
86 CORWIN et al., Dynamic Tables
Application of Information Technology �

Dynamic Tables: An Architecture for Managing Evolving,
Heterogeneous Biomedical Data in Relational Database
Management Systems

JOHN CORWIN, AVI SILBERSCHATZ, PHD, PERRY L. MILLER, MD, PHD, LUIS MARENCO, MD

A b s t r a c t Data sparsity and schema evolution issues affecting clinical informatics and bioinformatics
communities have led to the adoption of vertical or object-attribute–value-based database schemas to overcome
limitations posed when using conventional relational database technology. This paper explores these issues and
discusses why biomedical data are difficult to model using conventional relational techniques. The authors
propose a solution to these obstacles based on a relational database engine using a sparse, column-store architecture.
The authors provide benchmarks comparing the performance of queries and schema-modification operations using
three different strategies: (1) the standard conventional relational design; (2) past approaches used by biomedical
informatics researchers; and (3) their sparse, column-store architecture. The performance results show that their
architecture is a promising technique for storing and processing many types of data that are not handled well by
the other two semantic data models.
� J Am Med Inform Assoc. 2007;14:86–93. DOI 10.1197/jamia.M2189.
Introduction
Researchers at the Yale Center for Medical Informatics
(YCMI) have worked for many years developing database
approaches to accommodate the fields of clinical medicine,
neuroscience, and molecular biology. As part of these ef-
forts, they have created databases that store and integrate
diverse types of heterogeneous data, including models and
properties of neurons and subcellular components, clinical
patient data, genomic sequence, gene expression, and pro-
tein expression data, and the results of many different
neuroscience experiments. These databases have properties
that make them difficult to implement and maintain using
conventional relational databases that rely on horizontal
data storage, including the use of sparse and heterogeneous
data, the frequency of schema changes, and the extensive
use of metadata.

This paper focuses on two of these databases: TrialDB,1

which stores clinical patient data, and SenseLab,2 which
stores information related to neurons and neuronal proper-
ties. TrialDB and SenseLab are implemented using the

Affiliations of the authors: Department of Computer Science (JC,
AS), Center for Medical Informatics (PLM, LM), Department of
Anesthesiology (PLM, LM), Department of Molecular, Cellular, and
Developmental Biology (PLM), Yale University, New Haven, CT.

This work was supported in part by the NSF Information Technol-
ogy Research program under grant number 0331548, by NIH grants
P01 DC04732 and R01 DA021253, and by NIH grant P20 LM07253
from the National Library of Medicine.

Correspondence and reprints: John Corwin, Department of Com-
puter Science, Yale University, P.O. Box 208285, New Haven, CT
06520-8285; Tel: (203) 432-1246; Fax: (203) 432-0593; e-mail:
�john.corwin@yale.edu�.
Received for review: 06/27/06; accepted for publication: 10/05/06.
semantic data models known as EAV3 and EAV/CR,4 re-
spectively, which make use of vertical storage to store data
values, plus an extensive set of metadata to allow general-
ized tools to be developed to query and maintain the data.
Unfortunately, these tools must also re-implement certain
features commonly taken for granted in a database engine,
including typical methods of querying the logical schema of
the data. Furthermore, the use of vertical storage can cause
performance problems, particularly with attribute-centered
queries.5

To alleviate some of the limitations imposed by vertical sche-
mas, we propose a database system based on the use of sparse,
column-based storage, which we call dynamic tables. The use of
a column store, also known as decomposed storage, was first
proposed by Copeland and Khoshafian6,7 and is also used by
the Sybase IQ8 database engine. Our use of decomposed
storage is to replace vertical schema at the level of the database
engine itself, enabling the key advantages of vertical storage
while maintaining the clarity and maintainability of querying a
horizontal schema. Our storage implementation presents a
standard horizontal view of the data to the database user, and
was designed as an addition to—not a replacement of—the
database engine’s storage architecture. As a result, dynamic
tables can be flexibly and transparently mixed with standard
horizontally stored tables in queries.

The remainder of the paper is structured as follows. We first
describe the two databases, the data model they are repre-
sented with, the tools developed to query them, and moti-
vation for our architecture. Next, we present our architec-
ture, describe its implementation, and discuss the
optimizations we employ to improve query performance.
We then give performance results comparing the perfor-
mance of queries and schema modifications using horizontal

schema, vertical schema, and our decomposed schema.

