sucrose-loaded LUVs 
were precipitated at 150,000  g  for 30 min at 25 ° C. The supernatants 
and pellets were subjected to 12% SDS-PAGE and stained with SYPRO-red 
(Invitrogen) for quantifi cation of free and bound materials with Image Quant 
software (Molecular Dynamics, Inc.). 

 Online supplemental material 
 Fig. S1 shows side-by-side comparison of Sec3 localization in cells as 
detected by immunofl uorescence imaging and GFP imaging. Fig. S2 
shows the different recovery of Sec3-GFP and sec3 � N-GFP fl uorescence 
after photobleaching in yeast cells. Fig. S3 shows the composition of the 
exocyst complex in the  exo70-38 sec3  double mutants. Fig. S4 shows 
the localization of Sec4 and F-actin in the  exo70-38 sec3  double mutants. 
Table S1 shows the major yeast stains and their genotypes used in this 
study. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200704128/DC1. 

 We are grateful to Drs. Michael Ostap and David Hokanson for their advice 
on lipid binding experiments, Drs. John Murray and Lee Peachy for their advice 
with the FRAP experiments, and Dr. Dan TerBush for sharing anti-Sec3 anti-
bodies and comparing immunofl uorescence results before publication. 

 This work is supported by National Institutes of Health (RO1-GM64690) 
and Pew Scholars Program grants to W. Guo. X. Zhang is partially supported 
by American Heart Association. 

 incubated in YP plus 0.1% glucose for 2 h at 25 or 35 ° C for invertase 
induction. After the temperature shift, the 0 and 2-h samples were collected 
and diluted into 0.6 OD 600 . Total invertase level was determined by 
 subjecting equal volumes of samples to a beads beater to release the ex-
tract from the cells. Intact cells not subject to bead beating were used to 
measure external invertase. Total and external invertase activities were 
measured at the beginning and end of the shift. The percentage of inver-
tase secretion was calculated using the following equation: % secretion = 
 � external/ � total. The Bgl2 secretion assay was performed as described in 
 He et al. (2007a) . 

 Microscopy 
 Chromosomal tagging of the exocyst components by GFP was performed 
as previously described ( Finger et al., 1998 ;  Guo et al., 1999a ). Cells 
were grown to early log phase (0.6 OD 600 ) in synthetic complete (SC) 
media and fi xed by methanol/acetone before microscopy ( Zajac et al., 
2005 ). The signals were scored as mislocalized in small-budded cells 
when they appeared diffused or in multiple patches in the mother cells. 
For immunofl uorescence staining, cells were fi xed with 4.4% formaldehyde 
for 1 h and then spheroplasted with 1 mg/ml zymolyase for 30 – 45 min. 
The cells were permeabilized with 0.3% SDS and subsequently incubated with 
primary antibodies at 4 ° C overnight. Affi nity-purifi ed anti-Sec3 polyclonal 
antibody (a gift from D. TerBush, Uniformed Services University of Health 
Sciences, Bethesda, MD) was used at 1:100 dilution and anti-Sec4 polyclonal 
antibody was used at 1:1,000 dilution. The Alexa Fluor 488 – conjugated 
goat anti – rabbit IgG antibody was used as the secondary antibody. 
For actin staining, cells were stained with Alexa Fluor 594 phalloidin after 
fi xation and permeabilization. Latrunculin treatment and protein localiza-
tion in yeast cells released from G 0  was examined as previously described 
( Ayscough et al., 1997 ;  Zajac et al., 2005 ). All images were captured by 
a microscope (DM IRB; Leica) using a 100 ×  oil immersion objective and a 
high resolution charge-coupled device camera (ORCA-ER; Hamamatsu 
Photonics). Immunofl uorescence signals were quantifi ed as pixels using 
OpenLab 5.0.2 software (Improvision). 

 The dynamic localization of GFP-tagged Sec3, sec3 ∆ N, and Sec8 in 
yeast bud was analyzed by FRAP. Cells were grown overnight in SC media 
at 25 ° C, diluted to 0.6 OD 600  the next morning, and grown for an addi-
tional 1.5 – 2 h. 1 or 2 ml of culture was pelleted and resuspended in 20 μ  l 
of fresh SC media. Slides containing agar pads were prepared according 
to the general protocol from  Tran et al. (2004) , with 2% agar dissolved in 
SC medium containing the appropriate amino acids. 2 μ  l of the suspension 
was dropped onto the agar pads, coverslips were placed on top of the agar 
pads, and a mixture of Vaseline, lanolin, and candle wax (a modifi ed form 
of VALAP) was used to seal in the cells. Bleaching and imaging was per-
formed using a laser scanning confocal microscope (TCS SL; Leica) with an 
oil immersion 63 ×  objective. For each cell, three prebleach images were 
taken, and then small buds were photobleached using an argon laser at 
488 nm. Bleaching was done at 100% intensity and cells underwent three 
bleaches. To observe both fast and slow recoveries, postbleach images were 

 Table I.    Summary of the phenotypic characterization of the  sec3  mutants  

 sec3  single mutants  sec3 exo70-38  double mutants

Mutation  
 sites

Exocyst  
 localization

Lat B  
 treatment

Synthetic  
 effects

Exocyst  
 localization

Vesicle  
 accumulation

  SEC3  N/A Polarized 66% polarized None Polarized 100  ±  38 (35 ° C)  
 (in  exo70-38  single 
mutant)

  sec3-201  I140A, L141A, S142A, 
P145A

Polarized 25.7% polarized Inviable  > 32 ° C Depolarized 366  ±  80 (35 ° C)

  sec3-202  K134A, K135A, K136A, 
R137A

Polarized 31.9% polarized Inviable  > 35 ° C Depolarized ND

  sec3-203  K134E, K135E, K136E, 
R137E

Polarized 27.9% polarized Inviable  > 33 ° C Depolarized 330  ±  69 (35 ° C)

  sec3-204  K134A, K135A, K136A, 
R137A, I140A, L141A, 
S142A, P145A.

Polarized 11.7% polarized Synthetic lethal ND ND

  sec3-205  K134E, K135E, K136E, 
R137E, I140A, L141A, 
S142A, P145A

Polarized 6.8% polarized Synthetic lethal ND ND
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