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Plasma membrane lipid diffusion and composition of Sea urchin
egg membranes vary with ocean temperature
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Abstract

A diverse and complex array of lipids plays a vital role in structuring and organizing cell membranes.
However, the details of lipid requirements for global membrane organization are poorly understood.
One obstacle to this understanding is the difficulty of accurately manipulating the lipid composition
of commonly studied mammalian cells. In contrast, the lipid composition of cells of ectotherms
changes with changes in environmental temperatures. Thus, comparison of lipid probe diffusion in
cells from animals living at different temperatures, together with biochemical analysis, can be used
toward understanding membrane organization. We used two dialkyindocarbocyanine iodide (Dil)
probes, of differing chain length, to probe lipid organization in terms of their lateral diffusion in eggs
of the sea urchin Strongylocentrotus purpuratus. The lateral diffusion of our probes changed in
urchins developing in the year of an “El Nifio” weather event, which raised the ocean temperature
by several degrees, suggesting alterations in membrane domain composition and structure. Indeed
the changes in lateral diffusion were correlated with lower levels of unsaturated fatty acids and
cholesterol in animals of the “El Nifio” year than in animals of the preceding or following years. We
found similar trends comparing Dil diffusion in membranes of eggs from 15 °C waters with those
from 10°C. Our findings establish a new approach for manipulating and studying membrane
organization.

It is now widely recognized that biological membrane organization is extremely complex
(Edidin, 1997; Edidin 2007; Shaikh and Edidin, 2006). Experimental and theoretical studies
have led to notion of membrane lipid and protein domains, picket fences, and protein-protein
clustering as mechanisms by which cells propagate signals form the plasma membrane (Edidin,
1997; Edidin 2003). A major limitation toward understanding membrane organization has been
developing tools that can measure changes in membrane organization, especially lipid
organization. For example, while work with model membranes predicts that lipid probes can
differentiate between liquid-ordered, l,, domains (so-called lipid rafts) and liquid-disordered,
l4, domains, experiments on cells to change the proportion of |, and Iy domains of mammalian
cells are often confounded by metabolic effects of feeding or removing particular lipids, for
example cholesterol (Kwik et al., 2006; Shaikh and Edidin 2007).

In contrast to the difficulties of manipulating lipid composition of homeothermic, mammalian,
cells, lipid composition of cells of ectothermic animals can be changed in as response to the
temperature of the environment (Edidin and Sessions, 1984; Hazel, 1995). Thus, a good starting
point for evaluating the effects of lipids on membrane organization is to work with cells of
ectothermic animals living at different temperatures. Temperature shifts can then be used to
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work out the relationship between the plasma membrane heterogeneity reported by lateral
diffusion of lipid probes, temperature and lipid composition of cells.

In the present study, we measure the temperature dependence of lateral diffusion of 2 different
Dil lipid probes in the plasma membranes of sea urchin, Strongylocentrotus purpuratus, eggs
obtained from the same population, nominally living at 15°C, in three different years, including
an “El Nifio” event (1983) which raised ocean water temperature by several degrees during the
months in which the eggs developed. We also compare Dil diffusion in the membrane of these
eggs to that in egg membranes from animals growing at 10°C. We find that in eggs developing
in the year before the El Nifio the lateral diffusion of the short-chain lipid probe, Dil C12, is
only weakly dependent upon temperature, while the diffusion of the longer-chain Dil C16
increases linearly with temperature over the range 15-30°C. In contrast, diffusion of all probes
is insensitive to temperature in eggs developing in an EI Nifio year of higher ocean temperature,
which resulted in a reduction in unsaturated membrane lipids and membrane cholesterol.
Diffusion of the probes in membranes from eggs developing at 10°C was consistent with the
lipid composition of these membranes relative to that of the 15 °C population.

Materials and Methods

Two dialkylcarbocyanine iodide (Dil) fluorophores (Invitrogen, Carlsbad, CA) varying in
chain length (C12 or C16) were used to probe the organization of sea urchin eggs using FRAP
microscopy (Kwik et al., 2003); the eggs did not label with the longer chain Dil, C18. A second
extreme probe, Dil C10, proved to be significantly water soluble; hence it was not a reliable
probe of membrane lipid organization. Sea urchin eggs were isolated as previously described
in each of three different years. Year 2 was the “El Nifio” year (Kinsey et al., 1980; Wolf et
al,, 1981). In this year the ocean temperature was raised by 1-3 °C, as measured at the Scripps
Institute of Oceanography (La Jolla, CA). In year 3, eggs were obtained from two different
populations, one living in 10°C waters and the other at 15 °C. FRAP measurements provided
a diffusion coefficient D and mobile fraction R using a bleach time of 4ms. All values for R
and D are reported as Winsorized means; in this approach, the error of a mean is reduced by
dropping high and low outliers from the data set (Tukey and McLaughlin, 1963). Lipids were
extracted from sea urchin eggs using the method of Bligh and Dyer (Bligh and Dyer, 1959).

Total cholesterol content of isolated plasma membranes (Kinsey et al., 1980) was determined
using a cholesterol oxidase kit (Sigma Chemical Co., St. Louis, MO) and acyl chain
composition was determined with gas chromatography (Weaver, 1985) and verified with mass
spectroscopy. The reported cholesterol values are mole percent of total phospholipids and
normalized to total protein per cell.