Journal of the American Medical Informatics Association Volume 14 Number 1 Jan / Feb 2007 87
Finally, we discuss other implementation strategies we tried,
related work, and give our concluding remarks.

Background
TrialDB is a clinical study data management system (CSDMS)
created at Yale that contains information on clinical trials
from several organizations. TrialDB relies on the Entity-
Attribute-Value (EAV) semantic data model, a type of ver-
tical schema in which attributes are divided into tables
based on type—there is a vertical table for string-valued
attributes, another for floating-point-valued attributes, and
so on. Attributes are stored as integers for space efficiency,
and some EAV tables have a fourth column with a time-
stamp value to support versioning. Metadata tables are used
to catalog which entities possess which attributes, as well as
to provide a mapping between attribute numbers and
names. Trial/DB is implemented using the EAV model.

The Entity-Attribute-Value (EAV) data model, also known
as the Object-Attribute-Value model, dates back to the use of
association lists in LISP, where it was used as a general
means of information representation in the context of artifi-
cial intelligence research. It was subsequently adapted for
use in clinical patient record management systems, includ-
ing the HELP system,9, 10 the Columbia-Presbyterian clinical
data repository,11, 12 and the ACT/DB Client—Server Data-
base System.13

In clinical trial databases, as in electronic medical records
systems, a given patient-event requires only a very limited
subset from a myriad of possible clinical attributes. These
attributes also tend to change as new medical procedures are
introduced and others are retired. Storing patient-event data
using straight relational tables and columns for attributes
would produce extremely sparse tables as well as increased
schema change overhead.

The SenseLab project has built several neuroinformatics
databases to support both theoretical and experimental
research on neuronal models, membrane properties, and
nerve cells using the olfactory pathway as one model
domain. SenseLab is part of the national Human Brain
Project which seeks to develop enabling informatics technol-
ogies for the neurosciences.

Neuroscience is a discipline characterized by continual
evolution. Underlying hypotheses may change in the course
of ongoing research, and knowledge bases may be difficult
to maintain due to evolving conceptualization of the do-
main. Due to these issues, experimental databases can be
expensive to maintain and can easily become out of date. At
the same time, neuroscience data are far more complexly
interrelated than patient data, requiring more than one type
of entity, and relationships between entities. For this reason,
EAV/CR was created by extending the EAV model with
classes and relationships. In this context, classes mean that the
values stored in the EAV table are no longer required to be
simple values but instead can be complex objects. The
addition of relationships allows data values to reference
other entities in the database, representing relationships
amongst data items. SenseLab is implemented using the
EAV/CR model.

In addition to the data models described above, YCMI

researchers have created a set of tools to query and manage
data stored in the EAV and EAV/CR models. At the same
time, their use of these semantic data models has come with
a cost. 1) The limited number of tables, coupled with the
need to retrieve data stored vertically, results in longer
query execution time compared to conventional relational
approaches, particularly for multi-attribute queries. 2) Ver-
tical systems require additional storage overhead when
storing dense data due to the cost of storing an object
identifier and an attribute tag for each stored attribute value.
3) The creation of ad hoc queries becomes more complex,
since they have to be devised using a virtual schema but
translated into the physical vertical schema.

The inability to execute standard ad-hoc relational queries
against an EAV or EAV/CR database’s logical schema is
particularly troublesome—queries that are relatively simple
to express in a horizontal schema become significantly more
complex in a vertical schema. Consider the example in
Figure 1. Part of the complexity comes from the fact that
when querying multiple attributes in a vertical schema, we
need to join the vertical table with itself once for each
desired attribute. Another loss of clarity comes from EAV’s
use of integers to identify attributes (if strings were used
instead, the string value of each attribute would have to be
repeated for each value in the vertical table, adding an
unacceptable amount of storage overhead).

Even if the database engine contains extensions such as
PIVOT14 and UNPIVOT operators to simplify the translation
between vertical and horizontal schema, if the operators are
implemented at a high enough level such that the translated
queries are processed by the query planner, the resulting

F i g u r e 1. A typical query in the SenseLab database
expressed using horizontal and vertical data representa-
tions.
queries will involve a large number of joins. Most modern

88 CORWIN et al., Dynamic Tables
database engines perform poorly with queries that contain
large numbers of project-join operations.15

In order to overcome the problems imposed by the vertical
storage approach, we have devised our dynamic table
implementation as described below.

Dynamic Table Implementation and Optimizations
The design goals of our approach are to support the sim-
plicity of querying a horizontal schema and the flexible and
efficient schema manipulations of a vertical schema, while
maintaining reasonable query performance. To achieve
these goals, we have implemented a sparse, column-based
storage architecture within the PostgreSQL16 database en-
gine. Our current implementation does not implement en-
riched metadata or value-timestamp features found on EAV
systems.

We first present the system from the database user’s point of
view—how to create and manipulate dynamic tables. We
then show how dynamic tables are implemented within the
database engine, followed by several optimizations we have
employed to improve query performance.

Interface
A table’s storage format is specified at creation time by the
presence of the DYNAMIC flag in the CREATE TABLE
statement in SQL:

The DYNAMIC keyword indicates that the table is to be

created using the decomposition storage model. From the
database user’s point of view, after the table has been
created, operations on the table are semantically indistin-
guishable from those on a standard, horizontally repre-
sented table—the user queries and updates the table as if it
were stored horizontally. Dynamic tables also fully support
indexes, primary and foreign-key constraints, and column
constraints.

The addition of dynamic tables to the database engine does
not affect the availability of regular, horizontally stored
tables. The user is free to choose the storage format of each
individual table based on the sparsity of the data to be
stored and the expected frequency of modifications to the
table’s schema. Dynamic tables can also be freely mixed with
standard tables within queries.

Implementation
Let r be an n�1-ary relation consisting of n attributes plus an
object identifier. To implement the decomposed storage of r,
we create n two-column “attribute” tables, and a single
one-column “object” table. Each two-column table stores
pairs of object identifiers and attribute values. NULL values
of an attribute are not explicitly stored; their presence is
inferred by the absence of an object-attribute pair in the
attribute table. The one-column table stores a list of all object

CREATE DYNAMIC TABLE table_name

(column_1 type_1,
(column_2 type_2,
. . .
(column_n type_n)
identifiers present in the relation. Finally, the correspon-
dence between r, r’s object table, and r’s attribute tables is
stored in a system catalog. Figure 2 shows the layout of a
standard table compared to a dynamic table.

The object table was not present in Copeland and Khosha-
fian’s original decomposed storage model. The addition of
the object table allows us to quickly determine if a row is
present in a relation, avoiding a potential scan of each of the
attribute tables. It also allows us to maintain a single virtual
location of a tuple set to the physical location of it’s object
identifier in the object table, and enables us to use a left outer
join instead of a full outer join when computing query
results. Additionally, the object table was also devised to
allow future versions of the dynamic table infrastructure to
provide row level security and versioning, which are
present in the EAV/CR data model.

When handling sparse data, the dynamic table-based ap-
proach is more space efficient than EAV because the at-
tribute columns are not needed.

We implemented dynamic tables at the heap-access layer of
PostgreSQL, which implements operations on individual
tuples in a relation, namely inserting, updating, deleting,
and retrieving a tuple. When the database user creates a new

F i g u r e 2. Horizontal, vertical, and decomposed storage
models.
dynamic table, we create the attribute and object tables in a

Journal of the American Medical Informatics Association Volume 14 Number 1 Jan / Feb 2007 89
hidden system namespace, exposing only the virtual, hori-
zontal schema given as the table’s definition in the CREATE
TABLE statement.

To retrieve a tuple for a query on r, we first scan the object
table to find a qualifying object identifier, o. If found, we use
o to query each of r’s attribute tables. If the pair (o, a) is
present in an attribute table for some value a, we set the
corresponding attribute in the returned tuple equal to a.
Otherwise, the tuple’s attribute value is set to NULL. To
facilitate the efficient lookup of object IDs in the attribute
tables, we maintain a B-tree index on object IDs for each
table.

Likewise, inserting a new tuple into r is implemented by
inserting a new identifier into r’s object table, then for each
of the new tuple’s attributes, if the new attribute value is
non-NULL, we insert the new object ID and attribute value
pair into r’s corresponding attribute table. For deletes, given
an object ID, we simply delete each tuple from r’s object and
attribute tables. Updates are slightly more complex in that
the operation to perform is dependent on both the old and
new values of each attribute. The semantics for updating an
attribute a to a’ in r are listed in Figure 3.

Given the evolving nature of the data we intend to store, it
is important that schema modifications on dynamic tables
are implemented efficiently and that we avoid the cost of
copying an entire table whenever possible. We support the
schema operations of adding and removing columns, and
changing a column’s type, in addition to trivial schema
operations such as renaming a column or renaming the
entire table. We implement the non-trivial operations as
follows:

• ADD COLUMN col type: To add a new column col to r,
we create a new, empty attribute table for col and update
the system catalog to associate it with r.