Results and Discussion

In eggs developing the year before El Nifio, the diffusion coefficients for Dil C12, and C16
fell within the range measured previously for these probes in S. purpuratus eggs (Wolf et al.,
1981), 2-9.5 x 10-9 cm?/s, over the temperature range of 10-30 °C (Fig. 1, left panel). However,
the diffusion coefficients for the two probes were not identical functions of temperature.
Diffusion of Dil C16 was most sensitive to temperature increasing about 3-fold over the range
15-30 °C. D for C12 increased at most 2-fold over a larger temperature range, 10-30 °C. D of
both probes was significantly lower in egg membranes from animals in the next year, an El
Nifo year. D is still nearly linear with temperature, but the range of values is reduced by 2-4
fold to 0.9-2.1 x 10-9 cm?/s. The diffusion coefficients for C12 now fall within the same range
as those for C16. The trends in D for the year after the EI Nifio, year 3, are similar to those of
year 1. The effects of T on D of Dil C12 are larger than in year 1. D of both probes was most
similar to D of the probes in eggs of another population of S. purpuratus living at 10 °C. The
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mobile fractions of the probes in all years were close to those published earlier for S. pupuratus
eggs from this population (Fig. 1, right panel) (Wolf et al, 1981). However, the temperature
dependence of mobile fraction was stronger in eggs from the El Nifio year. The mobile fraction
of probes in year 3 eggs from animals living at 15 °C was unaffected by changes in temperature
similar to the mobile fraction of probes in eggs from a population of animals at 10 °C.

The changes in probe diffusion were paralleled by changes in the lipid composition of crude
membrane fractions isolated from the eggs. It can be seen in Figure 2 that the ocean warming,
and destruction of kelp beds associated with the El Nifio was associated with decreases in
membrane cholesterol (mol% of total phospholipid) and in unsaturated lipid acyl chains. These
changes were only partly reversed in the year after the El Nifio. Indeed, consistent with the
diffusion data, the lipid composition of eggs shed at 15 °C in the year after the EI Nifio most
resembled the composition of eggs from animals living at 10 °C.

The unequal temperature dependence of D and R for lipid probes of different chain lengths is
consistent with changes in the organization of sea urchin egg plasma membrane lipids. One
possible interpretation is that a change in probe diffusion reflects a change in membrane
domains, local concentrations of particular composition deviating from the average for the
membrane. Changes in the diffusibility of the probes correlate with changes in membrane lipid
composition and could change with domain composition. The high temperature sensitivity and
high absolute D of the longest chain probe, Dil C16 at first sight seems paradoxical.
Measurements of the partition of Dil’s into gel and fluid lipid phases suggest that at least a
fraction of Dil C16 is “gel preferring” (Klausner and Wolf, 1980). However, the behavior of
the probe is consistent with a membrane in which sub-microscopic islands of disordered (short-
chain or highly unsaturated) lipids are distributed in a continuum of more ordered lipids. D and
R then would reflect continuity of domains and probe partition preferences, rather than
depending only on lipid viscosity. Other possibilities include changes in smaller-scale lipid
organization, or in lipid-protein interactions. It may also be that the diffusion of the shorter-
chain probes is more influenced by membrane proteins than is the lateral diffusion of Dil C16.

The high levels of cholesterol content in year 3, albeit surprising, are not inconsistent with
reported literature values. The range of cholesterol values reported for Strongylocentrotus
species is 36 to 86 mole percent of phospholipids; our values fall within this range (Campisi
and Scandella, 1980; Kozhina et al., 1978). Since we used a crude membrane preparation, we
cannot completely rule out the possibility of cholesterol from cortical granules, although one
would then expect that the year 1 membranes would have the highest cholesterol to
phospholipid ratio. In spite of the drawbacks of the crude membrane preparation, the lipid
extracts examined in this study, while they may not strictly be composed of material from the
plasma membrane, certainly reflect the composition of those membranes.

Our results point to the possibility of studying membrane organization in the cells of
ectothermic animals, invertebrates and vertebrates, whose lipid composition can be readily
changed by changes in their growth temperature. We suggest that the approach used here can
be applied to a variety of ectotherms, notably fish, and used to work out the organization of
membrane lipids and the genetics of this organization.
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Figure 1.

Diffusion coefficient D (left) and mobile fraction R (right) values as a function of temperature
from three different years. Samples were collected from the Pacific ocean for all three years.
An additional population in year 3 was collected from a 10°C Pacific ocean. D and R values
are plotted as Winsorized means + S.D. and were calculated from FRAP recovery curves. Error
bars are generally smaller than the data points and ranged from 0.01-0.3. Note that the ordinate
scale is different for the diffusion coefficient data for Year 1. N = 9-57 animals at each
temperature.

Chem Phys Lipids. Author manuscript; available in PMC 2009 January 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Page 6

Mol% cholesterol

Number of double bonds

0 7
7 5
20 %
7
p // / /
0 7 0 2 ) 00 7 2 7 A
Year 1 Year 2 Year 3 Year 3 ear 1 Year 2 Year 3 Year 3
(15°C) (10°C) (15°C) (10°c)

Figure 2.

Lipid analysis of sea urchin eggs from three different years. (Left) Mol % cholesterol
determined via cholesterol oxidase. Cholesterol values are relative to total phospholipid content
and normalized to total protein. (Right) Double bonds per hundred non-hydroxy fatty acids
determined with gas chromatography and verified with mass spectroscopy.
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