• DROP COLUMN col: To drop a column from r, we find
and drop the attribute table associated with the column
and remove r’s association with the dropped attribute
table from the system catalog.

• ALTER COLUMN col TYPE type: Changing a column’s
type requires us to copy and convert the data in the
column’s associated attribute table to the new type.
However, this is still significantly cheaper than copying
and converting an entire horizontal schema, particularly
when the schema has a large number of attributes.

Schema alteration operations in the dynamic approach have
the advantage of intrinsic transactional support: schema
modification statements are always executed atomically by
the database engine and can be embedded seamlessly within
other transactions. Vertical systems require careful SQL
programming from the application programmers to avoid

Update a→a'
a is NULL a is non-NULL

a’ is NULL No action Delete a
a’ is non-NULL Insert a’ Update a to a’

F i g u r e 3. Action performed when updating attribute a to
a’ on a dynamic table.
corrupting data and logical schema.
Optimizations
We employ two main optimizations to improve the perfor-
mance of queries on dynamic tables: projection pushing and
optimizing conditional selects. The use of decomposed stor-
age gives us additional opportunities for projection pushing
in comparison to a standard horizontal schema. Consider
the query listed in Figure 4. If r is stored using decomposed
storage, there is no reason to retrieve values from r’s
attribute tables for a, c, or e. For the general case, we compute
the set of attributes we are required to fetch by taking the
union of the attributes present in the target list of the
SELECT clause with the attributes present in the WHERE
clause of a query.

Next, consider the query listed in Figure 5. We cannot use
projection pushing here because all r’s attributes are re-
quested via “SELECT *”. However, when scanning r to find
tuples that match the query condition, it would make sense
to retrieve and test the values of attributes d and e against the
condition, discarding the candidate tuple if the test fails
before retrieving r’s remaining attributes. To implement this
optimization in the general case, we divide the requested
attributes from a query into two groups: those with condi-
tions and those without conditions. When retrieving at-
tributes, we first retrieve attributes with conditions, one at a
time. If the attribute does not satisfy the condition, we
immediately discard the tuple, skipping the remaining at-
tributes. If all of the conditions are satisfied, we read the
remaining attributes and return the tuple to the query
executor.

In both of these cases, these attribute-level I/O operations
are not beneficial when using a standard horizontal schema
because tuples are generally stored contiguously and
packed into blocks, and sub-block I/O does not improve
tuple throughput. However, with decomposed storage, at-
tributes of each column are grouped together into blocks,
giving us the opportunity to skip reading blocks for at-
tributes we have determined that we don’t need. Of course,
the other side of the story is that if we do end up needing all

Query on schema r(a,b,c,d,e):

 SELECT b
 FROM r
 WHERE d > 10

Figure 4. A good opportunity for projection pushing.
Figure 5. A candidate for conditional select optimization.

90 CORWIN et al., Dynamic Tables
the attributes of a tuple, a horizontal schema that allows us
to fetch the entire tuple at once will be more efficient, so the
optimal choice of storage format is dependent on both the
sparsity of the data being stored and the types of queries
that will be run against the data.

Performance Results
To evaluate the performance of our implementation, we
compared the performance of dynamic tables to both stan-
dard, horizontal storage and to storage using the EAV and
EAV/CR vertical models. We test this using a typical series
of queries executed by users of the SenseLab databases that
retrieve a set of neurons and chemosensory receptors plus
several of their attributes, filtering on between one and five
attributes to narrow the number of results. These queries
have a similar structure to the queries shown in Figure 1.

After each database was populated, the ANALYZE com-
mand was run to update the statistics used by the query
planner. All tests were run on a 1.8Ghz Intel Pentium IV
machine with 1GB of RAM running Fedora Core Linux
version 4.01.

Figure 6 shows the results of running each query using each
of the three storage models. No indexes were used on the
data items, representing the case where we do not know
beforehand which attributes will be of interest to the data-
base users. The number of attributes in this case refers to the
number of values that are filtered on in the WHERE clause
of the query.

When we do know which attributes will commonly be
queried on, we can create indexes on them to improve
performance—this is the usual case for SenseLab data.
Figure 7 shows the running time for each of the queries with
indexes. Notice that the use of indexes virtually eliminates
the performance difference between horizontal storage and
dynamic tables, whereas the vertical approach does not
benefit as much from using indexes.

Unlike many other relational database engines, PostgreSQL
already has support for the efficient implementation of some

F i g u r e 6. Comparison of query execution time for an
attribute-centered query on SenseLab data without indexes.
schema modification commands. In particular, most cases of
adding or removing a column from a table are executed
lazily—the storage format of the table is not actually modi-
fied until the table is later compacted using the VACUUM
command. Thus, in our implementation, adding a column to
a table is a trivial operation using any of the three storage
formats, as they only involve updating the system catalog
(the metadata catalog in the case of EAV/CR), and are
independent of the data currently stored in the table.

However, some schema modification operations do require
the data in a table to be modified, including altering a
column’s type and adding a new column with a default
value. To implement altering a column’s type using hori-
zontal schema, the entire table is copied, converting the data
values for the modified column to the new type as they are
copied. For dynamic tables, we only have to convert the
single attribute table corresponding to the modified column.
For tables stored using EAV or EAV/CR, we need to move
the data values from the object-attribute-value table for the
old type to the object-attribute-value table for the new type.
Figure 8 shows the SQL statements used to change the data
type of a column representing the year of publication of a
paper from a string value to an integer. Dynamic tables are
significantly faster than the other approaches for this oper-
ation: altering the data type for 20,988 values in the
SenseLab database took 0.5 seconds using conventional
tables, 0.29 seconds using dynamic tables, and 4.6 seconds
using EAV-formatted tables.

We stress that adding and removing columns tend to be by
far the most common types of schema changes in a database.
When using a database engine that executes schema modi-
fications eagerly, unlike PostgreSQL, the performance of
these operations in a horizontal system is typically far worse
than in a vertical system. In such a system the entire table
needs to be translated to the new format, the execution time
of which scales linearly with the size of the table, giving
poor performance for large databases. Dynamic tables are
particularly suited to efficiently implementing these opera-

F i g u r e 7. Comparison of query execution time for an
attribute-centered query on SenseLab data with indexes on
queried attributes.
tions in such systems as only the system catalog needs to be

Journal of the American Medical Informatics Association Volume 14 Number 1 Jan / Feb 2007 91
modified to complete the operation, hence the execution
time is independent of the table’s size.

We also ran a set of queries on the TrialDB data to compare
the performance of each storage model on a large, sparse
dataset. Since the TrialDB data contain millions of records,
querying the dataset without the use of indexes is too slow
to be useful using any of the storage methods. Figure 9
shows the results of running a set of typical attribute-
centered queries with indexes on each of the attributes in
question. The performance difference between EAV and the
other two storage methods is even more pronounced in this
data set.

F i g u r e 9. Comparison of query execution time for an

F i g u r e 8. SQL queries to alter the type of a column
representing the year of publication of a paper from a string
value to an integer value.
queried attributes.
In addition to attribute-centered queries, we also compared
the performance of the three storage models when evaluat-
ing entity-centered queries on TrialDB data. These queries
have the form “retrieve a set of attributes for a every event
relevant to a particular patient.” Instead of focusing on the
execution time needed to fetch the entities alone, which is
well known to be quite similar between vertical and rela-
tional systems,5 we instead measured the execution time
needed to retrieve the entity plus one to five additional
attributes, which represent a set of typical real-world entity-
based queries. Figure 10 shows that the execution time
required for the vertical and dynamic storage mechanisms
does not change significantly as additional attributes are
requested, whereas the execution time for EAV scales lin-
early with the number of attributes.

Sample clinical data from TrialDB used in this project were
deidentified by removing all patient demographics data,
scrambling integer and string data values, and replacing all
internal system id’s (e.g., patient-event ids) with local se-
quential ones.

Other Implementation Strategies
The implementation strategy described above is actually our
third refinement of alternate relational storage architectures.
For database-specific reasons, our first two approaches en-
countered “mismatch impedance” when implemented in
our PostgreSQL testbed, but we believe the ideas may well
have merit if implemented in other database systems.

Our first approach was to use a dense column-store. In this
architecture, a relation’s attribute values are densely packed
into one-column tables. Tuples from the conceptual schema
are returned by joining values from the attribute tables
based on their index in the table: to retrieve the ith tuple
from relation r, we simply take the ith entry from the first
attribute table, the ith entry from the second attribute table,
and so on. This approach still allows for the efficient schema
modifications described above, and provides greater storage
efficiency for dense data. However, we realized that this
approach is incompatible with PostgreSQL’s use of multi-

F i g u r e 10. Comparison of query execution time for an
entity-centered query on TrialDB data.
attribute-centered query on TrialDB data with indexes on

version concurrency control (MVCC). Using MVCC, Post-

92 CORWIN et al., Dynamic Tables
greSQL eliminates the need to hold locks on tables by
storing multiple versions of tuples representing consistent
snapshots of the data at different points in time, along
with tuples that have been made obsolete by newer
versions. When implementing the single-column store
approach, even if we are careful to ensure that values
from a tuple are inserted into the same logical position in
each of the attribute tables, it is very difficult to ensure
that values will remain in the correct logical order after a
table compaction (VACUUM) operation.

Our second approach was to use sets of sparse columns to
store attributes as with our final implementation, except we
implemented the translation from decomposed storage to
horizontal storage at the level of rewrite rules in the data-
base engine instead of at the heap-access level. Our hypoth-
esis was that rewrite rules would give the query planner
maximal opportunity to optimize query plans involving
dynamic tables. We found, however, that PostgreSQL’s
query optimizer tried too hard to find the optimal join order
when combining attribute tables, taking exponential time
relative to the number of attributes to plan the query. The
generated query plans were efficient, but for tables with
large numbers of columns, query planning took several
orders of magnitude longer than actually executing the
query. By explicitly restricting the join order, we were able
to marginally decrease planning time, with the tradeoff of
generating inferior query plans. In the end, we found it was
more efficient to implement decomposed storage at the
heap-access level of the database, bypassing the query
planner entirely.

Related Work
Beckmann et al.17 propose an alternate storage format for
tables on disk in which the tuple layout of each row is
described by a variable-length, “interpreted” record. The
interpreted records are implemented at a lower level in the
database engine compared to dynamic tables (storage level
vs. heap-access level), and provide many of the same bene-
fits for storing sparse or heterogeneous data with potentially
greater space efficiency. It is not clear, however, that inter-
preted records provide any benefit to the optimization of
schema-modifying operations.

The C-Store18 database engine is also based on a column-
store architecture, but is designed for the application of read
optimized databases, and thus may not be appropriate for
typical neuroscience databases where writes are frequent.

The work of Agrawal et al.19 on e-commerce data shows
that the domain of e-commerce data shares many similar-
ities with neuroscience and clinical informatics data,
particularly with respect to schema evolution and heter-
ogeneous data. They, however, advocate the use of verti-
cal storage and show a performance advantage for verti-
cal schema compared to horizontal schema for this
domain.

Software
The PostgreSQL database engine and our modifications to
support dynamic tables are open-source software distrib-

uted under the BSD20 license, which allows the software
to be freely distributed, modified, and included in com-
mercial products, as long as the original copyright notice
is preserved. Our software is available for download at
the following address: http://crypto.stanford.edu/portia/
software/postgredynamic.html.

We welcome feedback from anyone who makes use of our
software as part of any research project or commercial
solution.

Conclusion and Future Work
This paper presents the architecture of dynamic tables, which
are based on implementing relational database storage using
the decomposed storage model while maintaining a logical
horizontal view of the data. Our implementation has signif-
icant advantages over past approaches used by the bioinfor-
matics and medical informatics communities that were
based on the use of vertical storage, including improved
query performance on both attribute-centered and entity-
centered queries, improved schema modification perfor-
mance, and the greater manageability of working with a
horizontal view of the data. Dynamic tables also maintain
the capability of vertical schemas to efficiently store sparse
data.

Our future work will continue our effort increasing the
capabilities of database engines by adding features com-
monly needed by bioscience and clinical databases, includ-
ing extensive support for metadata and a flexible system for
row-level security.

References y

1. Nadkarni PM, Brandt C, Frawley S, et al. Managing attribute-
value clinical trials data using the ACT/DB client-server data-
base system. J Am Med Inform Assoc. 1998;5:139–51.

2. Miller PL, Nadkarni P, Singer M, Marenco L, Hines M, Shep-
herd G. Integration of multidisciplinary sensory data: a pilot
model of the human brain project approach. J Am Med Inform
Assoc. 2001;8:34–48.

3. Nadkarni PM, Brandt C. Data extraction and ad hoc query of an
entity-attribute-value database. J Am Med Inform Assoc. 1998;
5:511–27.

4. Marenco L, Nadkarni P, Skoufos E, Shepherd G, Miller P.
Neuronal database integration: the Senselab EAV data model.
Proc AMIA Symp. 1999:102–6.

5. Chen RS, Nadkarni P, Marenco L, Levin F, Erdos J, Miller PL.
Exploring performance issues for a clinical database organized
using an entity-attribute-value representation. J Am Med In-
form Assoc. 2000;7:475–87.

6. Copeland GP, Khoshafian SN. A decomposition storage model.
In: In Proceedings of the 1985 ACM SIGMOD International
Conference on Management of Data May 28-31, 1985; Austin,
Texas. p. 268–79.

7. Khoshafian S, Copeland G, Jagodis T, Boral H, Valduriez P. A
query processing strategy for the decomposed storage model.
ICDE. 1987:636–43.

8. Sybase Inc. Sybase IQ: Query Search Test Software And Oper-
ational Data Store Warehouse Application. 2006. Available at:
http://www.sybase.com/products/informationmanagement/
sybaseiq. Accessed June 26, 2006.

9. Huff SM, Berthelsen CL, Pryor TA, Dudley AS. Evaluation of an
SQL model of the help patient database. In: Proc. 15th Sympo-
sium on Computer Applications in Medical Care; 1991; Wash-
ington, DC: IEEE Computer Press, Los Alamitos, CA; 1991. pp.

386–90.

http://crypto.stanford.edu/portia/software/postgredynamic.html
http://crypto.stanford.edu/portia/software/postgredynamic.html
http://www.sybase.com/products/informationmanagement/sybaseiq
http://www.sybase.com/products/informationmanagement/sybaseiq

Journal of the American Medical Informatics Association Volume 14 Number 1 Jan / Feb 2007 93
10. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor TA. HELP the
next generation: a new client-server architecture. In: Proc. 18th
Symposium on Computer Applications in Medical Care; 1994;
Washington, D.C.: IEEE Computer Press, Los Alamitos, CA;
1994, pp. 271–5.

11. Friedman C, Hripcsak G, Johnson S, Cimino J, Clayton P. A
generalized relational schema for an integrated clinical patient
database. In: Proc. 14th Symposium on Computer Applications
in Medical Care; 1990; Washington, DC: IEEE Computer Press,
Los Alamitos, CA: 1990. p. 335–9.

12. Johnson S, Cimino J, Friedman C, Hripcsak G, Clayton P.
Using metadata to integrate medical knowledge in a clinical
information system. In: Proc. 14th Symposium on Computer
Applications in Medical Care; 1990; Washington, D. C.: IEEE
Computer Press, Los Alamitos, CA: 1990, pp. 340 – 4.

13. Nadkarni PM, Brandt C, Frawley S, et al. Managing attribute-
value clinical trials data using the ACT/DB client-server data-

base system. J Am Med Inform Assoc. 1998;5:139–51.
14. Valentin D, Nadkarni P, and Brandt C. Pivoting approaches for
bulk extraction of Entity-Attribute-Value data. Comp Meth
Programs Biomed. 2006;82:38–43.

15. McMahan BJ, Pan G, Porter P, Vardi MY. Projection Pushing
Revisited. EDBT 2004.

16. Group PGD. PostgreSQL. Available at: http://www.postgresql.org/.
Accessed June 26, 2006.

17. Beckmann JL, Halverson A, Krishnamurthy R, Naughton JF.
Extending RDBMSs To Support Sparse Datasets Using An
Interpreted Attribute Storage Format. ICDE 2006.

18. Stonebraker M, Abadi D, Batkin A, et al. C-Store: A Column
Oriented DBMS. In: Proceedings of VLDB; August 2005; Trond-
heim, Norway; 2005.

19. Agrawal R, Somani A, Xu Y. Storage and querying of e-com-
merce data. VLDB 2001:149-58.

20. Open Source Initiative. The BSD License. Available at: http://
www.opensource.org/licenses/bsd-license.php. Accessed June

26, 2006.

http://www.postgresql.org/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php

	Dynamic Tables: An Architecture for Managing Evolving, Heterogeneous Biomedical Data in Relational Database Management Systems
	Introduction
	Background
	Dynamic Table Implementation and Optimizations
	Interface
	Implementation
	Optimizations

	Performance Results
	Other Implementation Strategies
	Related Work
	Software
	Conclusion and Future Work
	References

